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Introduction
This unit will cover some of the numerical techniques used for solving differential equations and using MATLAB to implement these numerical methods.
Material
All the material will be posted on the Microsoft Teams Page for the unit. Note that is document is regularly being updated so if you find any mistakes or parts missing then do let me know.
Unit Outline
All lectures will be held online on Fridays, 10.00 - 12.00 on Microsoft Teams, to which you should have received a link. The details for the link are as follows:
Meeting ID: 358 213 646 365 0
Passcode: Us2N6hB2
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Aims & Objectives
The aim for this unit is to be able to understand and derive different numerical techniques for solving differential equations and being able to implement them on MATLAB.
Intended Learning Outcomes:
· Understand the internal working mechanisms of MATLAB,
· Solve linear systems using direct and iterative methods,
· Use different differencing schemes to assess their ability to solve ODEs and PDEs,
· Assess the stability of different numerical methods.
Questions
For any questions, queries or issues that you see in the material, do not hesitate to contact me on w.a.a.ali@bath.ac.uk.
1. Internal Workings of MATLAB
1.1 Floating-Point Arithmetic
Since computers have limited resources, only a finite strict subset  of the real numbers can be represented. This set of possible stored values is known as Floating-Point Numbers and these are characterised by properties that are different from those in , since any real number  is – in principle – truncated by the computer, giving rise to a new number denoted by , which does not necessarily coincide with the original number .
A computer represents a real number  as a floating-point number in  as
[bookmark: eq-float]
where:
·  determines the sign of the number;
·  is the base;
·  is the exponent.
·  is the mantissa (or significand). The mantissa has length  which is the maximum number of digits that can be stored. Each term in the mantissa must satisfy  for all  and  (to ensure that the same number cannot have different representations). The digits  (with ) are often called the  first significant digits of .
The set  is therefore fully characterised by the basis , the number of significant digits  and the range of values that  can take.
A computer typically uses binary representation, meaning that the base is  with the available digits  (also known as bits) and each digit is the coefficient of a power of 2. Available platforms (like MATLAB and Python) typically use the IEEE754 double precision format for , which uses 64-bits as follows:
· 1 bit for  (either 0 or 1) to determine the sign;
· 11 bits for  (which can be );
· 52 bits for  (since , it has to be equal to 1).
For 32-bit storage, the exponent is at most 7 and the mantissa has 23 digits. Note that 0 does not belong to  since it cannot be represented in the form shown in Equation 1.1 and it is therefore handled separately.
The smallest and the largest positive real numbers that can be written in floating points can be found by using the realmin and realmax commands. A positive number smaller than  yields underflow and a positive number greater than  yields overflow. The elements in  are more dense near , and less dense while approaching . However, the relative distance is small in both cases. Note that any number bigger than realmax or smaller than -realmax will be assigned the values  and  respectively.
>> realmin
ans =
     2.2251e-308
>> realmax
ans =
     1.7977e308
If a non-zero real number  is replaced by its floating-point representation , then there will inevitably be a round-off error, especially if the number is either too large or too small relative to the other numbers involved. For a floating point number , there is a distance  where any value in the interval  cannot be written as a floating point and will therefore be assigned the value . This interval width is called the Machine Epsilon and can be found for any floating point number  by using the command eps(x).
>> ep1=eps(1)
ep1 =
     2.2204e-16
>> 1-(1+ep1/2)
ans =
     0
The larger the floating number is, the larger the machine epsilon will be, meaning that larger numbers will have much greater tolerances of error. The smaller the number is, the larger the relative size will be, rendering the numbers insginifciant overall.
>> eps(2^100)
ans =
     2.8147e+14
>> eps(2^-50)
ans =
     1.9722e-31
Since  is a strict subset of , elementary algebraic operations on floating-point numbers do not inherit all the properties of analogous operations on . Precisely, commutativity still holds for addition and multiplication, i.e.  and . Associativity is violated whenever a situation of overflow or underflow occurs or, similarly, whenever two numbers with opposite signs but similar absolute values are added, the result may be quite inexact and the situation is referred to as loss of significant digits.
Properly handling floating point computations can be tricky sometimes and, if not correctly done, may have serious consequences. There are many webpages (and books) collecting examples of different disasters caused by a poor handling of computer arithmetic or a bad algorithmic implementation. See, for instance, Software Bugs and the Patriot Missile Fail among others.
1.2 Computational Complexity
The Computational Complexity of an algorithm can be defined as the relationship between the size of the input and the difficulty of running the algorithm to completion. The size (or at least, an attribute of the size) of the input is usually denoted , for instance, for a 1-D array,  can be its length.
The difficulty of a problem can be measured in several ways. One suitable way to describe the difficulty of the problem is to count the number of Floating-Point Operations, such as additions, subtractions, multiplications, divisions and assignments. Floating-point operations, also called flops, usually measures the speed of a computer, measured as the maximum number of floating-point operations which the computer can execute in one second. Although each basic operation takes a different amount of time, the number of basic operations needed to complete a function is sufficiently related to the running time to be useful, and it is usually easy to count and less dependent on the specific machine (hardware) that is used to perform the computations.
A common notation for complexity is the Big-O notation (denoted ), which establishes the relationship in the growth of the number of basic operations with respect to the size of the input as the input size becomes very large. In general, the basic operations grow in direct response to the increase in the size  of the input and, as  gets large, the highest power dominates. Therefore, only the highest power term is included in Big-O notation; moreover, coefficients are not required to characterise growth and are usually dropped (although this will also depend on the precision of the estimates).
Formally, a function  behaves as  as  tends to infinity if

For example, the polynomial  behaves like  as  tends to infinity since this term will be the fastest to grow. This can be written as  as .
	Couting flops

	Let  be given by

This function  can be coded as fun in MATLAB as follows:
function [out]=fun(n)

out = 0;

for i=1:1:n

     for j=1:1:n

          out = out + i*j;
    
     end
  
end

end
For example,  should perform the overall calculation

so fun(3) should output out=36.
This code requires the following operations:
·  assignments:
· 1: out=0;
· : i=1:1:n;
· : for every i, j=1:1:n;
· : for every i, out=out+i*j;
·  multiplications: i*j;
·  additions: out=out+i*j.
Therefore, for any , this code will need  flops, meaning that the computational complexity is , i.e. the code runs in polynomial time. It is not uncommon to find algorithms that run in exponential time , like some recursive algorithms, or in logarithmic time .


For more complicated codes, it is important to see where most of the time is spent in a code and how execution can be improved. A rudimentary way of timing can be done by the toc toc:
>> tic;
>> Run code or code block
>> toc;
This will produce a simple time in seconds that MATLAB took from tic until toc, so if toc has not been types, then the timer will continue.
For more advanced analysis, MATLAB uses a Code Profiler to analyse code which includes run times for each iteration, times a code has been called and a lot more.
	Iterative vs Recursive

	Suppose that a code needs to be written that finds the  Fibonacci number starting the sequence with (1,1). This can be done in two ways:
· Iteratively by having a self-contained code that generates all the terms of the sequence up to  and displays the last term.
function [F]=Fib_Iter(N)

S=ones(1,N);

for n=3:1:N

     S(n)=S(n-1)+S(n-2);

end

F=S(end);

end
· Recursively by have a self-referential code that keeps referring back to itself to generate the last term in the sequence from the previous terms.
function [F]=Fib_Rec(N)

if N<3

     F=1;

else

     F=Fib_Rec(N-1)+Fib_Rec(N-2);

end

end
When running these codes for an input of , the times are very short, of the order of  seconds but as  gets larger, the recursive code starts to take much longer. Suppose the code efficiency is to be analysed for the input , this can be done using the profiler as follows:
>> profile on
>> Fib_Iter(40);
>> profile off
>> profile viewer
This will give a full breakdown of how many times every line was run and how much time it took. For Fib_Iter(40), a total of 38 operations were performed, each taking such a short amount of time that it registers as “0 seconds”.
[image: figures/Fib_Iter.png]
However, performing the profiler for Fib_Rec(40) gives a dramatically different answer with the code taking nearly 247 seconds and having to call itself more than 102 million times.
[image: figures/Fib_Rec.png]
This is why it is important to profile longer codes to see which parts take the longest time and which loops are the most time consuming.


 
	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\note.png]  Good Practice

	To reduce computational time in general, avoid self-referential codes because these tend to grow in usage exponentially. Another important practice is to use in-built MATLAB syntax, like using sum to add elements in a vector rather than manually hard coding it. This is where being familiar with a lot of the MATLAB syntax is important; MATLAB has a lot of built-in codes and syntaxes which can save a lot of time.


2. Solving Linear Systems of Equations
:::
Before embarking on the main purpose of the course, which is solving differential equations, first solving linear systems will be necessary. The linear systems will take the form

This is a situation when the LHS forms a system of equations with a vector of unknowns  and the RHS is known.
	Simple Example of a Linear System

	Let  and  be integers such that:
· their sum is equal to 20
·  is twice as large as 
·  is bigger than  by 10.
These three relationships can be written in equation form as:



This can written in matrix form as:



There are two main ways in which this can be done, depending on the form of the matrix:
· Direct Methods:
· Direct substitution for diagonal systems;
· Forward substitution for lower triangular systems;
· Backward substitution for upper triangular systems;
· TDMA for tridiagonal systems;
· Cramer’s Rule and Gaussian Elimination for more general matrix systems.
· Iterative Methods
· Jacobi;
· Gauss-Seidel.
· In-built Methods:
· Backsklash operator.
2.1 Computational Stability of Linear Systems
Before tackling any linear algebra techniques, it is important to understand Computational Stability.
Consider the linear system

In real-life applications, the matrix  is usually fully known and often invertible while the vector  may not be known exactly and its measurement may often include rounding errors. Suppose that the vector  has a small error , then the solution  will also have a small error , meaning that the system will in fact be
[bookmark: eq-err1]
Subtracting  form Equation 2.1 gives , therefore .
For , consider the ratio between the -norm of the error  and the -norm of the exact solution : 
	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\note.png]  Note 2.1: Submultiplicative Property of Matrix Norms

	For matrices  and  and a vector ,


In both cases, the equality holds when either  or  are orthogonal.


Let , then

The quantity  is called the Condition Number[footnoteRef:46] and it can be regarded as a measure of how sensitive a matrix is to perturbations, in other words, it gives an indication as to the stability of the matrix system. A problem is Well-Conditioned if the condition number is small, and is Ill-Conditioned if the condition number is large (the terms “small” and “large” are somewhat subjective here and will depend on the context). Bear in mind that in practice, calculating the condition number may be computationally expensive since it requires inverting the matrix . [46:  Note that  exists only if  is non-singular, meaning that the condition number number only exists if  is non-singular.] 

The condition number derived above follows the assumption that the error only occurs in  which then results in an error in . If an error  is also committed in , then for sufficiently small , the error bound for the ratio is

An example for which  is large is a discretisation matrix of a PDE, in this case, the condition number of  can be very large and increases rapidly as the number of mesh points increases. For example, for a PDE with  mesh points in 2-dimensions, the condition number  is of order  and it is not uncommon to have  between  and . In this case, errors in  may be amplified enormously in the solution process. Thus, if  is large, there may be difficulties in solving the system reliably, a problem which plagues calculations with partial differential equations.
Moreover, if  is large, then the system  may be solved using an iterative method which generate a sequence of approximations  to  while ensuring that each iteration is easy to perform and that  rapidly tends to , within a certain tolerance, as  tends to infinity. If  is large, then the number of iterations to reach this tolerance increases rapidly as the size of  increases, often being proportional to  or even to . Thus not only do errors in  accumulate for large , but the number of computation required to find  increases as well.
In MATLAB, the condition number can be calculated using the cond(A,p) command where A is the square matrix in question and p is the chosen norm which can only be equal to 1, 2, inf or 'Fro' (when using the Frobenius norm). Also note that cond(A) without the second argument p produces the condition number with the 2-norm by default.
Properties of the Condition Number
Let  and  be invertible matrices,  and . The condition number  has the following properties:
· ;
·  if and only if  is an orthogonal matrix, i.e. ;
· ;
· ;
· .
2.2 Direct Methods
Direct methods can be used to solve matrix systems in a finite number of steps, although these steps could possibly be computationally expensive.
2.2.1 Direct Substitution
Direct substitution is the simplest direct method and requires the matrix  to be a diagonal with none of the diagonal terms being 0 (otherwise the matrix will not be invertible).
Consider the matrix system  where

and . Direct substitution involves simple multiplication and division:


The solution can be written explicitly as  for all . Every step can done independently, meaning that direct substitution lends itself well to parallel computing. In total, direct substitution requires exactly  computations (all being division).
	Example of Direct Substituion

	Consider the system  where

Solving the system using direct substitution:




2.2.2 Forward/Backward Substitution
Forward/backward substitution require that the matrix  be lower/upper triangular.
Consider the matrix system  where


and  (so that the determinant is non-zero). The matrix  is upper triangular in this case and will require backwards substitution:


Backward substitution involves using the solutions from the later equations to solve the earlier ones, this gives:





This can be written more explicitly as:

A similar version can be obtained for the forward substitution for lower triangular matrices as follows:

For any , calculating it requires 1 division,  multiplications and  subtractions. Therefore cumulatively,  require  divisions,  multiplications and  additions with one more division required for , meaning that in total, backward (and forward) substitution requires  computations.
	Example of Backward Substitution

	Consider the system  where

This problem can be solved by suing backward substitution:





2.2.3 TDMA Algorithm
The TriDiagonal Matrix Algorithm, abbreviated as TDMA (also called the Thomas Algorithm) was developed by Llewellyn Thomas which solves tridiagonal matrix systems.
Consider the matrix system  where


The  terms denote the diagonal elements,  denote subdiagonal elements (left of the diagonal terms) and  denote the superdiagonal elements (right of the diagonal terms). The TDMA algorithm works in two steps: first, TDMA performs a forward sweep to eliminate all the subdiagonal terms and rescale the matrix to have 1 as the diagonal (the same can also be done to eliminate the superdiagonal instead). This give the matrix system

where


This can now be solved with backward substitution:

The computational complexity can be calculated as follows:
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This gives a total of  computations for ,  computations for  and  computations for  giving a total of  computations.
There are similar ways of performing eliminations that be done for pentadiagonal systems as well as tridiagonal systems with a full first row.
2.2.4 Cramer’s Rule
Cramer’s Rule is a method that can be used to solve any system  (of course provided that  is non-singular).
Cramer’s rule states that the elements of the vector  are given by

where  is the matrix obtained from  by replacing the  column by . This method seems very simple to execute thanks to its very simple formula, but in practice, it can be very computationally expensive.
	Example of Cramer’s Rule

	Consider the system  where

The determinant of  is equal to 7. Using Cramer’s rule, the solution  can be calculated as:





Generally, for a matrix of size , the determinant will require  computations (other matrix forms or methods may require fewer, of  at least). Cramer’s rule requires calculating the determinants of  matrices each is size  and performing  divisions, therefore the computational complexity of Cramer’s rule is . This means that if a machine runs at 1 Gigaflops per second ( flops), then a matrix system of size  will require 1620 years to compute.
2.2.5 Gaussian Elimination & LU Factorisation
Consider the linear system

In real-life situations, the matrix  does not always have a form that lends itself to being easily solvable (like a diagonal, triangular, sparse, etc.). However, there are ways in which a matrix can be broken down into several matrices, each of which can be dealt with separately and reducing computational time.
One way of doing this is by Gaussian Elimination which is a series of steps that reduces a matrix  into an upper triangular matrix. The steps of the Gaussian elimination are presented in details in Appendix F.
In order to convert the linear system  into the upper triangular matrix system  by Gaussian elimination, a series of transformations have to be done, each represented by a matrix  giving the form

For every , the matrix  is lower triangular (because the process is intended to eliminate the lower triangular elements) which means that the product of all these matrices  must also be lower triangular. Note that since  and  are both non-singular and lower triangular, then their inverses must also be lower triangular. This means that the matrix  will be lower triangular and invertible. Additionally, since Gaussian elimination tends to keep the diagonal terms unchanged, then the diagonal terms of , and consequently , will all be 1.
This means that the matrix  can be written as  where  is a lower triangular matrix and  is an upper triangular matrix. This is called the LU Decomposition of .
In the cases when there might be pivoting issues (which is when the pivot points might be equal to 0 during the Gaussian Elimination), the LU decomposition will more precisely be the PLU Decomposition (or the LU Decomposition with Partial Pivoting) where the method will produce an additional permutation matrix  where . This matrix  will swap rows when needed in order to have non-zero pivot points and is in fact orthogonal (i.e. ).
The LU decomposition can be used to solve the linear system  by splitting the matrix  into two matrices with more manageable forms. Indeed, since , then the system becomes , this can be solved as follows:
· Solve the lower triangular system  for  using forward substitution;
· Solve the upper triangular  for  using backwards substitution.
This is a much better way of solving the system since both equations involve a triangular matrix and this requires  computations (forward and backward substitutions).
The advantage of using the LU decomposition is that if problems of the form  need to be solved with many different right hand sides  and a fixed , then only one LU decomposition is needed, and the cost for solving the individual systems is only the repeated forward and back substitutions. Note that there are other strategies optimised for specific cases (i.e. symmetric positive definite matrices, banded matrices, tridiagonal matrices).
In MATLAB, the LU decomposition can be done by a simple lu command:
>> A=[5,0,1;1,2,1;2,1,1];
>> [L,U]=lu(A)
L =
     1.0000        0        0
     0.2000   1.0000        0
     0.4000   0.5000   1.0000
U =

     5.0000        0   1.0000
          0   2.0000   0.8000
          0        0   0.2000
>> L*U-A       % Verify if LU is equal to A
ans =
     0   0   0
     0   0   0
     0   0   0
Note that if the output for L is not lower triangular, that means there are some pivoting issues that had to be overcome and L had to change to accommodate for that to maintain the fact that . In this case, the PLU decomposition would be better suited to avoid that, this is done by adding one extra output to the lu command, in this case,  will actually be the product .
>>> A=[1,0,1;1,0,1;2,1,1];
>> [L,U]=lu(A)
L =
     0.5000    1.0000    1.0000
     0.5000    1.0000         0
     1.0000         0         0
U =

     2.0000    1.0000    1.0000
          0   -0.5000    0.5000
          0         0         0
>> L*U-A       % Verify if LU is equal to A even though
               % L is not lower triangular
ans =
     0   0   0
     0   0   0
     0   0   0
>> [L,U,P]=lu(A)
L =
     1.0000         0         0
     0.5000    1.0000         0
     0.5000    1.0000    1.0000
U =

     2.0000    1.0000    1.0000
          0   -0.5000    0.5000
          0         0         0
P =
     0   0   1
     0   1   0
     1   0   0
>> L*U-A       % Verify if P'LU is equal to A
ans =
     0   0   0
     0   0   0
     0   0   0
2.2.6 Other Direct Methods
There are many other direct methods with more involved calculations like QR decomposition and Singular Value Decomposition amongst others. All these methods will be placed in Appendix G.
2.3 Iterative Methods
For a large matrix , solving the system  directly can be computationally restrictive as seen in the different methods shown in Section 2.2. An alternative would be to use iterative methods which generate a sequence of approximations  to the exact solution . The hope is that the iterative method converges to the exact solution, i.e.

A possible strategy to realise this process is to consider the following recursive definition

where  is a suitable matrix called the Iteration Matrix (which would generally depend on ) and  is a suitable vector (depending on  and ). Since the iterations  must tend to  as  tends to infinity, then
[bookmark: eq-Bxgk]
[bookmark: eq-Bxg]
Next, a sufficient condition needs to be derived; define  as the error incurred from iteration , i.e.  and consider the linear systems

Subtracting these gives 
In order to find a bound for the error, take the 2-norm of the error equation

By the submultiplicative property of matrix norms given in Note 2.1, the error  can be bounded above as

This can be iterated backwards, so for ,

Generally, this means that the error at any iteration  can be bounded above by the error at the initial iteration . Therefore, since  is arbitrary, if  then the set of vectors  generated by the iterative scheme  will converge to the exact solution  which solves , hence giving a sufficient condition for convergence.
2.3.1 Constructing an Iterative Method
A general technique to devise an iterative method to solve  is based on a “splitting” of the matrix . First, write the matrix  as  where  is a suitable non-singular matrix (somehow linked to  and “easy” to invert). Then 
Therefore, the vector  can be written implicitly as

which is of the form given in Equation 2.3 where  and . It would then stand to reason that if the iterative procedure was of the form

(as in Equation 2.2), then the method should converge to the exact solution (provided a suitable choice for ). Of course, for the iterative procedure, the iteration needs an initial vector to start which will be

The choice of the matrix  should depend on  in some way. So suppose that the matrix  is broken down into three parts,  where  is the matrix of the diagonal entries of ,  is the strictly lower triangular part or  (i.e. not including the diagonal) and  is the strictly upper triangular part of .
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	For example



· Jacobi Method: 
The matrix  is chosen to be equal to the diagonal part of , then the splitting procedure gives the iteration matrix  and the iteration itself is  for , which can be written component-wise as
[bookmark: eq-Jmethod]
If  is strictly diagonally dominant by rows[footnoteRef:61], then the Jacobi method converges. Note that each component  of the new vector  is computed independently of the others, meaning that the update is simultaneous which makes this method suitable for parallel programming. [61: 
A matrix  is Diagonally Dominant if every diagonal entry is larger in absolute value than the sum of the absolute value of all the other terms in that row. More formally

The matrix is Strictly Diagonally Dominant if the inequality is strict.] 

· Gauss-Seidel Method: 
The matrix  is chosen to be equal to the lower triangular part of , therefore the iteration matrix is given by  and the iteration itself is  which can be written component-wise as
[bookmark: eq-GSmethod]
Contrary to Jacobi method, Gauss-Seidel method updates the components in sequential mode.
There are many other methods that use splitting like:
· Damped Jacobi method:  for some 
· Successive over-relaxation method:  for some 
· Symmetric successive over-relaxation method:  for some 
2.3.2 Computational Cost & Stopping Criteria
There are essentially two factors contributing to the effectiveness of an iterative method for : the computational cost per iteration and the number of performed iterations. The computational cost per iteration depends on the structure and sparsity of the original matrix  and on the choice of the splitting. For both Jacobi and Gauss-Seidel methods, without further assumptions on , the computational cost per iteration is . Iterations should be stopped when one or more stopping criteria are satisfied, as will be discussed below. For both Jacobi and Gauss-Seidel methods, the cost of performing  iterations is ; so as long as , these methods are much cheaper than Gaussian elimination.
In theory, iterative methods require an infinite number of iterations to converge to the exact solution of a linear system but in practice, aiming for the exact solution is neither reasonable nor necessary. Indeed, what is actually needed is an approximation  for which the error is guaranteed to be lower than a desired tolerance . On the other hand, since the error is itself unknown (as it depends on the exact solution), a suitable a posteriori error estimator is needed which predicts the error starting from quantities that have already been computed. There are two natural estimators one may consider:
· Residual: The residual error at the  iteration, denoted  is given by the error between  and , namely . An iterative method can be stopped at the first iteration step  for which

· Increment: The incremental error at the  iteration, denoted  is the error between consecutive approximations, namely . An iterative method can be stopped after the first iteration step  for which

Of course, another way to stop the iteration is by imposing a maximum number of allowable iterations , this is usually a good starting point since it is not possible to know beforehand if the method does indeed converge. Enforcing a maximum number of iterations will determine if the initial guess is suitable, if the method is suitable or indeed if there is any convergence.
2.4 In-Built MATLAB Procedures
Given that MATLAB is well-suited to dealing with matrices, it has a very powerful method of solving linear systems and it is using the Backslash Operator. This is a powerful in-built method that can solve any square linear system regardless of its form. MATLAB does this by first determining the general form of the matrix (sparse, triangular, Hermitian, etc.) before applying the appropriate optimised method.
For the linear system

MATLAB can solve this using the syntax x=A\b.
	Starting Example

	Returning to the example in the beginning of this section, the matrix system was

This can be solved as follows:
>> A=[1,1,1;1,-2,0;0,1,-1];
>> b=[20;0;10];
>> A\b
ans =
     15.0000
      7.5000
     -2.5000
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	The MATLAB website shows the following flowcharts for how A\b classifies the problem before solving it.
[image: figures/mldivide_full.png]
If the matrix  is full.
[image: figures/mldivide_sparse.png]
If the matrix  is sparse.


2.5 Exersises
	Exercise 2.1

	Let  and  be invertible matrices,  and . The condition number  has the following properties:
1. ;
1. If  is an orthogonal matrix (), then ;
1. ;
1. ;
1. .
You may use the fact that .


 
	Solution 2.1

	

1. Using the submultiplicative property of matrices

1. If  is orthogonal (), then the submultiplicative property of matrices becomes an equality, so







 
	Exercise 2.2

	Solve the following linear systems of the form  using the following direct methods:
1. Direct substitution

1. Backward substitution

1. Forwards substitution

1. TDMA

1. Cramer’s Rule



 
	Solutions 2.2

	








 
	Exersise 2.3

	Using the formulas derived, write MATLAB codes that can perform:
· Direct substitution
· Backward substitution
· Forward substitution
· TDMA
· Cramer’s Rule
Use the examples in Exercise 2.2 as test cases.


 
	Solutions 2.3

	Direct Substitution
function D_Sub

A=diag([1,-2,5]);
b=[3;9;0];

if isdiag(A)~=1
    error('A must be a diagonal matrix')
end

if any(diag(A)==0)
    error('All diagonal terms must be non-zero')
end

N=length(b);

x=zeros(1,N);

for n=1:1:N
    x(n)=b(n)/A(n,n);
end

disp('x=')
disp(x)

end
Backward Substitution
function B_Sub

A=[4,2,1;0,2,1;0,0,10];
b=[1;1;1];

if istriu(A)~=1
    error('A must be an upper triangluar matrix')
end

if any(diag(A)==0)
    error('All diagonal terms must be non-zero')
end

N=length(b);

x=zeros(1,N);

x(N)=b(N)/A(N,N);

for n=N-1:-1:1
    S=0;
    for i=n+1:1:N
        S=S+A(n,i)*x(i);
    end
    x(n)=(b(n)-S)/A(n,n);
end

disp('x=')
disp(x)

end
Forward Substitution
function F_Sub

A=[1,0,0;4,5,0;9,1,2];
b=[0;0;1];

if istril(A)~=1
    error('A must be a lower triangular matrix')
end

if any(diag(A)==0)
    error('All diagonal terms must be non-zero')
end

N=length(b);

x=zeros(1,N);

x(1)=b(1)/A(1,1);

for n=2:1:N
    S=0;
    for i=1:1:n-1
        S=S+A(n,i)*x(i);
    end
    x(n)=(b(n)-S)/A(n,n);
end

disp('x=')
disp(x)

end
TDMA
function TDMA

m=[2,2,2,2,2];
l=[-1,-1,-1,-1];
r=[-1,-1,-1,-1];
A=diag(m)+diag(l,-1)+diag(r,1);

b=[1;0;1;0;1];

N=length(b);

R=zeros(1,N);
B=zeros(1,N);
x=zeros(1,N);

l=[0,l];
r=[r,0];

R(1)=r(1)/m(1);
for n=2:1:N-1
    R(n)=r(n)/(m(n)-l(n)*R(n-1));
end

B(1)=b(1)/m(1);
for n=2:1:N
    B(n)=(b(n)-l(n)*B(n-1))/(m(n)-l(n)*R(n-1));
end

x(N)=B(N);
for n=N-1:-1:1
    x(n)=B(n)-R(n)*x(n+1);
end

disp('x=')
disp(x)

end
Cramer’s Rule
function Cramer

A=[1,0,2;2,1,2;-1,0,1];
b=[12;0;6];

N=length(b);

d=det(A);

x=zeros(N,1);

for n=1:1:N
    AA=A;
    AA(:,n)=b;
    x(n)=det(AA)/d;
end

disp('x=')
disp(x)

end


3. The Euler Method
Consider the first order ordinary differential equation (ODE)

where  is a known function,  is an initial time and  is the final time. An initial condition can be prescribed to this differential equation which will assign a “starting value” for the unknown function  at the starting time as . The combination of the first order ODE and the initial value gives the Initial Value Problem (or IVP)

There are many analytic methods for solving first order ordinary differential equations, but they all hold restrictions, like linearity or homogeneity. This chapter will develop the simplest numerical technique for solving any first order ordinary differential equation, this method is called the Euler Method.
Consider the following first order IVP

The function  is known and in most cases, is assumed to be “well-behaved” (does not have discontinuities or sharp corners). The term  is known as the Initial Value of the function  at the starting time . Solving this initial value problem is essentially finding an unknown curve  that starts at the point  and ends at time .
The first step in the Euler method (as is the case in most numerical techniques) is to discretise the domain. This changes the domain from the continuous interval  to  subintervals, each with constant[footnoteRef:78] width  (sometimes also denoted ), which is known as the Stepsize. The discretised interval will be the set of points [78:  In most cases, the interval width  is constant but more advanced numerical techniques have different subinterval widths.] 


[image: figures/IVP_Disc.jpg]
The aim of the numerical procedure is to start from the starting point  and progressively find consequent points until the final time  is reached.
The Euler method uses the gradient, namely , at the starting point  in order to find the value of  at the subsequent point which will be labelled . This will, in turn, determine the new gradient at  and this process is then continued until the final time is reached. The smaller the value of  is, the more points there will be between  and  resulting in a more accurate final solution to the initial value problem.
The accuracy of the Euler method is usually characterised by how small  is or how large  is. Since the stepsize may not always give an appropriate subdivision (like dividing the interval  into subintervals of width ), then the number of subdivisions  can be used to find an appropriate  by using

3.1 Steps of the Euler Method
Consider the IVP

	Parallel Example

	The steps of the Euler method will be explained theoretically and applied to this IVP in parallel to demonstrate the steps:

In this case, the function on the RHS is . Note that this IVP has the exact solution



1. Discretise the interval  with stepsize  to form the set of points

	Inverval Discretisation

	Suppose that the interval  is to be split into  subintervals, then  and

Therefore the discretised points are

Note that  denotes the number of subintervals and not the number of points, that would be  points since the starting point is .


1. At the starting point , the gradient is known since

	Gradient at 

	At the initial point,

So the starting gradient is .


1. The next step is to find the the value of  at the subsequent time . For this purpose, consider the Taylor series expansion of  at ,
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	The term  simply means that the terms after this point have a common factor of  and these terms are regarded as higher order terms and can be neglected since they are far smaller than the first terms provided  is small.


Since  is assumed to be sufficiently small, then all terms higher order terms, in this case  or higher, can be neglected (i.e.  for ). Therefore

Let  denote the approximated value of the solution at the point , i.e. , so in this case,
[bookmark: eq-Euler1]
This determines the value of  which is an approximation to .
	Calcuating 

	The point  can be calculated as follows:

This means that the next point is .


1. This iteration can be continued to find  (which is the approximate value of ) for all 

	Calculating 

	The values of  and  can be calculated as follows:











1. The solution to the IVP can now be approximated by the function that passes through the points

	Solution to the IVP

	The approximate solution to the IVP

is the function that passes through the points:

This is a good approximation since the exact locations, as per the exact solution are, (to 4 decimal places):

which is not bad for such a coarse interval breakdown.


The Euler method needs  steps to complete and every step  requires finding  and . Of course, the larger  is, the smaller  becomes, meaning that more steps will be required but the solution will be closer to the exact solution
Notice that the terms on the right hand side of Equation 3.1 are all known and for this reason, the Euler method is known as an Explicit Method.
3.2 Accuracy
Consider the Taylor series expansion for the function  at the point 

Using Taylor’s Theorem[footnoteRef:86], this can be written as [86: 
Taylor’s Theorem states that for a function  that is at least  times differentiable in the open interval  (or ), then


for some point  between  and .] 


for some point  between  and . The Euler method determines the approximation  to the function  at the point , particularly,

The Local Truncation Error at the first step, denoted , is defined as the absolute difference between the exact and approximated values at the first step, and this is given by

This can be done for all the locations to give a list of local truncation errors . Note that technically, these errors are hypothetical since the exact solution , and thus , are not known but these are put as placeholders to establish the full accuracy of the method. In this case, the local truncation error  is said to be of second order since .
As the iteration progresses, the errors will accumulate to result in a Global Integration Error denoted . In this case, the global integration error is

The global integration error has to be at most the accumulation of all the local truncation errors, namely

[bookmark: eq-GIEEuler]
A bound for the sum needs to be found in order bound the global integration error. To this end, consider the set of the second derivatives in the sum above, i.e.

Since all these terms take a finite value, then at least one of these terms must be larger than all the rest, this is denoted  and can be written as

This can also be expressed differently as

Therefore, since

then

Thus, returning back to the expression for  in Equation 3.2

Hence, the global integration error , this means that the Euler method is a First Order Method. This means that both  and the global integration error behave linearly to one another, so if  is halved, then the global integration error is halved as well.
In conclusion, the local truncation error of the Euler method is  while the global integration error  when  is small.
	Different Stepsizes

	Returning to the IVP

The Euler method can be repeated for different values of  and these can be seen in the figure below.
[image: figures/ODE3.jpg]
The table below shows the global integration error for the different values of :
	
	

	0.4
	0.05399

	0.2
	0.03681

	0.1
	0.02036

	0.05
	0.01060


When the value of  is halved, the global integration error is approximately halved as well.


3.3 Set of IVPs
So far, the Euler Method has been used to solve a single IVP, however this can be extended to solving a set of linear IVPs.
Consider the set of  linear IVPs defined on the interval :  where, for , the functions  are unknown,  are known constant coefficients and  are all known (these can generally depend on ).
This set of initial value problems need to be written in matrix form as



In this case,  is the unknown solution vector,  is a matrix of constants,  is the vector of initial values and  is a vector of known terms (possibly depending on ) and is referred to as the Inhomogeneity or Forcing Term.
The Euler iteration would be performed in a similar way as before. First, the interval  needs to be discretised into  equally spaced subintervals, each of width  to give the set of discrete times  where  for . Let  be the approximation to the function vector  at the time , then

subject to the initial values . (Note that if the vector  depends on , then .)
	Sets of IVPs

	Consider the two coupled IVPs on the interval : 
Before attempting to solve this set of IVPs, it needs to be written in matrix form as

In this case,

Let , so

The Euler iteration will be

This can be written as

keeping in mind that  the vector  and :











[image: figures/IVP_Euler1.jpg]


3.4 Higher Order IVPs
The previous sections solved one first order IVP and a set of first order IVPs. What happens if a higher order IVP is to be solved? Or a set of higher order IVPs? The difference will be minimal, subject to a few manipulations first.
Consider the  order linear IVP on the interval 
[bookmark: eq-HOODE]
where  and  is a known function. This IVP is to be solved subject to the initial conditions

This  order IVP can be written as a set of  first order IVPs. Indeed, let the functions  be given by







Notice that  Let  be the vector of the unknown functions . This means that the IVP in Equation 3.3 can be written in matrix form  as follows:



The initial condition vector will be

The matrix  is called the Companion Matrix and is a matrix with 1 on the super diagonal and the last row is the minus of the coefficients in the higher order IVP, and zeros otherwise. Now that the  order IVP has been converted into a set of  linear IVPs, it can be solved just as in Section 3.3. Note that any linear  order IVP can always be converted into a set of  first order IVPs but the converse is not always possible.
	Higher Order IVPs

	Consider the following higher order IVP


Let  and . The derivatives of  and  are:  Define the vector 


The initial condition vector will be

Now the IVP can be solved using the Euler method as before but only the first function is the most relevant, all others have been used as placeholders.


3.4.1 Sets of Higher Order IVPs
The method above can be extended into a set of higher order IVPs.
	Set of Higher Order IVPs

	Consider the following coupled system of higher order IVPs


In the case of a coupled system, the vector function  should consist of all the unknown functions and their derivatives up to but not including their highest order derivative. In other words,


The vector of initial values would be

Now this can be solved just as before with the most relevant terms being the first and third (since those are  and ).


3.4.2 Stability of a Set of ODEs
Consider the set of  homogeneous ODEs

Let  be the eigenvalues of the matrix  and  be their distinct corresponding eigenvectors (distinct for the sake argument). Analytically, the set of differential equations  has the general solution

where  are constants that can be determined from the initial values.
Definition 3.1 The initial value problem

is said to be Asymptotically Stable if  as , in other words, all functions in  tend to 0 as  tends to infinity.
This definition will be important when looking at the long term behaviour of solutions from the eigenvalues to then determine stepsize bounds.
Theorem 3.1 The initial value problem

is asymptotically stable if all the eigenvalues of the matrix  have negative real parts. If  has at least one eigenvalue with a non-negative real part, then the system is not asymptomatically stable.
Notice that the stability of a set of ODEs does not depend on the forcing term  nor does it depend on the initial condition .
3.5 Limitations of the Euler Method
In some cases, if the stepsize  is taken to be too large, then the Euler method can give misleading results.
For example, consider the initial value problem:

Choosing a large stepsize  can render the method ineffective. Case in point, when , the approximate solution oscillates and grows quite rapidly, however choosing a smaller value of , say , gives a very good approximation to the exact solution. These are illustrated in the figures below.
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Another situation when the Euler method fails is when the IVP does not have a unique solution. For example, consider the IVP:

This has the exact solution  however this is not unique since  is also a perfectly valid solution. The Euler method in this case will not be able to capture the first non-trivial solution but will only capture the second trivial solution giving a straight line at 0[footnoteRef:108]. [108:  In general, according to the Picard-Lindelöf Theorem, an IVP of the form  with  has a unique solution if the function  is continuous in  and uniformly Lipschitz continuous in . In this example shown above, the function  does not satisfy the aforementioned conditions and therefore the initial value problem does not have a unique solution. These concepts of continuity are far beyond the realms of this course and no further mention of them will be made.] 

3.5.1 Bounds on the Stepsize
Consider the initial value problem

If  is asymptotically stable, then a maximum bound  for the stepsize can be found to ensure that the iterations converge. (This means that asymptotic stability of  is a necessary and sufficient condition for the existence of an upper bound  such that if , then the Euler iteration converges.)
If the stepsize is too large, then the method may not converge but on the other hand if it is too low, then the iteration will take a considerable amount of time to perform. Therefore an “optimal” stepsize is needed to obtain sufficiently accurate solutions.
	Different Stepsizes

	Consider the following initial value problem

The figure below shows the Euler method being used to solve the initial value problem in the interval  for the stepsizes .
[image: figures/Unstable.jpg]
When , the Euler method does not converge. At , the Euler method converges but there clearly is a distinct artefact in the solution that shows a slight oscillation. For  less than , this oscillation is no longer observed and the Euler method is convergent.


Consider the IVP

Let  be the eigenvalues of . Suppose that the matrix  is asymptotically stable (i.e.  for all ). In order for the Euler iterations to converge, the stepsize  needs be less than the threshold stepsize  where
[bookmark: eq-h0Bound]

In other words, if the initial value problem is asymptotically stable, then the Euler method is stable if an only if . This means that the convergence of the Euler is characterised by the eigenvalue that is furthest away from the origin, also called the Dominant Eigenvalue.
	Euler Upper Bound

	Consider the system of differential equations  with  where

The eigenvalues of the matrix  are . Since all the eigenvalues are negative, this system is asymptotically stable. Since all the eigenvalues are real, then the threshold stepsize for a convergent Euler method is


Solutions for different stepsizes are as shown below with the initial values  (blue),  (red) and  (magenta). It can be seen that if , then at least one solution will diverge but if , then all solutions converge to 0.
[image: figures/Unstable2.jpg]


3.5.2 Estimated Bound
One drawback in attempting to determine the value of  using Equation 3.4 is that all the eigenvalues of the matrix  have to be determined before  can be found. This can be computationally expensive for especially for very large matrices.
An estimate for the threshold stepsize  can be found with far fewer computations using the sup-norm  (also known as the infinity norm or the Chebyshev norm). Recall that for a vector , the sup-norm of  is the maximum absolute value in the vector, i.e.

Whereas for a matrix , the sup-norm of  is the maximal absolute row sum. In other words, for a given matrix , take the absolute value of all the terms, take the sum of each row and the sup-norm will be the largest out of these.
	Sup-Norm of Vectors & Matrices

	Consider the vector  and matrix  given by

The sup-norm of  is simply the largest absolute element which is , therefore .
As for , to find the sup-norm, first take the absolute value of all the terms, then add the rows. The sup-norm is the maximum element that results:

Therefore .
Both of these can be found in MATLAB using norm(x,Inf) and norm(M,Inf).


Theorem 3.2 Consider the set of linear IVPs

where  is asymptotically stable. Then the Euler method is numerically convergent for any choice of  which satisfies

Computing all the eigenvalues of the matrix  can be computationally expensive but obtaining the sup-norm is takes far fewer computations, however as a drawback, the resulting value of  would be an estimate.
	Stepsize Bound Estimate 1 (Tridiagonal)

	Consider the differential equation  where

To find the upper bound for the stepsize for which the Euler method converges, first evaluate :

To find the sup-norm, take the absolute value of all the terms and find the maximal row sum:

Let  and . Since , then , therefore

In order to satisfy the inequality , consider the cases when  and  separately:
1. If , then :

· Therefore  is indeed true.
1. If , then :

· If , then . Simplifying this would result in  which contradicts with the assumption that .
From these two cases, it is clear that  (since that case leads to a contradiction), therefore . Thus for a convergent Euler method, the stepsize  must be less than the threshold stepsize .
This can be compared to the exact bound; the eigenvalues of the matrix  are

Therefore

which is a larger bound compared to the one obtained using the sup-norm method. Observe that if the size of the matrix was larger but followed the same theme (i.e.  on the main diagonal and  and the sub and super diagonals), then no further calculations are required for the sup-norm method, the outcome will still be . As for the eigenvalue method, all the eigenvalues have to be recalculated again.


 
	Stepsize Bound Estimate 2 (Bidiagonal)

	Consider the differential equation  where

To find the upper bound for the stepsize for which the Euler method converges, first evaluate :

To find the sup-norm, take the absolute value of all the terms and find the maximal row sum:

Let  and . Clearly  since , therefore

In order to satisfy the inequality, , consider the cases when  and :
1. If , then :

· therefore  is indeed true.
1. If , then :

· If , then , meaning that  which contradicts with the assumption that .
This means that for a convergent Euler method, the stepsize  must be less than .
This can be compared to the exact upper bound. The eigenvalues of the matrix  are just  five times, therefore

this shows that the sup-norm method gives a tighter than using eigenvalues.


The sup-norm method works well when the matrix in question has a diagonal, bidiagonal or tridiagonal structure where the diagonal terms are the same. In general, the sup-norm method might not be suitable for any matrix.
	Stepsize Bound Estimate 3 (General)

	Consider the differential equation  where

Find the sup-norm:

Let  and . Here, it is not obvious which is larger,  or . Therefore, consider the three cases ,  and .
1. : In this case,  and , therefore  and , hence . In order to satisfy , this would mean that  which contradicts with the fact that . Therefore .
1. : In this case,  and , therefore  and . This should now be split into two subcases to check which one will lead to a contradiction:
11. Suppose that , then

· which contradicts with 
11. Suppose that , then

· not leading to any contradiction. therefore since , then .
In order to satisfy  then  which contradicts with the fact that . Therefore .
1. : In this case,  and , therefore  and . Clearly  since , so . In order to satisfy  then  which contradicts with the fact that . This means that .
So in every possible case, there will be a contradiction when using the sup-norm method. This does not mean that the system is asymptotically unstable, in fact, the eigenvalues of the matrix  are  meaning that the system is asymptotically stable and the threshold stepsize is in fact .
This example shows that the sup-norm method cannot be used for any matrix system, but if a matrix has a banded structure, then it would be appropriate and would require fewer computations compared to finding all the eigenvalues.


3.6 MATLAB Code
The following MATLAB code performs the Euler iteration for the following set of IVPs on the interval : 
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	Note that this code is built for a general case that does not have to be linear even though the entire derivation process was built on the fact that the system is linear.


 
function IVP_Euler

%% Solve a set of first order IVPs using Euler

% This code solves a set of IVP when written explicitly
% on the interval [t0,tf] subject to the initial conditions
% y(0)=y0.  The output will be the graph of the solution(s)
% and the vector value at the final point tf.  Note that the
% IVPs do not need to be linear or homogeneous.

%% Lines to change:

% Line 28   : t0 - Start time
% Line 31   : tf - End time
% Line 34   : N  - Number of subdivisions
% Line 37   : y0 - Vector of initial values
% Line 106+ : Which functions to plot, remembering to assign
%             a colour, texture and legend label
% Line 120+ : Set of differential equations written
%             explicitly.  These can also be non-linear and
%             include forcing terms.  These equations can
%             also be written in matrix form if the
%             equations are linear.

%% Set up input values

% Start time
t0=0;

% End time
tf=1;

% Number of subdivisions
N=5000;

% Column vector initial values y0=y(t0)
y0=[0;1;0];

%% Set up IVP solver parameters

% T = Vector of times t0,t1,...,tN.
% This is generated using linspace which splits the
% interval [t0,tf] into N+1 points (or N subintervals)
T=linspace(t0,tf,N+1);

% Stepsize
h=(tf-t0)/N;

% Number of differential equations
K=length(y0);

%% Perform the Euler iteration

% Y = Solution matrix
% The matrix Y will contain K rows and N+1 columns.  Every
% row corresponds to a different IVP and every column
% corresponds to a different time.  So the matrix Y will
% take the following form:
% y_1(t_0)  y_1(t_1)  y_1(t_2)  ...  y_1(t_N)
% y_2(t_0)  y_2(t_1)  y_2(t_2)  ...  y_2(t_N)
% ...
% y_K(t_0)  y_K(t_1)  y_K(t_2)  ...  y_K(t_N)
Y=zeros(K,N+1);

% The first column of the vector Y is the initial vector y0
Y(:,1)=y0;

% Set the current time t to be the starting time t0 and the
% current value of the vector y to be the strtaing values y0
t=t0;
y=y0;

for n=2:1:N+1

    dydt=DYDT(t,y,K);  % Find gradient at the current step

    y=y+h*dydt;        % Find y at the current step

    t=T(n);            % Update the new time

    Y(:,n)=y;          % Replace row n in Y with y

end

%% Setting plot parameters

% Clear figure
clf

% Hold so more than one line can be drawn
hold on

% Turn on grid
grid on

% Setting font size and style
set(gca,'FontSize',20,'FontName','Times')
set(legend,'Interpreter','Latex')

% Label the axes
xlabel('$t$','Interpreter','Latex')
ylabel('$\mathbf{y}(t)$','Interpreter','Latex')

% Plot the desried solutions.  If all the solutions are
% needed, then consider using a for loop in that case
plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_2(t)$')
plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_3(t)$')

% Display the values of the vector y at tf
disp(strcat('The vector y at t=',num2str(tf),' is:'))
disp(Y(:,end))

end

function [dydt]=DYDT(t,y,K)

% When the equation are written in explicit form

dydt=zeros(K,1);

dydt(1)=2*y(1)+y(2)+y(3)+cos(t);

dydt(2)=sin(y(1))+exp(-y(2)+y(3));

dydt(3)=y(1)*y(2)-y(3);

% If the set of equations is linear, then these can be
% written in matrix form as dydt=A*y+b(t).  For example, if
% the set of equations is:
% dudt = 7u - 2v +  w + exp(t)
% dvdt = 2u + 3v - 9w + cos(t)
% dwdt =      2v + 5w + 2
% Then:
% A=[7,-2,1;2,3,-9;0,2,5];
% b=@(t) [exp(t);cos(t);2];
% dydt=A*y+b(t)

end
4. The Modified Euler Method
The Euler method can be effective when it comes to solving differential equations numerically but on occasions, the global error of  is rather poor. The Euler method can modified and improved to give Modified or Improved Euler Method (also known as the Heun Method, named after Karl Heun).
4.1 Steps of the Modified Euler Method
The Modified Euler Method utilises the Fundamental Theorem of Calculus which states that for a differentiable function  defined on the interval  (where  for some stepsize ),

In the interval , the derivative  may be approximated by the derivative at the leftmost point , this approximation forms the basis of the standard Euler method; 

However, if  varies substantially then this approximation can lead to some poor predictions. This can be modified so rather than approximating  by  only, it can be approximated by taking an average between  and , namely

Thus 

Initially, one might suspect that the derivative  can be found from the differential equation itself, namely,  but to do that, a Prediction-Correction procedure needs to be employed where the Euler method can be used to predict a value of  and this is then corrected afterwards. This is done as follows: 
	Modified Euler Method

	Consider the differential equation

This differential equation is non-linear but has a known particular solution which is

and this will be compared to the approximate solutions obtained from the standard and Modified Euler methods.
The figure below shows how the standard and modified Euler methods compare to the exact solution for the same stepsize . This suggests that the Modified Euler method has improved accuracy compared to the Euler method for the same stepsize, however as a consequence, the function  on the right hand side of the differential equation has to be calculated twice for every step; once in the prediction stage and once for the correction. However even with this in mind, doubling the number of calculations to improve accuracy can also warrant for a coarser choice of the stepsize to allow for a more efficient use of computational time.
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4.2 Accuracy of the Modified Euler Method
In order to asses the accuracy of the Modified Euler method, consider the Taylor series expansion of  at the points  and  about :


Subtracting  from  gives
[bookmark: eq-yhalf]
The Taylor series expansion can also be done for the derivative of  at the points  and  about  in a similar way as above, i.e.


Adding  to  gives

thus multiplying by  and using equation Equation 4.1 yields
[bookmark: eq-fullyy]
The first step of the Modified Euler method is to predict the value of  using the Euler iteration;

Hence

All this information can now be used to obtain the improved update  which is the corrected form of . Thus from equation Equation 4.2,

[bookmark: eq-Y1]
Equations Equation 4.3 and Equation 4.2 can be used to find the local truncation error for the Modified Euler method at the first time step which is

Therefore the local truncation error  meaning that the Modified Euler method is third order accurate which is an improvement over the Euler method.
The global integration error can be obtained just as before to show that the global integration error of the Modified Euler method is  meaning that this is a second order method. In particular, if the stepsize  is halved, the global integration error will be reduced by a factor of four while the local truncation error will reduce by a factor of eight.
4.3 MATLAB Code
The following MATLAB code performs the Modified Euler iteration for the following set of IVPs on the interval : 
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	Note that this code is built for a general case that does not have to be linear even though the entire derivation process was built on the fact that the system is linear.


 
function IVP_Mod_Euler

%% Solve a set of first order IVPs using Modified Euler

% This code solves a set of IVP when written explicitly
% on the interval [t0,tf] subject to the initial conditions
% y(0)=y0.  The output will be the graph of the solution(s)
% and the vector value at the final point tf.  Note that the
% IVPs do not need to be linear or homogeneous.

%% Lines to change:

% Line 28   : t0 - Start time
% Line 31   : tf - End time
% Line 34   : N  - Number of subdivisions
% Line 37   : y0 - Vector of initial values
% Line 116+ : Which functions to plot, remembering to assign
%             a colour, texture and legend label
% Line 130+ : Set of differential equations written
%             explicitly.  These can also be non-linear and
%             include forcing terms.  These equations can
%             also be written in matrix form if the
%             equations are linear.

%% Set up input values

% Start time
t0=0;

% End time
tf=1;

% Number of subdivisions
N=5000;

% Column vector initial values y0=y(t0)
y0=[0;1;0];

%% Set up IVP solver parameters

% T = Vector of times t0,t1,...,tN.
% This is generated using linspace which splits the
% interval [t0,tf] into N+1 points (or N subintervals)
T=linspace(t0,tf,N+1);

% Stepsize
h=(tf-t0)/N;

% Number of differential equations
K=length(y0);

%% Perform the Modified Euler iteration

% Y = Solution matrix
% The matrix Y will contain K rows and N+1 columns.  Every
% row corresponds to a different IVP and every column
% corresponds to a different time.  So the matrix Y will
% take the following form:
% y_1(t_0)  y_1(t_1)  y_1(t_2)  ...  y_1(t_N)
% y_2(t_0)  y_2(t_1)  y_2(t_2)  ...  y_2(t_N)
% ...
% y_K(t_0)  y_K(t_1)  y_K(t_2)  ...  y_K(t_N)
Y=zeros(K,N+1);

% The first column of the vector Y is the initial vector y0
Y(:,1)=y0;

% Set the current time t to be the starting time t0 and the
% current value of the vector y to be the strtaing values y0
t=t0;
y=y0;

for n=2:1:N+1

    % Prediction Step:
    % Use the Euler iteration to obtain an appromxation for
    % the derivatives at the current time step

    dydt=DYDT(t,y,K);     % Find gradient at the current step
    y_pred=y+h*dydt;   % Predict y at current time step

    % Corrector Step:
    % Use the Modified Euler to correct y_pred

    dydt_pred=DYDT(t,y_pred,K);    % Predict the gradient
    % from the predicted y
    y=y+0.5*h*(dydt+dydt_pred); % Find y at the current step

    t=T(n);            % Update the new time

    Y(:,n)=y;          % Replace row n in Y with y

end

%% Setting plot parameters

% Clear figure
clf

% Hold so more than one line can be drawn
hold on

% Turn on grid
grid on

% Setting font size and style
set(gca,'FontSize',20,'FontName','Times')
set(legend,'Interpreter','Latex')

% Label the axes
xlabel('$t$','Interpreter','Latex')
ylabel('$\mathbf{y}(t)$','Interpreter','Latex')

% Plot the desried solutions.  If all the solutions are
% needed, then consider using a for loop in that case
plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_1(t)$')
plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_1(t)$')

% Display the values of the vector y at tf
disp(strcat('The vector y at t=',num2str(tf),' is:'))
disp(Y(:,end))

end

function [dydt]=DYDT(t,y,K)

% When the equation are written in explicit form

dydt=zeros(K,1);

dydt(1)=2*y(1)+y(2)+y(3)+cos(t);

dydt(2)=sin(y(1))+exp(-y(2)+y(3));

dydt(3)=y(1)*y(2)-y(3);

% If the set of equations is linear, then these can be
% written in matrix form as dydt=A*y+b(t).  For example, if
% the set of equations is:
% dudt = 7u - 2v +  w + exp(t)
% dvdt = 2u + 3v - 9w + cos(t)
% dwdt =      2v + 5w + 2
% Then:
% A=[7,-2,1;2,3,-9;0,2,5];
% b=@(t) [exp(t);cos(t);2];
% dydt=A*y+b(t)

end
5. Fourth Order Runge-Kutta Method
The Modified Euler method extended the Euler method to a two-stage procedure with a global integration error of . This can be extended further to a Multi-Stage Method, also called a Runge-Kutta Method with  stages and a global error integration error of  for any arbitrarily large  (in this case, the Modified Euler method is known as a second order Runge-Kutta method since it has two stages). For instance, the fourth order Runge-Kutta method requires four calculations for every step and has a global integration error of , this is formulated as follows: 
Runge-Kutta methods like this are quite versatile and are generally the most used methods for their accuracy since the stepsize  does not need to be too small to achieve good results. Even though every step requires four calculations, the value of  can be made larger in order to reduce the cost but retain considerable accuracy.
	Runge-Kutta Method

	Consider the differential equation

The exact solution to this differential equation is known to be

[image: figures/ODE9.jpg]
The figure above shows the exact solution to the differential equation (solid line) with the three different methods used to approximate the solution all at the same resolution of . The stepsize  is quite coarse but this is merely for the purposes of demonstration. The Euler method is the least accurate for this coarse grid, the Heun method improves the accuracy while the fourth order Runge-Kutta method is the most accurate out of the three even for the same stepsize.


5.1 MATLAB Code
The following MATLAB code performs the fourth order Runge-Kutta iteration for the following set of IVPs on the interval : 
	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\note.png]  Linearity

	Note that this code is built for a general case that does not have to be linear even though the entire derivation process was built on the fact that the system is linear.


 
function IVP_RK4

%% Solve a set of first order IVPs using RK4

% This code solves a set of IVP when written explicitly
% on the interval [t0,tf] subject to the initial conditions
% y(0)=y0.  The output will be the graph of the solution(s)
% and the vector value at the final point tf.  Note that the
% IVPs do not need to be linear or homogeneous.

%% Lines to change:

% Line 28   : t0 - Start time
% Line 31   : tf - End time
% Line 34   : N  - Number of subdivisions
% Line 37   : y0 - Vector of initial values
% Line 110+ : Which functions to plot, remembering to assign
%             a colour, texture and legend label
% Line 124+ : Set of differential equations written
%             explicitly.  These can also be non-linear and
%             include forcing terms.  These equations can
%             also be written in matrix form if the
%             equations are linear.

%% Set up input values

% Start time
t0=0;

% End time
tf=1;

% Number of subdivisions
N=50;

% Column vector initial values y0=y(t0)
y0=[0;1;0];

%% Set up IVP solver parameters

% T = Vector of times t0,t1,...,tN.
% This is generated using linspace which splits the
% interval [t0,tf] into N+1 points (or N subintervals)
T=linspace(t0,tf,N+1);

% Stepsize
h=(tf-t0)/N;

% Number of differential equations
K=length(y0);

%% Perform the RK4 iteration

% Y = Solution matrix
% The matrix Y will contain K rows and N+1 columns.  Every
% row corresponds to a different IVP and every column
% corresponds to a different time.  So the matrix Y will
% take the following form:
% y_1(t_0)  y_1(t_1)  y_1(t_2)  ...  y_1(t_N)
% y_2(t_0)  y_2(t_1)  y_2(t_2)  ...  y_2(t_N)
% ...
% y_K(t_0)  y_K(t_1)  y_K(t_2)  ...  y_K(t_N)
Y=zeros(K,N+1);

% The first column of the vector Y is the initial vector y0
Y(:,1)=y0;

% Set the current time t to be the starting time t0 and the
% current value of the vector y to be the strtaing values y0
t=t0;
y=y0;

for n=2:1:N+1

    % Determine the coefficients of RK4

    K1=DYDT(t,y,K);
    K2=DYDT(t+h/2,y+h*K1/2,K);
    K3=DYDT(t+h/2,y+h*K2/2,K);
    K4=DYDT(t+h,y+h*K3,K);
    y=y+(h/6)*(K1+2*K2+2*K3+K4);

    t=T(n);            % Update the new time

    Y(:,n)=y;          % Replace row n in Y with y

end

%% Setting plot parameters

% Clear figure
clf

% Hold so more than one line can be drawn
hold on

% Turn on grid
grid on

% Setting font size and style
set(gca,'FontSize',20,'FontName','Times')
set(legend,'Interpreter','Latex')

% Label the axes
xlabel('$t$','Interpreter','Latex')
ylabel('$\mathbf{y}(t)$','Interpreter','Latex')

% Plot the desried solutions.  If all the solutions are
% needed, then consider using a for loop in that case
plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_2(t)$')
plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_3(t)$')

% Display the values of the vector y at tf
disp(strcat('The vector y at t=',num2str(tf),' is:'))
disp(Y(:,end))

end

function [dydt]=DYDT(t,y,K)

% When the equation are written in explicit form

dydt=zeros(K,1);

dydt(1)=2*y(1)+y(2)+y(3)+cos(t);

dydt(2)=sin(y(1))+exp(-y(2)+y(3));

dydt(3)=y(1)*y(2)-y(3);

% If the set of equations is linear, then these can be
% written in matrix form as dydt=A*y+b(t).  For example, if
% the set of equations is:
% dudt = 7u - 2v +  w + exp(t)
% dvdt = 2u + 3v - 9w + cos(t)
% dwdt =      2v + 5w + 2
% Then:
% A=[7,-2,1;2,3,-9;0,2,5];
% b=@(t) [exp(t);cos(t);2];
% dydt=A*y+b(t)

end
6. MATLAB’s In-Built Procedures
So far, the three main iterative methods have been developed that solve IVPs numerically. MATLAB, however, has its own built-in procedures that can solve IVPs with a combination of several methods. The two main ones are ode23 (which uses a combination of a second and third order RK methods) and ode45 (which uses a combination of a fourth and fifth order RK methods).
Both ode45 and ode23 are hybrid methods and use adaptive meshing, this means that the time span grid is not necessarily uniform, but it changes depending on the gradients; if the gradient is large at some point, then the stepsize will be small to capture these drastic changes.
The following MATLAB code solves the following set of IVPs on the interval  using ode45: 
function IVP_InBuilt

%% Solve a set of first order IVPs using In-Built codes

% This code solves a set of IVP when written explicitly
% on the interval [t0,tf] subject to the initial conditions
% y(0)=y0.  The output will be the graph of the solution(s)
% and the vector value at the final point tf.  Note that the
% IVPs do not need to be linear or homogeneous.

%% Lines to change:

% Line 28   : t0 - Start time
% Line 31   : tf - End time
% Line 43   : T_Span - Time span for evaluation
% Line 46   : y0 - Vector of initial values
% Line 86+  : Which functions to plot, remembering to assign
%             a colour, texture and legend label
% Line 100+ : Set of differential equations written
%             explicitly.  These can also be non-linear and
%             include forcing terms.  These equations can
%             also be written in matrix form if the
%             equations are linear.

%% Set up input values

% Start time
t0=0;

% End time
tf=1;

% Time span
% In-built methods tend to use adaptive meshing; decreasing
% the stepsize near locations with drastic derivative
% changes and increasing near small derivative changes.
% Sometimes this is not desired but a uniform meshing is
% requiredfrom the start time t0 to the end time tf being
% split into N equal sub intervals.  This can be changed
% here:
% Adaptive meshing:  T_Span=[t0 tf]
% Specific meshing:  T_Span=linspace(t0,tf,N)
T_Span=[t0 tf];

% Column vector initial values y0=y(t0)
y0=[0;1;0];

%% Set up IVP solver parameters

% Number of differential equations
K=length(y0);

%% Use solver

% Set the solver tolerance
tol=odeset('RelTol',1e-6);

% Solve the IVP using ode45 or ode23
[T,Y]=ode45(@(t,y) DYDT(t,y,K),T_Span,y0,tol);

% Convert T and Y to columns for consistency
T=T';
Y=Y';

%% Setting plot parameters

% Clear figure
clf

% Hold so more than one line can be drawn
hold on

% Turn on grid
grid on

% Setting font size and style
set(gca,'FontSize',20,'FontName','Times')
set(legend,'Interpreter','Latex')

% Label the axes
xlabel('$t$','Interpreter','Latex')
ylabel('$\mathbf{y}(t)$','Interpreter','Latex')

% Plot the desried solutions.  If all the solutions are
% needed, then consider using a for loop in that case
plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_2(t)$')
plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_3(t)$')

% Display the values of the vector y at tf
disp(strcat('The vector y at t=',num2str(tf),' is:'))
disp(Y(:,end))

end

function [dydt]=DYDT(t,y,K)

% When the equation are written in explicit form

dydt=zeros(K,1);

dydt(1)=2*y(1)+y(2)+y(3)+cos(t);

dydt(2)=sin(y(1))+exp(-y(2)+y(3));

dydt(3)=y(1)*y(2)-y(3);

% If the set of equations is linear, then these can be
% written in matrix form as dydt=A*y+b(t).  For example, if
% the set of equations is:
% dudt = 7u - 2v +  w + exp(t)
% dvdt = 2u + 3v - 9w + cos(t)
% dwdt =      2v + 5w + 2
% Then:
% A=[7,-2,1;2,3,-9;0,2,5];
% b=@(t) [exp(t);cos(t);2];
% dydt=A*y+b(t)

end
7. Implicit IVP Solvers
In some cases, IVPs can be difficult to solve because of the non-linearity of its terms, this is where Implicit Methods should be used to accommodate for these issues.
7.1 Backwards Euler Method
Consider the Euler method at the starting time . The value of the function  at  is approximated by

and this gives an upper bound for a stable stepsize of

in order to ensure that the Euler method is computationally stable. However, suppose that this modified slightly by using the gradient at  rather than at , in other words, suppose that the value of  at  is approximated by

This approach is known as the Backwards Euler Method and is an implicit procedure since the value of  is not known to begin with.
The general formulation is as follows: Consider the system of differential equations

Discretise the interval  into  equal subintervals, each with width . At the time step , the backwards Euler method is

This can be rearranged to give

Rearranging further fives the basis for the Backwards Euler iteration which is

whereas the standard Euler method in matrix form is

The Euler method requires explicit calculations using matrix multiplications but the backwards Euler method requires matrix inversion instead.
7.2 Stability of the Backwards Euler Method
Consider the initial value problem in its scalar form

The backwards Euler method at the time  gives

This initial condition can be perturbed by adding a small parameter  to give the perturbed differential equation

The backwards Euler then yields

The differential equations in  and  can be subtracted to give a perturbation term  where

Notice that once again, the forcing function  has been eliminated and therefore does not affect the stability of the backwards Euler method. The differential equation for  will have the initial condition . This expression can be used to represent  in terms of  recursively as: 

This means that the method is stable for stepsizes  that satisfy  and since  for an asymptotically stable system, then this inequality is always satisfied. This means that the backwards Euler method is stable for all stepsizes , no matter how large.
	Backwards Euler Method

	Consider the differential equation

In this case,  meaning that this differential equation is asymptotic stable. The maximum allowable stepsize for the Euler method is . However, the backwards Euler method is stable for any stepsize  as seen below (very large stepsizes will still converge but they will not give any useful information).
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The formulation presented above also holds for sets of differential equations in the same way with one difference. Instead of having , the procedure for systems will require the matrix inverse  or the MATLAB backslash operator can be used instead.
7.3 Order of Accuracy
The backwards Euler method is numerically stable for all values the stepsize  and has the same order of accuracy as the Euler method, i.e. the local truncation error is of  while the global integration error is of . However, this increased stability comes at a cost, the backwards Euler methods requires double the computational cost compared to the Euler method.
7.4 MATLAB Code
The following MATLAB code performs the Backwards Euler iteration for the system  subject to  where

function IVP_Back_Euler

%% Solve a set of first order IVPs using Backwards Euler

% This code solves a set of IVP when written in the form
% dydt=A*y+b(t) on the interval [t0,tf] subject to the
% initial conditions y(0)=y0.  The output will be the graph
% of the solution(s) and the vector value at the final
% point tf.

%% Lines to change:

% Line 25   : t0 - Start time
% Line 28   : tf - End time
% Line 31   : N  - Number of subdivisions
% Line 34   : A  - Matrix A
% Line 37   : b  -  Forcing vector b(t)
% Line 40   : y0 - Vector of initial values
% Line 106+ : Which functions to plot, remembering to assign
%             a colour, texture and legend label

%% Set up input values

% Start time
t0=0;

% End time
tf=1;

% Number of subdivisions
N=5000;

% Matrix A
A=[-7,-2,1;2,-1,-9;0,0,-5];

% Vector b, which can be a function of t in general
b=@(t) [sin(t);0;2];

% Column vector initial values y0=y(t0)
y0=[0;1;0];

%% Set up IVP solver parameters

% T = Vector of times t0,t1,...,tN.
% This is generated using linspace which splits the
% interval [t0,tf] into N+1 points (or N subintervals)
T=linspace(t0,tf,N+1);

% Stepsize
h=(tf-t0)/N;

% Number of differential equations
K=length(y0);

%% Perform the Euler iteration

% Y = Solution matrix
% The matrix Y will contain K rows and N+1 columns.  Every
% row corresponds to a different IVP and every column
% corresponds to a different time.  So the matrix Y will
% take the following form:
% y_1(t_0)  y_1(t_1)  y_1(t_2)  ...  y_1(t_N)
% y_2(t_0)  y_2(t_1)  y_2(t_2)  ...  y_2(t_N)
% ...
% y_K(t_0)  y_K(t_1)  y_K(t_2)  ...  y_K(t_N)
Y=zeros(K,N+1);

% The first column of the vector Y is the initial vector y0
Y(:,1)=y0;

% Set the current time t to be the starting time t0 and the
% current value of the vector y to be the strtaing values y0
y=y0;

for n=2:1:N+1

    t=T(n);                     % Update the new time

    y=(eye(K,K)-h*A)\(y+h*b(t));% Find y at the current step

    Y(:,n)=y;                   % Replace row n in Y with y

end

%% Setting plot parameters

% Clear figure
clf

% Hold so more than one line can be drawn
hold on

% Turn on grid
grid on

% Setting font size and style
set(gca,'FontSize',20,'FontName','Times')
set(legend,'Interpreter','Latex')

% Label the axes
xlabel('$t$','Interpreter','Latex')
ylabel('$\mathbf{y}(t)$','Interpreter','Latex')

% Plot the desried solutions.  If all the solutions are
% needed, then consider using a for loop in that case
plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_1(t)$')
plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_1(t)$')

end
7.5 Stiff Differential Equations
Stiff sets of differential equations with a large value of the total computational cost  can be very difficult to solve numerically using explicit methods but implicit methods can work very well. MATLAB has its very own built-in stiff differential equation solver under the command ode15s and this can be implemented exactly as ode45. This solves sets of differential equations implicitly using numerical differentiation of orders 1 to 5.
	Stiff IVPs

	Consider the set of differential equations on the interval  
This is a very stiff set of differential equations, solving this using ode45 takes upwards of 92 seconds while solving using the stiff solver ode15s requires a mere 0.233 seconds (depending on you machine). The result of solving this differential equation is shown below for  only since  takes very large values and this distorts the graphical interpretation.
[image: figures/Back1.jpg]
Using the stiff solver optimises the stepsizes for stiff regions. Particularly, if a region is deemed to be considerably “stiff”, the ode15s will use smaller stepsizes to solve the problem but if there is a region where the differential is not “stiff”, then larger stepsizes will be used. Therefore, ode15s usually requires fewer grid points overall, for instance to solve the above set of differential equations, ode15s only requires 1,836 grid points while ode45 requires 7,820,485 grid points, that is over 4,200 times more grid points than ode15s. This just goes to show that stiff differential need implicit methods, even though the cost for every step is greater than that of an explicit method, fewer steps are required in total.
An alternative stiff differential equation solver is ode23s which achieves that same outcome as ode15s but with a lower accuracy and more grid points using only second and third order methods.


8. Boundary Value Problems
Boundary Value Problems (BVPs) are similar in many ways to initial value problems in the sense that a set of differential equations are given that are to be solved subject to certain conditions. In initial value problems, these conditions are imposed at the starting time but in boundary value problems, they are imposed at particular locations.
One of the most important differences when it comes to solving BVPs versus IVPs is the existence of solutions. Solutions to initial value problems always exist and are unique (subject to certain restriction on the right hand side), this is as a consequence of the Picard-Lindelöf theorem. The same cannot be said for boundary value problems; the solution to BVPs could exist and be unique, exist and not be unique or not exist at all.
8.1 Example of Boundary Value Problems
Consider a mass  hanging from a spring with spring constant . Suppose that the spring is extended (by pulling the mass) by a distance  as seen below. [image: figures/Spring.jpg]
Then by Hooke’s Law, the force pulling the mass back to its equilibrium position is given by

As the mass is released, it will accelerate upwards with an acceleration  and the force responsible for this acceleration is given by Newton’s Second Law of Motion

The acceleration  is the second derivative of the displacement  with respect to time and since it acts in a direction opposite to the extension, then

Equating the two expressions for the force from Newton’s Second Law and Hooke’s Law will give

This differential equation represents the simple harmonic motion of a mass hanging on a frictionless massless spring which oscillates with a frequency . Since this is a second order differential equation, two conditions need to be imposed:
· Initial conditions can be imposed at the starting time, specifically  and  which prescribe the initial position and initial speed,
· Boundary conditions can be imposed at different times, say  and  which prescribe the location at time  and time .
Consider the differential equation for the undamped simple harmonic oscillator with frequency 1, namely

This differential equation has the general analytic solution

where  and  are constants of integration which will be determined form the boundary conditions.
Three qualitatively different sets of boundary conditions will be investigated:
·  and : The constants  and  can be found as:


· Therefore the analytic solution to the boundary value problem subject to these conditions is

· and this is captured by the finite difference approximation. In this case, the solution to the boundary value problem exists and is unique.
·  and : The constants  and  can be found as:


· These two conditions provide an expressions for the constant  only and not , therefore the particular solution will be

· which is valid for any value of . Therefore in this case, the solution exists but is not unique.
·  and : The constants  and  can be found as:


· In this case, the boundary values have resulted in a contradiction and therefore the solution does not exist when subject to these boundary conditions.
This final case is when the solution to a boundary value problem does not exist.
8.2 Finite Difference Method for Boundary Value Problems
Consider the general second order boundary value problem


where the functions  and  are known functions of . Boundary value problems like this are solved using an incredibly versatile method known as the Finite Difference Method. This procedure essentially changes a differential equation into a set of difference equations by using approximations to the derivatives.
The term finite difference approximation refers to how derivatives can be approximated using linear expressions of the function at neighbouring points. For instance, the derivative of some function  at a given point  can be approximated as the gradient of  between two points around , for example

There are many other ways in which these approximations can be made depending on the way in which the grid has been set up or on the context of the problem.
Consider a general unknown function  defined on  where  and  are given (as boundary conditions). First, split the interval into  equally sized sections, each of width , and label the points as  where .
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For first and second derivatives, there are three main approximations that are most widely used:
· Forward Difference:


· Backward Difference:


· Centred Difference:


The graphical interpretation of the approximations to the first derivatives are shown below.
[image: figures/FBC.jpg]
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	To show how the second derivative expressions are obtained, consider the centred difference approximation

To derive the expression for the second derivative, introduce two fictitious points  (which is half-way between  and ) and  (which is half-way between  and ). Then 
The derivation of the second derivative approximations for the forward and backward differences can be done in a very similar way but without the need for half steps.


Any of these three approximations can be used to approximate the derivatives of the function  at the point . Denote the approximation of  at the point  by , i.e. , then
· Forward Difference:

· Backward Difference:

· Centred Difference:

These approximations will form the basis for solving the BVP.
8.2.1 Discretisation of the Differential Equation
Returning to the differential equation

Evaluate this equation at  for some , then

For now, suppose the centred differencing approximation is used to approximate the derivatives. Replacing the approximations of the derivatives of  at  gives

This can be simplified by collecting the  terms resulting in:


This expression will hold for all the values of  (otherwise there will be points  and  which are outside the domain ). Therefore, this mean that there will be  equations in  unknowns which are .
This system may seem to be undetermined however, there are two boundary conditions that have not been taken into consideration yet, namely  and . Since these are known, the approximations  and  have defined values, i.e.  and . This eliminates two of the unknowns giving  equations in  unknowns.
At , the approximation to the differential equation is

and since  is already known, then it can be taken to the right hand side to give

Similarly, at , the approximation is

and since  is known, this can be rewritten as

For , the approximation is

where  and  are al unknown. In summary, all of these  equations are:  These can be written in matrix form as , namely  The matrix  is of size  all of whose terms are known, the vector  of size  also has terms that are all known. The unknown vector here is  and it can be found by inverting  to give .
Carrying out matrix inversions by hand can become increasingly cumbersome if  is larger than  and therefore this process should be done computationally. This can be done using TDMA as explained in Section 2.2.3 or solved in MATLAB by using either U=inv(A)*g or U=A\g. The backslash method is faster than explicit matrix inversion if the matrix is of a large size.
The same process can be done for the forward and backward differencing approximations as well, the only difference will be the expressions for ,  and :
· Forward Differencing:

· Backward Differencing:

	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\note.png]  Steps of The Finite Difference Method

	In summary, these are the steps of the finite difference method:
1. Divide the interval  into  equally sized sections, each of width  and label the points as  where . [image: figures/Disc2.jpg]
1. The values of the function  are to be found at all the locations . Denote the approximation to the function  at the point  by , i.e.  for all .
1. Evaluate the differential equation at all the points  where the derivatives are replaced by their finite difference approximations.
1. This will result in a set of  linear equations in  unknowns, namely, .
1. The values for  and  are known from the boundary conditions, since  and  and no approximation is needed since the exact values are known.
1. Write the whole system of equations in the matrix form  and solve using TDMA of MATLAB’s backlash operator.


 
	BVP Example

	Consider the boundary value problem

The differential equation itself can be solved analytically to give

This example will be used for the purposes of demonstration and comparison between the numerically obtained solution and the exact solution.
Suppose the interval  is to be divided into  equally sized sections, therefore  and . [image: figures/Disc04.jpg]
The functions  and  in this interval are:

The matrix values are



These can be used to obtain expressions for the matrix  and the vector  as

This system can be solved using U=inv(A)*g or U=A\g. The numerical solution is compared to exact solution below. [image: figures/BVP1.jpg]
The advantage of using this boundary value solver is that the computations are in no way taxing on MATLAB. The system that results is composed entirely of linear equations and this system is solvable (provided the boundary value problem does indeed have a solution which may not always be possible). MATLAB’s backslash operator is very effective in dealing with matrices, especially owing to the fact that the matrix  is a tridiagonal matrix.


8.3 MATLAB Code
Below is the MATLAB code that solves the BVP

using the centred differencing method with .
function BVP_CD

%% Solve BVPs using centered differences

% The bvp is written in the form
% a(x) u'' + b(x) u' + c(x) u = f(x) on x in [x0,L]
% with the boundary conditions u(x0)=ul and u(L)=ur.
% After the centered difference approximation is
% used, the system will be written in the form AU=g.

%% Lines to change:

% Line 26  : x0 - Start point
% Line 29  : L  - End point
% Line 32  : N  - Number of subdivisions
% Line 35  : xl - Left boundary value
% Line 38  : xr - Right boundary value
% Line 119 : Expression for the function a(x)
% Line 127 : Expression for the function b(x)
% Line 135 : Expression for the function c(x)
% Line 143 : Expression for the function f(x)

%% Set up input values

% Start point
x0=0;

% End point
L=10;

% Number of subdivisions
N=50;

% Boundary value at x=x0
ul=1;

% Boundary value at x=L
ur=-1;

%% Set up BVP solver parameters

% Interval width
h=(L-x0)/N;

% X = Vector of locations
% (x1, x2, x3, ..., xN) (notice the start is x1 NOT x0)
X=x0+h:h:L;

% Evaluate the functions a(x), b(x), c(x) and f(x) at X
aX=a(X);
bX=b(X);
cX=c(X);
fX=f(X);

% Find the expressions for alpha, beta and gamma at X
alpha=aX/(h^2)-bX/(2*h);
beta=-2*aX/(h^2)+cX;
gamma=aX/(h^2)+bX/(2*h);

% Set up the vector g on the right hand side
g=zeros(N-1,1);
g(1)=fX(1)-alpha(1)*ul;
g(N-1)=fX(N-1)-gamma(N-1)*ur;
for j=2:1:N-2
    g(j)=fX(j);
end

% Set up the matrix A on the left hand side (LHS_A is
% to avoid confusion with the function a(x))
A=zeros(N-1,N-1);
A(1,1)=beta(1);
A(1,2)=gamma(1);
A(N-1,N-1)=beta(N-1);
A(N-1,N-2)=alpha(N-1);
for j=2:1:N-2
    A(j,j-1)=alpha(j);
    A(j,j)=beta(j);
    A(j,j+1)=gamma(j);
end

% Solve for the unknown vector U (it is then readjusted
% from a column vector to a row vector for plotting)
U=A\g;
U=U';

% Add the missing term x0 to the start of the vector x
X=[x0,X];

% Add the left and right boundary values to the vector U
U=[ul,U,ur];

%% Setting plot parameters

% Clear figure
clf

% Hold so more than one line can be drawn
hold on

% Turn on grid
grid on

% Setting font size and style
set(gca,'FontSize',20,'FontName','Times')

% Label the axes
xlabel('$t$','Interpreter','Latex')
ylabel('$u(t)$','Interpreter','Latex')

% Plot solution
plot(X,U,'-k','LineWidth',2)

end

function [A]=a(X)
A=zeros(size(X));
for i=1:1:length(X)
    x=X(i);
    A(i)=1;
end
end

function [B]=b(X)
B=zeros(size(X));
for i=1:1:length(X)
    x=X(i);
    B(i)=2;
end
end

function [C]=c(X)
C=zeros(size(X));
for i=1:1:length(X)
    x=X(i);
    C(i)=exp(-x);
end
end

function [F]=f(X)
F=zeros(size(X));
for i=1:1:length(X)
    x=X(i);
    F(i)=sin(x);
end
end
8.4 Comparison Between Forward, Backward & Centred Difference Approximations
The main difference between the different differencing schemes if the order of accuracy. Indeed, the error of the forward and backward differencing methods are  whereas the error for the centred differencing is . This means that if the stepsize  was reduced by a factor of 10, then the error for the forward and backward finite difference approximations would also reduce by a factor of 10 while the centred would reduce by a factor of 100.
	Comparison Between CD, FD and BD

	Consider the BVP

This has the exact solution

Below are the plots for the numerical solution to this boundary value problem using the forward (red), backward (blue) and centred (green) difference approximations compared to the exact solution when . [image: figures/BVP4.jpg]
It can be seen that even for this relatively crude interval subdivision of , the centred approximation has yielded a far more favourable result compared to the other two methods. The following table shows the 2-norm error between the exact solution and the approximation for different values of :
	Method
	
	
	
	

	Forward
	4.1444
	3.0875
	1.9823
	1.4048

	Backward
	4.7243
	3.8535
	2.0939
	1.4251

	Centred
	0.5226
	0.1677
	0.0413
	0.0146


It can be seen that even when , the 2-norm error has still not reduced below 1 for the forward and backward difference approximations but the centred has already achieved that even at . This is just a demonstration to show that how a simple change in the way in which derivatives are approximated can have such a drastic effect on the final solution.


8.5 MATLAB’s In-Built Procedures
MATLAB has an in-built mechanism that can also solve second (or even higher order) BVPs, this is done using the bvp4c command.
Below is the MATLAB code that solves the BVP

using bvp4c.
function BVP_InBuilt

%% Solve BVPs using bvp4c

% The bvp is written in the form
% a(x) u'' + b(x) u' + c(x) u = f(x) on x in [x0,L]
% with the boundary conditions u(x0)=ul and u(L)=ur.

%% Lines to change:

% Line 24 : x0 - Start point
% Line 27 : L  - End point
% Line 30 : N  - Number of spatial points
% Line 33 : xl - Left boundary value
% Line 36 : xr - Right boundary value
% Line 44 : Expression for the function a(x)
% Line 45 : Expression for the function b(x)
% Line 46 : Expression for the function c(x)
% Line 47 : Expression for the function f(x)

%% Set up input values

% Start point
x0=0;

% End point
L=10;

% Number of spatial points
N=50;

% Boundary value at x=x0
ul=1;

% Boundary value at x=L
ur=-1;

%% Set up BVP solver parameters

% Set up solving space
X=linspace(x0,L,N);

% Define the functions in the BVP
a= @(x) 1;
b= @(x) 2;
c= @(x) exp(-x);
f= @(x) sin(x);

%% Set up BVP solving parameters

% First, write the second order ODE as a set of first order
% ODEs:
% U'=V
% V'=(-b(x)*V-c(x)*U+f(x))/a(x)

% Second order BVPs can have more than one solution
% and vector v is the initialising vector of solutions.
% It can be kept as a vector of zeros
v=[0 0];

% Initialise vectors for space and v
init=bvpinit(X,v);

% Solve the bvp subject to the boundary values and
% inital guesses
sol=bvp4c(@(x,u) DUDT(x,u,a,b,c,f),@(x0,L) BCs(x0,L,ul,ur),init);

% Evaluate the solution at the grid points
U=deval(sol,X);

% Convert U to columns for consistency
U=U';

%% Setting plot parameters

% Clear figure
clf

% Hold so more than one line can be drawn
hold on

% Turn on grid
grid on

% Setting font size and style
set(gca,'FontSize',20,'FontName','Times')

% Label the axes
xlabel('$t$','Interpreter','Latex')
ylabel('$u(t)$','Interpreter','Latex')

% Plot solution
plot(X,U(:,1),'-k','LineWidth',2)

end

function [dudx]=DUDT(x,u,a,b,c,f)

dudx(1)=u(2);

dudx(2)=(-b(x)*u(2)-c(x)*u(1)+f(x))/(a(x));

end

function res=BCs(x0,L,ul,ur)
% The boundary conditions are written as
% u(x0)=ul
% x(L)=ur

res=[x0(1)-ul;L(1)-ur];

end
9. Mixed Value Problems
Initial and boundary value problems are not the only two ways in which conditions can be expressed. Sometimes these conditions can be presented in a mixed form where the condition on one or both boundaries may depend on the derivative of the solution function. For instance, consider the steady-state convection-diffusion equation on a bar on length  with density , convective velocity , specific heat capacity , thermal conductivity  and heat source :

where  is the temperature at . This set of conditions are known as Mixed Conditions: the first  means that the temperature at the location  is , the second  means that at the location , there is no heat flux. This can be quite useful if say, a metal rod is being heated to C on one side an insulated on the other.
The method to solving MVPs is the same as boundary value problems subject to a few modifications.
9.1 Finite Difference Method for MVPs
Consider the differential equation

as before. The interval  will be split into  equally sized sections each of width  and the grid points are labelled  for . This differential equation can be discretised using the centred difference approximation just as before to give


This gives a set of  equations in  unknowns, namely  (recall that  for ).
When the differential equation is subjected to two boundary conditions, say

then expressions for  and  are provided which gives  equations in  unknowns, hence resulting in a well-defined system which can be solved as before.
However, suppose that a set of mixed conditions is given as

In this case, only  is explicitly known, meaning that there will be  equations in  unknowns since  is not known giving an under-determined system (a system with more unknowns than equations). So either one more equation is needed or one more unknown needs to be removed. All the unknowns are certainly needed, otherwise the solution will be incomplete, so the alternative is to find another equation to add to the set of equations.
The set of  equations is:  All these come from the discretisation

Evaluating this at  gives
[bookmark: eq-n0]
Initially, this may seem to be quite strange since there is a point  which is the approximation to the solution  at the point  which is certainly out of the range of consideration. This point is considered to be an artificial grid point that will act as a placeholder in meantime.
Consider the condition at the start point

Using the centred finite difference approximation on the derivative gives

This approximation can be manipulated to provide an expression for the artificial point  as

Replacing this into the equation Equation 9.1 will eliminate  completely giving an equation in terms of  and  only, namely

Therefore, another equation has been found which now completes the system of  equations in  unknowns. Thus the system of equations is:  This can be written in matrix form as  where  This can once again be solved on MATLAB using U=inv(A)*g or U=A\g.
If, on the other hand, the mixed conditions were instead

then the artificial point will be located at  but the same procedure can be done give the matrix system  where 
	Mixed Value Problem

	Consider the differential equation for a damped harmonic oscillator

with the mixed conditions

This MVP is to determine the trajectory of the mass if the launching speed at the start is , which is , and after  seconds, the mass reaches its equilibrium state, which is . Notice that there is no restriction on the starting location, only the starting speed, so the mass can start anywhere as long as it is launched with a velocity . [image: figures/MVP1.jpg] The starting location here happens to be at  but that is no restricted by the mixed conditions as long as the gradient at the start is .


10. Symmetric Boundary Conditions
The use of symmetric boundary conditions arises in many cases where conditions at the ends are not known explicitly but they are related. For instance, consider the ODE representing the conduction problem

where  is the material’s conductivity and  is the heat transfer. Symmetric boundary conditions can be imposed as

for some constant . This problem can be interpreted as an insulated metal rod of length  that has been heated all the way through and then as it cools, it loses heat equally from both ends (which is the condition ), and that this heat loss at  is proportional to the temperature gradient between the rod and the air (which is the second condition ). The issue with this type of problems is that the temperature at both boundaries are not explicitly known, but it is known that they are the same.
10.1 Finite Difference Method for Symmetric Boundary Value Problems
This problem can be tackled in a very similar way to BVPs and MVPs. Consider the differential equation

The interval  will be split into  equally sized sections each of width  and the grid points are labelled  for . This differential equation can be discretised using the centred difference approximation (just as in Section 8.2) to give


This gives a set of  equations in  unknowns, namely . In this case, neither  nor  are explicitly known, therefore none of the unknowns can be eliminated from the boundary conditions per se.
Suppose the given conditions are

where  and  are some constants. The first condition is the symmetric boundary condition which represents the fact that the value of the unknown solution  at both ends is the same, then , even though neither is explicitly known. The term  can be eliminated since determining  automatically determines , this reduces the number of unknowns to .
Consider the discretisation at , namely

since , this can be rewritten in terms of  instead as

The discretised form of the differential equation at  is
[bookmark: eq-UNp1]
Just as in the case with the MVPs, an artificial point  is introduced which is the solution approximated at the point  which is beyond the computational domain.
To find an expression for , first consider the second condition

The LHS can be rewritten in terms of its centred differencing approximation as

Combining these two can give an expression for  as:

Replacing this into Equation 10.1 gives

thus providing the last equation to complete the set. Finally, this system can be written in matrix form as  where  This can then be solved in MATLAB but bearing in mind that  which determines the function  at  and .
	Symmetric Boundary Value Problem

	Consider the conduction problem

with the conditions

[image: figures/SBVP1.jpg]


11. Heat Equation
Ordinary differential equations have been the main focus of this course so far but this will now be extended to partial differential equations. The differential equations that will be studied here are the 1-Dimensional Heat (or Diffusion) Equation and the 1-Dimensional Advection (or Convection) Equation.
The 1-dimensional heat (or diffusion) equation is a partial differential equation that represents the heat transfer across a rod and is given by

where  is the temperature at location  at time  and  is the thermal diffusivity[footnoteRef:200]. This equation represents the flow of heat along the length of a rod of length . [200:  The thermal diffusivity will always be regarded as a constant and usually takes the form  where  is the thermal conductivity,  is the density of the material and  is the specific heat capacity.] 

This partial differential equation has three derivatives in total, two derivatives in  and one derivative in , this means that three conditions are needed, two on  and one on :
·  for : Initial heat distribution across the rod;
·  for : The temperature at the left end of the rod;
·  for : The temperature at the right end of the rod.
This set of conditions along with the differential equation are known collectively as an Initial-Boundary Value Problem and can be solved using the Method of Lines.
11.1 The Method of Lines for the Heat Equation
The outline of the method of lines for the heat equation is as follows:
1. Divide the spatial interval  into  equally sized sections and label the points as  where  and the spatial interval width is .
[image: figures/Disc.jpg]
1. Left Hand Side: For each point , define the approximation . Therefore the left hand side of the heat equation can be written as

· and this holds for  since  and  are already known from the boundary conditions. Notice that the derivative of  is an ordinary derivative since  is a function of  only.
1. Right Hand Side: Use the finite difference approximation to approximate the spatial derivative in the differential equation. Here, the centred difference approximation for the second derivative will be used, namely

· Therefore the right hand side of the heat equation will become

· This holds for  bearing in mind, once again, that  and  are known beforehand.
1. These can be combined to give the discretised form of the heat equation

· for all  where . This means that the partial differential equation has been split into  ordinary differential equations.
1. This entire system of  equations can now be written in matrix form as  where  subject to the initial condition

· This system can now be solved using any of the IVP solvers with a temporal stepsize .
In essence, the Method of Lines has converted a PDE into a set of ODEs using the same techniques as BVPs and will be solved in the same way as IVPs.
	Heat Equation

	Consider an iron rod (of thermal diffusivity ) of length 1 where the middle section of length 0.2 has been heated to a temperature of 1 while the rest is at 0. The ends of the rod have been kept at a constant temperature of 2. This system can be represented by the IBVP



First, divide the interval  into five equal sections (which will be of width ). [image: figures/Disc02.jpg]
This system can be discretised using the centred difference method and written in matrix form as  where

The differential equation

can be solved using the Euler method with the initial condition

subject to a time stepsize . Below are the plots of the heat distribution at  for  () and  (). [image: figures/Heat1.jpg] [image: figures/Heat2.jpg] [image: figures/Heat3.jpg] At the beginning, the temperature at the ends is 2 and the middle section is at a temperature of 1. As time progresses, the heat evens out across the iron bar until eventually, the whole bar will be the same temperature.


11.2 Linear Advection Equation
The heat equation deals with heat transfer through diffusion throughout a material. Another way in which heat transfer can be achieved by advection (or convection) and this is given by

where  is the temperature at location  at time  and  is the flow speed.
This partial differential equation has two derivatives in total, one in  and one in , this means that two conditions are needed, one spatial and one temporal:
·  for : Initial heat distribution across the rod;
·  for : The temperature at the left end of the rod.
Consider the PDE along with the initial condition only, namely  for . The exact solution to this differential equation is given by

this can be verified from the partial differential equation as follows:

 This means that if the initial heat profile takes the form of , then after time , the profile will look exactly the same but shifted to the right by a distance .
[image: figures/Advection.jpg]
The “information” moves from left to right so if the finite differences are to be used, the centred differencing approach would not be suitable since the information on the right is not known yet. Therefore the backwards differencing approximation will be the most suitable. This is known as an upwind/upstream scheme (i.e. against the direction of the wind/stream) if . Therefore using the convention  where  is the discretisation of the spatial points for , the backward differencing approximation to the spatial derivative is

Therefore is discretised advection equation is

and this can be solved subject to the initial condition

and boundary condition

to give the discretised set of equations in the form  where  and the initial condition is

.
11.3 Convection-Diffusion Equation
The heat (or diffusion) equation dictates the spread of heat across a length of material while on the other hand, the advection (or convection) equation dictates the flow of heat in a certain direction. The combination of these two effects gives rise to the Convection-Diffusion Equation which takes the form

Just as in the heat equation, this partial differential equation has three derivatives in total, two derivatives in  and one derivative in , this means that three conditions are needed, two on  and one on , these will be as follows:
·  for : Initial heat distribution across the rod;
·  for : The temperature at the left end of the rod;
·  for : The temperature at the right end of the rod.
In order to discretise this system, a finite difference approximation needs to be chosen first. The centred difference approximation was used for the heat equation and the backwards difference approximation for the advection. Here, the combination of both will be used. Even though this might initially seem like an inconsistency, but in fact, this will allow the system to present a distinct stable advantage as will be seen in the next section.
This system can be discretised in exactly the same way as before, so for ,

This system can be written in the form  where 

and this system can be solved using an Euler iteration subject to the initial condition .
11.4 Asymptotic Stability
The method of lines is essentially a hybrid method that makes use of a combination between a finite difference approximation and the Euler method and is very effective at solving partial differential equations, as seen from solving the heat, advection and convection-diffusion equations. The derivation of the method of lines for the different methods builds on the very same principle and the codes can be adapted quite easily. One main issue that arises here is the choice for the stepsizes for both the spatial and temporal discretisations, i.e. the choice of  and  respectively. When both methods are combined, there needs to be a restriction on both stepsizes.
The first issue that needs to be addressed is the asymptotic stability of the heat equation and the advection equation. For arbitrarily large matrices, it may not be simple to determine if all the eigenvalues are negative since it may be computationally restrictive to do so. However, a result can be used to see if all the eigenvalues are negative without explicitly calculating them.
Theorem 11.1 (Gershgorin Circle Theorem) Let  be an  given by

On the complex plane, consider  closed discs, each centred at the locations  for  (the diagonal terms) where the disc centred at  has a radius  where

Then all the eigenvalues of the matrix  will have to lie in at least one of these discs. In other words, every eigenvalues of  satisfies

	Gershgorin Circle Theorem Exapmple

	Consider the matrix

Following the steps of the theorem:
1. Indicate the locations of the diagonal terms (namely ) on the complex plane.
1. Find the radii  which are equal to the row sum of the absolute terms without the diagonal terms, in other words,

1. Draw a circle around  with radius , a circle around  with radius  and so on.
1. All the eigenvalues of the matrix  must lie in at least one of the circles indicated. Indeed, the following figure shows the diagonal terms each with circles around them with the appropriate radius. The eigenvalues are given in red and the blue circles are those which contain all said eigenvalues. [image: figures/Ger.jpg]


11.4.1 Stability of the Euler Method for the Advection Equation
Consider the matrix  of size  from the advection equation

Following the steps of the Gershgorin theorem, the centres of all the circles on the complex plane will be located at the diagonal terms, all of which are . The radii of these circles are the row sums of the matrix  without the diagonal terms, which means that all the radii will be 1. The figure below shows the circle that results on the complex plane. Therefore regardless of what the eigenvalues might be, it is known that they will always have negative real parts and therefore the advection matrix forms an asymptotically stable system. [image: figures/Ger_Ad.jpg]
Since the advection equation is asymptotically stable, a bound for the temporal stepsize needs to be found. Consider the advection equation after the discretisation  where . The Euler method is numerically stable if the time step  satisfies

First calculate :

where . Now taking the absolute value of all the terms and taking the row sums gives:

The row sums of the absolute terms of this matrix are

Since it is assumed that , then  therefore, . Consider the two cases when  and 
1. If , then :

· Therefore if , then .
1. If , then :

· therefore in this case, if  needs to be less than or equal to , then

· which contradicts with the assumption that .
Therefore, the Euler method will produce a convergent solution if

In terms of number of spatial and temporal points  and  respectively, this restriction would be

So for a fixed velocity , if the time step  is to be halved, then the spatial step would also need to be halved as well.
11.4.2 Stability of the Euler Method for the Heat Equation
Consider the matrix  of size  from the heat equation

The steps of the Gershgorin theorem can be followed to produce the following figure on the complex plane. [image: figures/Ger_Heat.jpg] Once again, this shows that all the eigenvalues will have negative real parts even though their explicit values are not known.
To determine the bound on the stepsize, consider the heat equation after the discretisation, which is  where . The Euler method is numerically stable if the time step  satisfies

First calculate :

where . Now taking the absolute value of all the terms and taking the row sums gives:

The row sums of the absolute terms of this matrix are

Since , then  and therefore, . Consider the two cases  and .
1. If , then :

· therefore .
1. If , then :

· therefore in this case, if  needs to be less than or equal to , then

· which contradicts with the assumption that .
This means that the Euler method produces a stable convergent solution if

In terms of number of spatial and temporal points  and  respectively, this restriction would be

So for a fixed diffusivity , if the time step  is to be halved, then the spatial step would should be quartered.
11.5 Stability of the Convection-Diffusion Equation
Now that it has been established that both the heat and advection equations are asymptotically stable and the stepsize bounds have been found, it is time to combine both cases to tackle the convection-diffusion equation.
When discretised, the convection-diffusion equation can be written as  where the matrix  is given by

The Gershgorin theorem can be applied to the matrix  to show that all the eigenvectors have negative real parts. Indeed,

where  and . By the Gershgorin theorem, the centres of the circles will be located at the diagonal terms, namely at  with the radii ,  and . The largest radius is  which means that all the eigenvalues will be negative as shown below. Therefore the convection-diffusion equation is asymptotically stable.
[image: figures/Gersch.jpg]
To find the bound for the stepsizes, consider the convection-diffusion equation after the discretisation  where . The Euler method is numerically stable if the time step  satisfies

Calculating :

where  and . Taking the absolute value of all the terms and adding the rows gives 
The row sums of the absolute terms of this matrix are

Since  and , then , therefore, . Consider the two cases  and .
1. If , then :

· therefore .
1. If , then :

· therefore in this case, if  needs to be less than or equal to , then

· which contradicts with the assumption that .
This means that the Euler method will produce a stable convergent solution if

This means that a choice can be made with regards to the bounds of the different components, for instance, the values of  and  can be chosen such that

or any combination thereof provided that the choices satisfy the inequality .
	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\caution.png]  Bound for Convection-Diffusion

	Consider the convection-diffusion equation


This can be discretised to give  where


subject to

As yet, the value of  has not been put forward since the stepsizes need to be established first. For a stable Euler method, the stepsizes  and  need to satisfy

If  and  (which corresponds to  and ), then the Euler method will be stable.


Appendix A — MATLAB Basics
This Appendix will cover some of the basic procedures in MATLAB.
A.1 Command Window
When MATLAB is opened, you will be faced with a window containing several parts.
	[image: figures/Layout.png]
Figure A.1: Default MATLAB layout.


These different areas serve the following purpose:
· Command Window: This is the main window where the first line starts with >>. This is where commands are executed, note that once a command has been run (i.e. you pressed Enter), then what has been written cannot be edited or undone and therefore, this is a suitable space for running or executing codes only, not for writing extensive codes.
· Directory: This is the destination folder that MATLAB is going to refer to in either opening or saving codes. Note that all MATLAB files are saved as .m files.
· Current Folder: This displays the functions, figures, subfolders, scripts, codes, etc. that are in the current directory.
· Workspace: This displays all the the variables that have been used, along with their types (number, matrix, etc.) and their values.
A.2 Executing Commands in the Command Window
The command window will be where all the codes and functions are executed. It can also be used to perform quick calculations. Some examples of MATLAB syntax and built-in functions are shown below:
	Mathematical Symbol
	MATLAB Syntax

	
	+

	
	-

	
	*

	
	/

	
	3^5

	
	pi

	
	exp(2)

	
	sin(pi)

	
	asin(pi)

	
	floor(3.6)

	
	ceil(4.7)

	
	abs(-4)

	
	1+2i

	
	0+i

	
	real(1+2i)

	
	imag(3-4i)

	
	2e7

	
	mod(147,5)


All trigonometric functions follow the same syntax as sin, but bear in mind that by default, all the angles should be in radians and not in degrees. To use degrees, just put a d at the end of the trigonometric function, i.e. use sind, cosd, asind, etc.
The functions  and  are the ceiling and floor functions respectively. Their purpose is to round up to the nearest integer (ceiling) or round down to the nearest integer (floor). Standard rounding can be done using round.
Another important function is mod which find the remainder when dividing one number by another. For example,  is the remainder after dividing  by  which is .
>> 2+2
ans =
     4
>> sin(0)
ans =
     0
>> sin(pi/2)
ans =
     1
>> sin(30)
ans =
     -0.9880
>> sind(30)
ans =
     0.5000
>> pi
ans =
     3.1416
>> exp(1)
ans =
     2.7813
>> ceil(2.1)
ans =
     3
>> floor(6.9)
ans =
     6
>> round(2.3)
ans =
     2
>> mod(147,5)
ans =
     2
If the outcome of a calculation is an integer, then MATLAB will usually display it as an integer, if not, then by default, it will display the solution as a number to 4 decimal places. The number of decimal places can be increased by using format long and reversed by using format short.
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	Note that any command executed in the Command Window will be applied globally, so if format long is used, it will apply to everything executed in the Command Window until it is reversed or MATLAB is restarted.


 
>> pi/2
ans =
     1.5708
>> format long
>>pi/2
ans =
     1.570796326794897
>> format short
>> pi/2
ans =
     1.5708
A.3 Defining Variables
MATLAB is a numerical programming language that relies on a “box” feature. This means that standard algebraic practices cannot be used, for instance, writing  makes perfect sense mathematically and yields a solution of , however writing 2*x=x+1 makes no sense in MATLAB.
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	A very important note to bear in mind here is that in MATLAB syntax, 2x has no meaning. In order to multiply terms, the multiplication sign * needs to be used.


A “box” with a given name, which is always on the left hand side of the = sign, is assigned a value, which is on the right hand side, and the value can then be manipulated or changed, so there are no variables in MATLAB per se. In the following example, a “box” is given the name x and the number 3 is assigned to it, calculations can then be done by referring to the number that is in said box. The values within the boxes can be redefined by using the = sign again.
>> x=3
x =
     3
>> x+1
ans =
     4
>> x+x
ans =
     6
>> 3*x
ans =
     9
>> y=(2*x)^x
y =
     216
>> y+10
ans =
     226
On the other hand,  makes no sense mathematically but within MATLAB syntax (as is the case with most other programming languages), this simply means calculate x+2 (which is on the right hand side of the = sign) using the value already in the box labelled x (which is 3), then redefine the value in that same box to take this new value, so the box labelled x is now assigned the value 5.
>> x=3
x =
      3
>> x=x+2
x =
      5
>> x=3*x
x =
      15
A.4 Naming Variables
There are certain rules with regards to what names can be used for the variables:
· Names can be of any length (within the bounds of reason of course to avoid confusion).
· Names are case sensitive, so a and A are two different variable names.
· Names must contain no spaces, underscores can be used instead. For example, Bad Name is not a viable variable name but GoodName and Also_A_Good_Name are both valid.
· Names must contain no operators or symbols, with the exception of the underscore, so do not use ! ? . , ; + - * / & # % $.
· Names can contain numbers as long as they are not the first character. For example 1Forrest1 is not a viable variable name but OneForrest1 or Obi1Kenobi are both viable.
· Names cannot be the same as already existing functions, for instance, a variable cannot be given the name sin since there is already a built-in function with that same name, however, one could use Sin since variable names are case sensitive (although this particular example is not recommended since it may cause confusion).
>> P_1=1
P_1 =
     1
>> P_2=P_1+2
P_2 =
     3
>> PP_3=P_1+p_2
Undefined function or variable 'p_2'.
>> PP_3=P_1+P_2
PP_3 =
     4
Typing whos x in the command window will give the properties of x, namely its size (in a matrix sense), storage allocation, class and attributes, but not its value. Typing whos on its own will give a list of all the variables that have been used along with their properties, alternatively, these can also be found in the Workspace.
A.5 Scripts & Functions
Within the command window, nothing can be edited once it has been executed which is inconvenient if the code is longer than a single line. In that case, it is best to use the Editor. By default, the Editor can be opened by clicking on New Script, this is a window in which any length of code can be written, saved and then executed with the Run button. If any changes need to be made then the editor window will allow that with ease, once changes are made, the code can be run again.
A function is very similar to a script but the difference between them is that a function can take in several inputs and produce several outputs and must always have the format:
function [output1,output2,...]=Function_Name(input1,input2,...)
    Body of the code
end
The function cannot always be executed with the Run button but will often need to be called in the Command Window to allow for the inputs to be placed.
The name of the function follows the same rules as the variable names mentioned before. One of the most important technicalities that has to be addressed is that the functions and scripts that are used must be in the same as folder as is stated in the directory.
When writing functions, or scripts of any kind, there are two important characteristics that need to be considered:
· Commentary: When writing codes, it is important to provide some comments on what is being done to give context and to allow for accessibility and reproducibility. This can be done by using % at the beginning of the line. This makes MATLAB ignore everything that comes after it, allowing for commentary of bits of code that need context. This is generally good practice in writing codes since the user can make comments about inputs, outputs, procedures, etc. without affecting the execution of the code.
· Suppression: On MATLAB, any line of code that is written will produce an output (many other coding languages do not unless prompted to do so). So in functions, performing an action will always produce an output whether it is needed or not. This is where semicolon ; can be used. The semi-colon suppresses the output, this means that if there are several calculations to be made, sometimes the intermediate stages do not need to be seen, only the final answer, in this case the semicolon allows the calculation to be done but not printed out in the command window.
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	Consider a cube with side length  (in m) and mass  (in kg), then the object will have density

The following code calculates this density with the inputs being the mass  and length  with the output being the density :
function [rho]=Calculate_Density(M,L)

% M:  Mass of cube in kg
% L:  Side length of cube in m

rho = M/(L^3);

end
This function, which is called Calculate_Density, has two inputs, namely M and L, and one output, namely rho. Notice that the list of inputs must always be in round brackets (...) while the outputs should be in square brackets [...].
To use this function, just type the name of the function in the command window with the inputs and outputs in exactly the same order in which they appear in the function and using the same set of brackets as well, i.e. (...) for inputs and [...] for outputs.
>> [rho] = Calculate_Density(100,20)
rho =
     0.0125
Expanding on this, suppose that a new function is desired where the user will input the mass in pounds and the length in inches but the desired density should still be in . A few more lines can be added in that case.
function [rho]=Calculate_Density_Imperial(M,L)

% M:  Mass of cube in lbs
% L:  Side length of cube in inches

M = M/2.20462;     % Converts lbs to kg
L = L/39.3701;      % Converts inches to m

rho = M/(L^3);

end
Note that here, the same variable name has been used and then redefined. So initially, M will be input in pounds, say M=50, then at line 6, the same variable name is redefined, so the new mass will be , but the same name is used for both. Similarly for L when it is converted from inches to meters.
In this case, the function can be executed with a mass of 50lbs and a side length of 10in to give:
>> [rho] = Calculate_Density_Imperial(50,10)
rho =
     1.3840e+03


One of the major differences in using scripts and functions is the assignment of variables and their declaration. In a script, if a variable  was given the value 3 (so C=3 was in the script) then this value of  will be declared globally, meaning that it can be used in the command window and it will still take the same value. However in functions, the variables are declared locally, so if in a function the variable  was given the value 3, this will only hold within the function itself and no where outside it.
A.6 Exersises
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	Write a MATLAB function that takes inputs  and  and outputs the volume of a cone (in cubic meters) with height  in meters and radius  in meters.
Test the code on a cone with height 5m, radius 3m (which should give a volume of 47.1238898.
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	function [V]=Cone_Vol1(h,r)

% This function caculates the volume of a cone in m^3

% Inputs:
% h:  Height of the cone in m
% r:  Radius of the cone in m

% Output:
% V:  Volume of the cone in m^3

V=pi*(r^2)*h/3;

end
Code test with  and :
>> [V]=Cone_Vol1(5,3)
V =
     47.129


 
	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\important.png]  Excersise 2: Imperial Cone

	Write a MATLAB function that takes inputs  and  and outputs the volume of a cone (in cubic meters) with height  in inches and diameter  in yards.
Test the code on a cone with height 10in, diameter 1yd (which should give a volume of 0.0556.
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	function [V]=Cone_Vol2(h,d)

% This function caculates the volume of a cone in m^3

% Inputs:
% h:  Height of the cone in inches
% d:  Diamater of the cone in yards

% Convert h from inches to metres
h = h*0.0254;

% Convert d from yards to metres
d = d*0.9144;

% Radius of cone base is half the diameter
r = d/2;

% Output:
% V:  Volume of the cone in m^3

V=pi*(r^2)*h/3;

end
Code test with  and :
>> [V]=Cone_Vol2(10,1)
V =
     0.0556


Appendix B — Arrays in MATLAB
MATLAB is one of the most versatile programming languages when it comes to working with vectors and matrices, hence the name MATLAB, particularly MATrix LABoratory. In MATLAB, vectors essentially represent lists and matrices represent tables.
B.1 Vectors
To form a vector, use square brackets and separate the terms using commas to form a row vector or semicolons to form a column vector.
>> v=[1,2,3,4]
v =
     1   2   3   4
>> u=[1;2;3;4]
u =
     1
     2
     3
     4
An algebraic sequence (a sequence where the consecutive terms differ by a fixed value) can be formed into a vector by using colons as v=a:n:b. This forms a vector v where the first term is a, then next term is a+n, then a+2*n, etc. until b is reached. If the sequence goes beyond b, then b is ignored and the last term before b will be the last term of the sequence. Note that v=a:b will produce a row vector from a to b in steps of 1.
>> u=[1:1:10]
u =
     1   2   3   4   5   6   7   8   9   10
>> v=[20:3:30]
v =
     20   23   26   29
>> w=[100:-20:-40]
w =
     100   80   60   40   20   0   -20   -40
Some useful operations that can be applied to vectors are: For a vector v:
· abs(v) takes the absolute value of all the terms of the vector v.
· v' takes the transpose of the vector , namely , so it changes  from a row vector to a column vector and vice versa.
· length(v) finds how many terms there are in the vector v.
· max(v) finds the maximum value in the vector v while min(v) finds the minimum value.
· [a,b]=max(v) produces two outputs, a which is the maximum value in the vector v and b which is its location in v, similarly with [a,b]=min(v). (Note that in MATLAB, array positions start from 1, unlike Python which starts from 0.)
· sum(v) takes the sum of all the terms in the vector v.
· mean(v) takes the mean of all the terms in the vector v.
· median(v) takes the median of all the terms in the vector v.
· sort(v) orders the terms of v in ascending order.
· sort(v,'descend') orders the terms of v in descending order.
· norm(v) finds the magnitude of the vector v. Recall that for a vector , the magnitude of the vector  is given by:

· norm(v,p) finds the -norm of the vector v. Recall that for a vector  and a positive integer , the -norm of , denoted  is given by

· Note that norm(v) is the default 2-norm whereas norm(V,inf) is the sup-norm[footnoteRef:270] (also known as the Chebyshev norm or infinity norm). [270: 
Recall that for a vector , the sup-norm, denoted  is the maximum absolute term in the vector, i.e. for a vector ,
] 

>> v=[2,-8,6,-2,-9,4]
v =
     2   -8   6   -2   -9   4
>> abs(v)
ans =
     2   8   6   2   9   4
>> v'
ans =
     2
    -8
     6
    -2
    -9
     4
>> (v')'
ans =
     2   -8   6   -2   -9   4
>> length(v)
ans =
     6
>> max(v)
ans =
     6
>> [a,b]=max(v)
a =
     6
b =
     3
>> min(v)
ans =
     -9
>> [a,b]=min(v)
a =
     -9
b =
     5
>> sum(v)
ans =
     -7
>> mean(v)
ans =
     -1.1667
>> median(v)
ans =
     0
>> sort(v)
ans =
     -9   -8   -2   2   4   6
>> sort(v,'descend')
ans =
     6   4   2   -2   -8   -9
>> norm(v)
ans =
     14.3175
>> norm(v,1)
ans =
     31
>> norm(v,inf)
ans =
     9
B.2 Matrices
To form matrices, the same theme follows as with vectors where a comma indicates the next term on the same row and semicolons move to the next row. Be careful to ensure that all the rows have the same number of terms, similarly with the columns.
>> M=[1,2,3;4,5,6;7,8,9]
M =
     1    2    3
     4    5    6
     7    8    9
>> N=[1,2,3,4,5;6,7,8,9,10]
N =
     1    2    3    4    5
     6    7    8    9   10
>> P=[1,2,3;4,5,6;7,8]
Error using vertcat
Dimensions of arrays being concatenated are not consistent.
There are some operations that translate from vectors to matrices, for example, for a matrix M:
· abs(M) takes the absolute value of all the terms of the matrix M.
· M' takes the transpose of the matrix M.
Other functions as not as intuitive, for example, length(M) gives only one output which is either the number of rows or the number of columns, whichever is bigger. Whereas size(M) gives two outputs with the first being the number of rows of M and the second is the number of columns of M.
Some matrix functions are done column-wise, for example, max(M) does not give the maximum value that appears in the matrix, instead it produces a row vector of maxima where the first term is maximum value of all the terms in the first column, the second is the maximum of the second column and so on. This same column-wise approach holds for other functions like min(M), sum(M), mean(M) and sort(M); MATLAB works with the matrix as a collection of column vectors and applies these functions to each column separately. To find the maximum/minimum/sum of all th terms in the entire matrix, then the function will need to be used twice, so the maximum element in the whole matrix can be found by using max(max(M)).
Note that [a,b]=max(M) will give two outputs, the first output a is the vector max(M) as described above and the second output b is the vector of their locations. Similarly for [a,b]=min(M).
Matrix norms are slightly more involved, in terms of their mathematical definition, than vector norms. For a matrix  of size  and a positive integer , the matrix -norm imposed by the vector -norm is given by

Calculating these explicitly can be very difficult since it requires using all possible vectors , however, the most useful norms have some closed forms:
·  is the maximum absolute column sum;
·  is the maximum absolute row sum;
·  is the Spectral Radius of  (more specifically, it is the square root of the largest eigenvalue of the matrix  where  is the Hermitian of , or the complex conjugate transpose).
There are other norms that are not imposed by vector norms, like the Frobenius Norm which is the square root of the sum of the squares of the absolute valaue of all the terms, i.e.

All these norms still use the same syntax as vector norms, i.e. using norm(M,1), norm(M,2), norm(M,inf) and norm(M,'Fro') (with norm(M) being the default 2-norm). This is why it is imperative to be mindful of the context since the same operation can have different meanings depending on whether the input was a vector or a matrix.
>> M=[-4,5;2,9;-6,10]
M =
    -4   5
     2   9
    -6   10
>> abs(M)
M =
     4   5
     2   9
     6   10
>> M'
ans =
    -4   2   -6
     5   9    10
>> size(M)
ans =
     3     2
>> length(M)
ans =
     3
>> max(M)
ans =
     2   10
>> max(max(M))
ans =
     10
>> [a,b]=max(M)
a =
     2   10
b =
     2   3
>> min(M)
ans =
    -6   5
>> min(min(M))
ans =
     -6
>> [a,b]=min(M)
a =
    -6   5
b =
     3   1
>> sum(M)
ans =
    -8   24
>> sum(sum(M))
ans =
     16
>> mean(M)
ans =
    -2.6667   8.0000
>> median(M)
ans =
    -4   9
>> sort(M)
ans =
    -6   5
    -4   9
     2   10
>> sort(M,'descend')
ans =
     2   10
    -4   9
    -6   5
>> norm(M)
ans =
     15.1099
>> norm(M,1)
ans =
     24
>> norm(M,inf)
ans =
     16
>> norm(M,'Fro')
ans =
     16.1864
B.3 Referencing Terms in Arrays
Elements of a vector (row or column) can be referred to by putting the index of the desired element in brackets after the vector’s name. For example, v(4) is the  element in the vector v.
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	Note that in MATLAB, indexing starts from 1, not from 0 like Python.


If the last element of a vector is desired where its size may not be known, then the index end can be used.
>> u=[9;7;0;1]
u =
     9
     7
     0
     1
>> u(1)
ans =
     9
>> u(4)
ans =
     1
>> u(end)
ans =
     1
>> u(6)
Index exceeds array bounds.
For matrices, there are two indices, the first denotes the row number and the second the column number:

So M(2,3) will output the element of M that is in row 2 and column 3. MATLAB also has the ability to refer to terms in matrices by using one index only. For instance, if a matrix  is of size , then  would refer to the “ element”. Under usual circumstances, this is meaningless unless  is a vector, however, in this case, MATLAB can refer to the  element where the elements start from 1 and work their way down columns as such:

Therefore, the  element of  would be the element in the  row and  column for the  matrix. Using this referencing system is certainly not recommended since it can cause issues with different sized matrices.
MATLAB can also refer to whole rows or whole columns, this is done by using :, for example M(:,3) will produce the  column whereas M(1,:) will produce the  row.
>> M=[2,3,1,4;1,6,3,1;4,1,2,8]
M =
      2   3   1   4
      1   6   3   1
      4   1   2   8
>> M(2,3)
ans =
      3
>> M(3,1)
ans =
      4
>> M(end,3)
ans =
      2
>> M(end,end)
ans =
      8
>> M(:,2)
ans =
      3
      6
      1
>> M(3,:)
ans =
      4   1   2   8
>> M(:,end)
ans =
      4
      1
      8
>> M(2)
ans =
      1
>> M(4)
ans =
      3
>> M(12)
ans =
      8
B.4 Matrix Operations
Addition and subtraction of matrices (and vectors) follows the usual mathematical rules, namely, both matrices need to be of the same size and all the terms are added elementwise, i.e. the first term is added to the first term, the second to the second, etc.
>> A=[1,3,7;5,2,6;2,3,2]
A =
     1   3   7
     5   2   6
     2   3   2
>> B=[2,3,1;1,6,3;4,1,2]
B =
     2   3   1
     1   6   3
     4   1   2
>> A+B
ans =
     3   6   8
     6   8   9
     6   4   4
Matrices and vectors can be multiplied or divided by a scalar value using the * and / operations.
>> 2*A
ans =
     2   6  14
    10   4  12
     4   6   4
>> B/2
ans =
     1.00    1.50   0.50
     0.50    3.00   1.50
     2.00    0.50   1.00
Matrix multiplication is carried out using the * operator. Recall that for two matrices , of size , and , of size , the matrix product  is only possible if  (i.e. the number of columns of  is equal to the number of rows of ) and the resulting matrix  will then be of size .
>> A*B
ans =
     33   28   24
     36   33   23
     15   26   15
Elementwise multiplication and division of matrices (also known as the Hadamard Operations) is also a possibility in MATLAB. So for matrices  and  of the same size, the elementwise product (denoted mathematically as ) produces a matrix that is of the same size as  and  where the first element is the product of the first element of  and the first element of , the second element is the product of the second element of  and the second element of  and so on. This is done using a dot . before the operations, in other words, the elementwise product  is written as A.*B, similarly for elementwise division using ./ and elementwise exponentiation using .^. Bear in mind this is only possible if the matrices/vectors are of the same size, just as in addition and multiplication.
>> A.*B
ans =
      2   9   7
      5  12  18
      8   3   4
>> A./B
ans =
      0.50  1.00   7.00
      5.00  0.33   2.00
      0.50  3.00   1.00
>> A.^2
ans =
      1  9   49
     25  4   36
      4  9    4
>> A^2
ans =
      30    30    39
      27    37    59
      21    18    36
There are some special matrices and matrix forms built into MATLAB such as:
· []: empty vector/matrix which contains no terms, therefore has size  and is usually used as a placeholder.
· zeros(a,b): forms a matrix of zeros with size a  b.
· ones(a,b): forms a matrix of ones with size a  b.
· eye(a,b): forms an identity matrix (ones on the main diagonal, zeros otherwise) of size a  b.
· rand(a,b): forms a matrix of size a  b where all the elements are randomly chosen from a normal distribution whose entries lie between 0 and 1.
· randi([M,N],a,b): forms a matrix of size a  b where all the elements are randomly chosen integers from a normal distribution whose entries lie between M and N.
· diag(v): forms a square matrix whose diagonal entries are the elements of the vector v.
There are also some matrix operations that are very useful such as:
· inv(A): find the inverse of the matrix A.
· det(A): find the determinant of the matrix A.
· trace(A): find the trace of the matrix A (which is the sum of the diagonal entries).
B.5 Substitution & Concatenation
Sometimes, vectors and matrices need to be augmented, either by adding, removing or changing some terms.
For both vectors and matrices, individual values can be substituted and redefined by referring to its index. For example, consider the vector  and suppose that its second element is to be changed, this can be done by using v(2)= to assign a new value that will overwrite the original value.
>> v=[1,3,7,5]
v =
     1   3   7   5
>> v(2)
ans =
     3
>> v(2)=8
v =
     1   8   7   5
>> v(4)=0
v =
     1   8   7   0
The same syntax can be used to redefine an element in terms of itself or in terms of others, like defining the second element as twice its original value or setting an element to be the sum of some other elements.
>> v(2)=10*v(2)
v =
     1   80   7   0
>> v(1)=v(3)
v =
     7   80   7   0
>> v(4)=v(1)+v(2)+v(3)
v =
     7   80   7   94
The same can be done with matrices as well where this replacement can either be done by elements, rows or columns.
>> M=[2,1;3,6]
M =
     2   1
     3   6
>> M(1,2)
ans =
     1
>> M(1,2)=4
M =
     2   4
     3   6
>> M(2,2)=0
M =
     2   4
     3   0
>> M(1,:)
ans =
     2   4
>> M(1,:)=[9,1]
M =
     9   1
     3   6
>> M(:,2)
ans =
     1
     6
>> M(:,2)=[4;0]
M =
     9   4
     3   0
Matrices and vectors can also be concatenated or cut, that simply means that terms can be added or removed, this is done by using the comma or semi-colon depending on the situation. Not only can terms be added, but whole rows and columns can be added as well but it is critical that the terms are added in a consistent fashion, meaning that if a new row is to be added, then it must be of the same size as all the other rows otherwise it will not make sense. To remove rows or columns, then simply assign an empty vector, namely [], to the desired location.
>> A=[1,7]
A =
     1   7
>> A=[A,4]          % Add 4 to the end
A =
     1   7   4
>> A=[8,A]          % Add 8 to the start
A =
     8   1   7   4
>> A=[A;[0,5,7,9]]  % Add a new row
A =
     8   1   7   4
     0   5   7   9
>> A=[A,[0;1]]      % Add a new column
A =
     8   1   7   4   0
     0   5   7   9   1
>> A(:,3)=[]        % Remove third column
A =
     8   1   4   0
     0   5   9   1
>> A(1,:)=[]        % Remove first row
A =
     0   5   9   1
>> A(end)=[]        % Remove last term
A =
     0   5   9
B.6 Finding Terms
Sometimes, finding some terms is desired, say if the user needs to find all the values in a list that are greater than 5, or less than , or equal to 2. In this case, the comparative operators should be used which are:
	Operation
	MATLAB Syntax

	Less than
	<

	Less than or equal to
	<=

	Equal to
	==

	Greater than
	>

	Greater than or equal to
	>=

	Not equal to
	~=


These operators need to be used in conjunction with the find function. So for a given vector v, if the terms greater than 5 need to be found, then use find(v>5), this will produce a vector of indices that denote the locations of the values that greater than 5. If there are no such values that satisfy the condition, then an empty vector will be produced, namely []. This can be very useful if, say, all the values greater than 5 need to be multiplied by 10, or all the values that are less than  need to be changed to 0, or all the values that are equal to 2 need to be removed.
>> v=[1,2,-5,12,-3,2]
v =
     1   2   -5   12   -3   2
>> i=find(v>5)
ans =
     4
>> v(i)
ans =
     12
>> v(i)=10*v(i)
v =
     1   2   -5   120   -3   2
>> j=find(v<-1)
ans =
     3   5
>> v(j)
ans =
    -5   -3
>> v(j)=0
v =
     1   2   0   120   0   2
>> k=find(v==2)
ans =
     2   6
>> v(k)=[]
v =
     1   0   120   0
When finding terms in matrices, MATLAB tends to provide the location in the single index form rather than in the dual form. In other words, if a matrix is of size  and MATLAB needs to refer to the  element (second row, third column), it would display the index as the  element. This is an important distinction that needs to be made.
>> M=[2,0,5;-1,2,9;-6,1,-8]
M =
     2   0   5
    -1   2   9
    -6   1  -8
>> m=find(M>5)
m =
     8
>> M(m)
and =
     9
>> M(m)=M(m)*10
M =
     2   0   5
    -1   2   90
    -6   1  -8
>> n=find(M<0)
n =
     2
     3
     9
>> M(n)
ans =
    -1
    -6
    -9
>> M(n)=0
M =
     2   0   5
     0   2   90
     0   1   0
An alternative way of finding terms would be to dispense with the find command altogether. This will produce a binary matrix showing the locations of the terms that satisfy the condition (with 1 being true and 0 being false).
>> A=[1,4,6,9,2;7,3,1,6,0]
A =
     1   4   6   9   2
     7   3   1   6   0
>> find(A>5)
ans =
     2
     5
     7
     8
>> A>5
ans =
     2×5 logical array
     0   0   1   1   0
     1   0   0   1   0
B.7 Exercises
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Using MATLAB, write a command/script to produce:
· The matrix .
· Element (2,3) of the matrix .
· Third element of the matrix .
· Element (1,2) of the matrix .
· Trace of .
· Maximum and minimum terms in .
· 2-norm of .
· Frobenius norm of .
· The determinant of .
· The inverse of  where  is the identity matrix.
· The eigenvalues and eigenvectors of .
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	>> A=[1,2;5,8];
>> B=[4,0,-4;-1,0,1;2,1,3];
>> C=[1,0,4;2,-2,6];
>> u=[1;8];
>> v=[0;3;4];
>> A*C
ans =
     5    -4    16
     21   -16   68
>> D=C*B
D =
     12   4   8
     22   6   8
>> D(2,3)
ans =
     8
>> E=u'*C
E =
     17   -16   52
>> E(3)
ans =
     52
>> F=u*v'
F =
     0   3    4
     0   24   32
>> F(1,2)
ans =
     3
>> trace(B*B)
ans =
     11
>> G=B*v
G =
    -16
     4
     15
>> max(G)
ans =
     15
>> min(G)
ans =
    -16
>> norm(v,2)
ans =
     5
>> norm(B,'Fro')
ans =
     6.9282
>> det(B)
ans =
     0
>> H=134*(C'*C+eye(3))
H =
     804    -536    2144
    -536     670   -1608
     2144   -1608   7102
>> inv(H)
ans =
     0.0067   0.0011   -0.0018
     0.0011   0.0035    0.0004
    -0.0018   0.0004    0.0008
>> J=v*u'*C
J =
     0     0     0
     51   -48   156
     68   -64   208
>> [E,V]=eig(J)
E =
          0        0    0.0000
     0.6000   0.9558   -0.9558
     0.8000   0.2941   -0.2941
v =
     160   0     0
     0     0     0
     0     0     0


Appendix C — Loops
Loops are some of the most important features in any programming language and they fall under three types: if, while and for loops.
C.1 if Loops
An if command executes a loop if a certain condition is satisfied. This requires the use of comparative operators which are:
	Operation
	MATLAB Syntax

	Less than
	<

	Less than or equal to
	<=

	Equal to
	==

	Greater than
	>

	Greater than or equal to
	>=

	Not equal to
	~=


An if loops must have the following structure:
if compare <=> compare with

      do something
    
elseif compare <=> compare with

      do something else
    
else

     do something if none of the above conditions have been met
    
end
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	Suppose a function is to be written which takes a number  as an input then in the command window, displays “The Good” if it is positive, “The Bad” if it is negative and “The Ugly” if it is zero[footnoteRef:287]. [287:  In reference to the 1966 film “The Good, the Bad and the Ugly.”] 

function Good_Bad_Ugly(N)

if N>0                   % First check if the input N is positive

     disp('The Good')    % If N is positive, display 'The Good'
    
elseif N<0               % If N is not positive, check if it is negative

     disp('The Bad')     % If N is negative, display 'The Bad'
    
elseif N==0              % If N is neither positive nor negative, check
                         % if it zero
                         
     disp('The Ugly')    % If N is zero, display 'The Ugly'
    
end

end
The disp command outputs the variables stated within the brackets, if the argument is single quotation marks, namely '...', then it will be displayed verbatim. Note that here, the line will not start with ans = since it is was only asked to display and not specify variables. This function can be run within the command window as follows:
>> Good_Bad_Ugly(3)
The Good
>> Good_Bad_Ugly(-5)
The Bad
>> Good_Bad_Ugly(0)
The Ugly
In if loops, it is always a good idea to have a few elseif commands in order to have all the cases covered, this is because sometimes, MATLAB can misunderstand some inputs. For instance, suppose that the input is the complex number :
>> Good_Bad_Ugly(1-2i)
The Good
This does not make sense since the number  is neither positive nor negative, nor zero for that matter. In this case, MATLAB takes the real part only without being prompted to do so, and prints the output and since the real part is , the output will be The Good. In order to accommodate for this, an extra condition can be added in the form of another if loop that considers this and displays “The Complex” if the number is complex.
function Good_Bad_Ugly(N)

if imag(N)~=0            % First, check if N has a non-zero imaginary
                         % part

     disp('The Complex') % If N does have a non-zero imaginary part,
                        % display 'The Complex'
                          
else                     % Otherwise, run the code as before

     if N>0
     
          disp('The Good')
        
    elseif N<0
    
         disp('The Bad')

     elseif N==0
    
         disp('The Ugly')
        
    end
    
end

end
In this case, if the input as , then the output will be The Imaginary.


It is important to note that in if loops, the code will quit the loop after the first time the if condition is satisfied and will not check the other conditions.
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	Suppose a function is to be written which takes an input  and displays “Multiple of 2” if it is a multiple of 2, “Multiple of 3” if it is a multiple of 3 and “Too high to count” otherwise. This function will require the use of the mod syntax; for numbers N and b, mod(N,b) will produce 0 if N is a multiple of b.
function Mult(N)

if mod(N,2)==0      % Check if N is a multiple of 2
     
     disp('Multiple of 2')
     
elseif mod(N,3)==0  % Check if N is a multiple of 3

     disp('Multiple of 3')
     
else

     disp('Too high to count')
     
end

end
Run this code with the inputs  and :
>> Mult(10)
Multiple of 2
>> Mult(15)
Multiple of 3
>> Mult(19)
Too high to count
>> Mult(24)
Multiple of 2
For the inputs  and , the results are as expected however with , only one output is produced, suggesting that  is a multiple of 2 only. The reason this is produced is because the if loop checked the first condition and since it was satisfied, it executed the code block underneath and quit the whole loop, not running through the others. That is why it is very important to be aware of the ordering of the if and elseif commands.


C.2 while Loops
The while loop is somewhat similar to the if loop in the sense that values of two terms are being compared but here, the loop will keep repeating until the condition is no longer satisfied.
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	Suppose a function is to be written that takes two inputs,  and  and keeps subtracting  from  until it can no longer do so without becoming negative, the function should then output the last positive integer after this repeating operation. This code is the equivalent of finding the remainder of dividing a number  by  (or taking ). For example, if  and , then , , , then the function would take the inputs  and outputs 1.
function [r]=Remainder(N,d)

M=N;           % Start with the number M being equal to N

while M-d>=0   % As long as M-d is non-negative, run the loop
    
     M=M-d;    % Since M-d is non-negative, find M-d
               % and let M be equal to this new value,
               % this keeps repeating until M-d<0
               
end

r=M;           % Set the remainder r to be this final value M

end
This can be used in the command window as follows (note that here, because there is only one output, then it does not need to be explicitly stated in square brackets):
>> [r]=Remainder(9,4)
r =
     1
>> [r]=Remainder(10,2)
r =
     0
>> Remainder(14515,135)
ans =
     70
>> Remainder(1e12,42578)
ans =
     20554
Suppose now that this code is to be modified so that it can also output the number of times  can be subtracted from . For example, as before, if , the remainder is 1 and the number of times  must be subtracted from  to obtain this remainder is 2, this is the equivalent of finding the number of times the while loop actually ran. This is a very common procedure and the way to tackle this is by use of a “counter”. This is a variable that starts with the value 0 and every time the while loop is run, 1 is added to it. This modification can be done as follows.
function [r,counter]=Remainder(N,d)

M=N;                     % Start with the number M being equal to N

counter=0;               % Start with the counter being 0

while M-d>=0             % As long as M-d is non-negative, run the loop

     M=M-d;              % Since M-d is non-negative, find M-d
                         % and let M be equal to this new value  
                        
     counter=counter+1;  % Add 1 to the counter every time
                         % the while loop is run 
end

r=M;                     % Set the remainder r to be this final value M

end
This can be used in the command window as follows (in this case, since there are two outputs, they both have to be stated, but they don’t need to be of the same name, only the same order):
>> [r,counter]=Remainder(9,4)
r =
     1
counter =
     2
>> [r,c]=Remainder(10,2)
r =
     0
c =
     5
>> [R,C]=Remainder(14515,135)
R =
     70
C =
     107
>> [r,c]=Remainder(1e12,42578)
r =
     20554
c =
     23486307
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	In mathematics, there is a famous algorithm known as the Collatz Conjecture, the steps of the algorithm are as follows:
1. Pick any positive integer.
1. 
11. If the number is even, divide by 2.
11. If the number is odd, multiply by 3 and add 1.
1. Repeat Step 2.
For instance, if the input is the number 10, the sequence of numbers will be as follows:

Similarly, if the input is 21:

Both number sequences end up at 1 from two different starting numbers of 10 and 21. (The algorithm is stopped at 1 since if the algorithm is carried on after reaching 1, then a loop will be formed going 4, 2, 1, 4, 2, 1, … .) The Collatz Conjecture states that regardless of the starting value, this sequence will always reach a 4-2-1 loop. This statement has been put forward in 1937 and has not yet been proven or disproven but has been computed for numbers larger than , all the numbers end at the 4-2-1 loop.
The while loop can be used in conjunction with the if loop in order to make a function that outputs the number of steps it takes to get to 1. This code can be checked by having an input of 10 and the output should be 6 since the algorithm required 6 steps before reaching 1, similarly, if the input is 21, then the output should be 7 and these can be used as test cases.
In writing codes, it is helpful to start with a pseudocode:
1. Read the input number.
1. As long as the number is greater than 1, do the following:
11. If the number is even, divide by 2.
11. If the number is odd, multiply by 3 and add 1.
1. Repeat Step 2 until 1 is reached.
From this pseudocode, it is clear that Step 2 can be represented by an if loop. Steps 2 and 3 require the number to be greater than 1, since it is unknown when that will happen, the while loop can be used. Now, the pseudocode can be translated into MATLAB syntax with an input value of a and an output value N which is the number of staeps it takes to get to 1.
function [N]=Collatz(a)

N=0;                     % Start with N=0

while a>1                % Perform the code block as long as the number
                         % is bigger than 1

     if mod(a,2)==0      % Check if the number is even

          a=a/2;         % If it is, redefine a as a/2

     else                % Otherwise, if a is odd

          a=3*a+1;       % Redefine a as 3a+1

     end

     N=N+1;              % Every time the code block is run, add 1 to N

end

end
This code can be checked using the test cases:
>> Collatz(10)
ans =
     6
>> Collatz(21)
ans =
     7
>> Collatz(1000)
ans =
     111
The function Collatz should only be able to take integer inputs. A custom error message can be made to ensure that; the following can be added in Line 2:
if mod(a,1)~=0
     error('a must be an integer')
end


C.3 Multiple Conditions for if & while Loops
Occasionally, multiple conditions may need to be satisfied when running if or while loops, this can be done with the && for conjunctive conditions (equivalent to and) and || for disjunctive conditions (equivalent to or).
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	For the function Collatz in Caution C.1, the code should only be able to take any positive integer. An exclusion was introduced to produce an error message if the input was not an integer. Suppose that another condition is to be added that would produce the same error message if the input value is non-positive or not real. This can be done using the or syntax, which is ||.
if imag(a)~=0 || mod(a,1)~=0 || a<=0 || imag(a)~=0
     error('a must be an integer')
end


C.4 for Loops
A for loop is different compared to the while and if loops since it does not require comparison, instead, it runs through a series of terms that have been predefined.
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	Suppose a simple for loop is needed that takes an input value  and adds all the positive integers from  to . So if , then the function would output the sum of the numbers from  to , namely . This can be written as follows:
function [Sum]=Summation(N)

Sum=0;

for i=1:1:N

     Sum=Sum+i;

end

end
This simple code starts with a Sum=0, then the variable i runs from  to  and adds itself onto Sum, the final result would be the sum of all the positive integers form 1 to [footnoteRef:301]. [301:  Bear in mind that this is a contrived example for the sake of demonstration. This exact procedure can be done in one single command sum(1:1:10).] 
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	Suppose a for loop is desired that takes a vector  as an input and outputs the vector  whose elements are the squares of [footnoteRef:304]. [304:  Just as before, this is intended to be a contrived example to show the working of a for loop. This procedure can be done in a single command as u=v.^2 for elementwise exponentiation.] 

The vector  will be a part of the input but the vector  needs to be initialised, meaning that  has to be predefined in some way. Since the size of  will be the same as , then the vector  can be initialised as a vector of zeros that is the same size as , this can be done using u=zeros(size(v)). The code can then be written by replacing the appropriate term in the list.
function [u]=Square(v)

u=zeros(size(v));

for i=1:1:N

     u(i)=v(i)^2;

end

end
Alternatively, if the size of  is not known, then it can be initialised as an empty array [] and terms can be concatenated to it.
function [u]=Square2(v)

u=[];

for i=1:1:N

     u=[u,v(i)^2];

end

end


C.5 Exercises
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	Write a MATLAB function called Fib that takes an input  and produces a value  that is the  term of the Fibonacci sequence starting from 1,3 (recall that a Fibonacci sequence is a sequence where any term is the sum of the previous two terms). For example, if , then the first 5 terms of this Fibonacci sequence are , meaning that the output should be . Use the following test cases to verify that the code produces the correct results:
· : ;
· : ;
· : .
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	function [F]=Fib(N)

S=zeros(1,N);       % Initialise the sequence S as a list of N zeros

S(1)=1;             % Redefine the first term of S to be equal to 1

S(2)=3;             % Redefine the second term of S to be equal to 3

for n=3:1:N         % Starting from the third term onwards

     S(n)=S(n-1)+S(n-2); % Let the nth term of S be the sum of the
                         % previous two terms

end

F=S(end);      % Let F be the last term in the sequence S,
               % alteratively, F=S(N) can be used since it is known that
               % N is the last term

end
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	Write a MATLAB function called Fib2 that takes an input  and produces values  and  where  is the largest term of the Fibonacci sequence starting from 2,5 such that  and the number of terms in the sequence up to that point is . For example, if , start a Fibonacci sequence with the 2,5 until a number above  is reached and count the number terms. So if , then the sequence is , meaning that  (since it is the largest term in the sequence that is less than ) and  (since it takes 6 steps to get to 50). Use the following test cases to verify that the code produces the correct results:
· : , ;
· : , ;
· : , .
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	function [c,G]=Fib2(M)

S=[2,5];       % Since, in principle, the number of terms is not known,
               % then define S as the seuqnece starting with 2 and 5

while S(end)<M % Run the while loop as long as the last term of the
               % sequence is less than M

     S=[S S(end)+S(end-1)];   % Redefine S in terms of itself; start
                              % with the sequnce S and append an extra
                              % term at the end that is the sum of the
                              % last term and the one before it

end

G=S(end-1);    % G will be the second to last term (since the last one
               % is bigger than M)
               
c=length(S);   % c is simply the length of S

end


Appendix D — Plotting in MATLAB
D.1 Forming Lists for Plotting
Suppose the function  is to be plotted. First of all, a range of  values is needed, so if the function needs to be plotted in the interval , then a vector needs to be formed that spans this particular domain, the more points there are, the smoother the function will be. This can be in done by using, say, x=-2:1:2 which produces a vector x with 5 points, namely x=[-2 -1 0 1 2].
Secondly, the values on the -axis need to be formed. For every  value, the value on the  axis will be at , this can be done using elementwise exponentiation as y=x.^3. In this case, the x and y vectors will be x=[-2 -1 0 1 2] and y=[-8 -1 0 1 8].
Now the plotting can commence. The plot function takes two arguments, the first is the set of coordinates on the horizontal axis and the second is the corresponding set of coordinates on the vertical axis. The plot function then plots the first against the second to form a set of points and connects them with lines. In other words, plot(x,y) draws points at the coordinates , , , etc. and draws a line that connects all these points in the order they appear in.
>> x=-2:1:2;
>> y=x.^3;
>> plot(x,y)
[image: figures/x3_1.jpg]
Clearly, 5 points is not enough to plot a function accurately, so the domain vector  must be made finer by choosing smaller increments by saying something like x=-2:0.1:2 (in this case, x=[-5 -4.9 -4.8 -4.7 ... 4.7 4.8 4.9 5]). A very convenient way of achieving this is by using the linspace function where linspace(a,b) forms a vector between a and b with 100 equally spaced points. If a different mesh is required, then add an extra argument n as linspace(a,b,n), this forms a vector between a and b consisting of n equally spaced points. Therefore, the range of  values can be refined as x=linspace(-2,2).
>> x=linspace(-2,2);
>> y=x.^3;
>> plot(x,y)
[image: figures/x3_2.jpg]
Notice that the semicolons are placed since the output does not need to be seen and it is therefore suppressed, otherwise MATLAB will output all 100 terms of x and y which not necessary.
D.2 Line Properties
The plot function has many additional options that can change the plotting colour, shape, style, line widths and many more (these can be referred to by simply typing help plot into the command window). Some of these options can be incorporated into a plot by adding them into the plot function itself as additional inputs as plot(x,y,'Color','r','LineStyle','-','LineWidth',2).
Some of the available colours are:
	Colour
	'Color' Syntax

	red
	'r'

	blue
	'b'

	green
	'g'

	cyan
	'c'

	magenta
	'm'

	yellow
	'y'

	black
	'k'

	white
	'w'


Some of the available line styles are:
	Line Style
	'LineStyle' Syntax

	Solid
	'-'

	Dashed
	'--'

	Dotted
	':'

	Chain
	'-.'


The colours and line styles can be combined into one, so if a blue solid line is needed, then it can simply be done by using '-b' and the plotting command will be plot(x,y,'-b').
D.3 Multiple Plots
It would stand to reason that if two different functions are to be plotted on the same figure space, say  as a red solid line and  as a blue dashed line for , then the following commands can be executed:
>> x=linspace(-5,5);
>> y=x.^2;
>> z=x.^3;
>> plot(x,y,'-r')
>> plot(x,z,'--b')
Unfortunately, MATLAB has a habit of overwriting plots every time the plot command is used, so in this case MATLAB would plot the graph of y then remove it and plot the graph of z. In order to avoid that, typing hold on before any plot command allows plotting more than one plot in the same figure space as well allowing some augmentation. This can be reverted by hold off.
>> hold on
>> x=linspace(-5,5);
>> y=x.^2;
>> z=x.^3;
>> plot(x,y,'-r')
>> plot(x,z,'--b')
>> hold off
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D.3.1 Legends
When there is more than one line plotted in the same figure space, it is useful to have a legend to distinguish between the different plots. So if the functions  and  are plotted as above, then a legend can be added that labels them by simply using legend('Function y','Function z'). This labels the first plot with Function y and the second with Function z. Remember, quotation marks need to be inserted so they are displayed verbatim, otherwise MATLAB will produce an error since there are no variable with the names Function y or Function z.
[image: figures/yzPLOTLeg.jpg]
D.4 Figure Properties
Some useful figure functions are:
· clf: Clears the figure space.
· figure: Opens a new figure window.
· figure(n): Goes to figure window number  (and creates one if it is not open to begin with) and plots within that window.
The figures themselves can be augmented by introducing titles, grid lines and labelling the - and -axes, all these can be achieved as long as the hold on command is active:
· Title: title('Put title here'), the title must be in quotation marks.
· Grid: grid on and grid off.
· -axis: xlabel('Label for x axis').
· -axis: ylabel('Label for y axis').
MATLAB usually adjusts the axes so that the graphs fit but sometimes, the axes need to be readjusted according the user’s preference, this can be done by using axis([left right down up] where left is the leftmost point, right is the rightmost point, etc.
D.5 Subplots
Plotting multiple functions is very useful only if the axes can be maintained but if they are different, then the information can be quite distorted when interpreted graphically. In this case, subplots can be used to display more than one plot on the same figure space but on different sections. The command subplot(a,b,n) generates a grid of size  ( rows and  columns) and starts plotting in the  location where the top left is 1 and continues across the rows.
Suppose that for , four functions are to be plotted:  on the top left,  on the top right,  on the bottom left and  on the bottom right. This means that a  grid is needed so the first two terms in subplot are 2. The function  has to be plotted after subplot(2,2,1) while  is to be plotted after subplot(2,2,2) and so on.
>> x=linspace(0,10);
>> y=x.^2;
>> z=x.^3;
>> w=sin(x);
>> u=exp(x);
>> subplot(2,2,1)
>> plot(x,y)
>> subplot(2,2,2)
>> plot(x,z)
>> subplot(2,2,3)
>> plot(x,w)
>> subplot(2,2,4)
>> plot(x,u)
[image: figures/Subplots.jpg]
One issue in this case is that all the subplots will behave independently, so turning on the grid in one subplot will not do the same for all the rest. Therefore, operations such as grid on and hold on need to be done for each of the subplots individually.
D.6 Aesthetics
Fonts in figures can usually be an issue since the default setting may not be to the user’s liking. As seen in the figures above, the font on the axes is quite small which could make it difficult to read especially if the plots are to be in a report or dissertation. In that case, a special command needs to be run after hold on and before any plotting can commence. The command set(gca,'FontSize',20,'FontName','Times') sets the fontsize to 20 and the font to Times New Roman globally on all axes, legends and titles.
On MATLAB, the mathematical symbols will be displayed as regular text instead of mathematical symbols (like “x” instead of “”). This can be adjusted by using LaTeX syntax by using dollar signs around the mathematical symbols. For example, the - and -axes can be labelled with “” and “” by using xlabel('$x$','Interpreter','Latex') and ylabel('$y$','Interpreter','Latex'). The same can be done in the title as title('Plot of $x$ Against $y$','Interpreter','Latex').
The legend entries need slightly more work; if two functions  and  are plotted, then they can be labelled in maths typesetting by first defining legend in terms of a placeholder variable as Leg=legend('Function $y$','Function $z$') then prescribing the interpreter as set(Legend,'Interpreter'). MATLAB usually places the legend on the top right corner by default but this can be modified by the 'Location' argument and change it to East, West, NorthEast, SouthWest and so on, meaning that the new prescription for the legend would be set(Legend,'Interpreter','Location','SouthWest').
Remember, this modification of font shapes, sizes and the different styles is only for aesthetic reasons and serves no purpose otherwise.
	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\caution.png]  Lots of Plots

	Suppose that the following need to be plotted:
1. The function  for  as a blue solid line of thickness 1.
1. The function  for  as a red chain of thickness 2.
1. The function  for  as a black dashed line of thickness 3.
1. The legend appears in the bottom right corner and labels  as “”,  as “Function ” and  as “Last”.
1. The title of the figure should be “Some Random Functions”.
1. The horizontal axis labelled as “”.
1. The vertical axis labelled as “Functions”.
1. The horizontal axis ranges from  to  and the vertical axis ranges from  to .
1. Axis lines are drawn to represent the horizontal and vertical axes.
Each of these can be executed separately by the following commands:
1. t=linspace(0,10);
1. x=cos(t); plot(t,x,'-b','LineWidth',1)
1. y=exp(0.2*t); plot(t,y,'-.r','LineWidth',2)
1. z=exp(sin(t)); plot(t,z,'--k','LineWidth',3)
1. Leg=legend('$\cos(t)$','Function $y(t)$','Last'); set(Leg,'Interpreter','Latex','Location','SouthEast')
1. title('Some Random Functions','Interpreter','Latex')
1. xlabel($t$,'Interpreter','Latex')
1. ylabel('Functions','Interpreter','Latex')
1. axis([0 10 -2 8])
1. plot([0 10],[0 0],'-k'); plot([0 0],[-2 8],'-k')
A MATLAB script can be written to execute all these in order:
clf                 % Clears the figure before plotting

hold on             % Allows more than one plot in the same figure

grid on               % Produces a grid

set(gca,'FontSize',20,'FontName','Times')    % Sets the font golobally

t=linspace(0,10);   % Horizontal axis values

x=cos(t);           % Vector of values for the x function
y=exp(0.2*t);       % Vector of values for the y function
z=exp(sin(t));      % Vector of values for the z function

plot(t,x,'-b','LineWidth',1)    % Plots t against x
plot(t,y,'-.r','LineWidth',2)   % Plots t against y
plot(t,z,'--k','LineWidth',3)   % Plots t against z

title('Some Random Functions','Interpreter','Latex')   % Title

xlabel('$t$','Interpreter','Latex')          % Horizontal axis label
ylabel('Functions','Interpreter','Latex')   % Vertical axis label

axis([0 10 -2 8])           % Sets the axes
plot([0 10],[0 0],'-k')     % Plots the horizontal axis
plot([0 0],[-2 8],'-k')     % Plots the vertical axis

Leg=legend('$\cos(t)$','Function $y(t)$','Last');      % Sets the legend

set(Leg,'Interpreter','Latex','Location','SouthEast');  % Sets the font, interpreter and location of the legend
[image: figures/Multiplot.jpg]
All these commands can be executed in the command window rather than writing them in a script but if a mistake is made, then it cannot be undone and the entire stream of commands needs to be redone once again. Using a script on the other hand will allow for easy alteration.


D.7 Discrete Plots
The plot function does not just plot functions, all it needs are two vectors of the same length and it can plot them against one another. So if the graph is to be plotted as a series of points (discrete plot) rather than coordinates connected with a line, then the change in the plot function is quite straight forward, simply replace 'LineStyle' with 'MarkerStyle' and 'LineWidth' with 'MarkerSize'. This will use discrete points rather than connecting them with lines. The different marker styles are:
	Marker Style
	'MarkerStyle' Syntax

	Dot 
	'.'

	Cross 
	'x'

	Asterisk 
	'*'

	Circle 
	'o'

	Crosshair 
	'+'

	Square 
	's'

	Diamond 
	'd'

	Pentagram 
	'p'

	Upward Triangle 
	'^'

	Downward Triangle 
	'v'

	Rightward Triangle 
	'>'

	Leftward Triangle 
	'<'


The colours work in the same way. These discrete plots can be combined with the line plot all in one command, for example, to plot a function with a red dashed line connecting circles, the plot command will be plot(x,y,'--or').
	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\caution.png]  Collatz Conjecture Plot

	Consider to the Collatz conjecture from Section C.2, suppose that the number of steps it takes to reach 1 is to be plotted against the starting values, say from 1 to  where  will be the input. This will require the use of many of the tools developed so far.
First of all, a function that takes in a starting value and outputs the number of steps is needed, which that has already been done in the code Collatz. Since the inputs will be all the numbers from 1 to , a for loop will be suitable for the job. Finally, the plot function with markers will be employed since connecting the points with lines will not make sense in this particular context.
In order for the plot function to work, it needs two vectors of the same length. For this particular example, the first vector is the list of numbers from 1 to , which will be labelled X and will be on the -axis, and the second is the vector of the number of steps for a starting value to decrease to 1 and this is labelled Y. The terms in the vector Y will have to be calculated individually by using the Collatz function. Of course, since the size of Y is the same size a X, it can be initialised by using Y=zeros(size(X)), the terms can then be substituted after they have been calculated. The code to execute this plotting procedure is as follows:
function Plot_Collatz(N)

X=1:1:N;            % List of starting values from 1 to N

Y=zeros(size(X));   % Initialise the vector Y

for i=X

     [y]=Collatz(i);     % Run the Collatz algorithm for the starting
                         % value i
    
    Y(i)=y;             % Record the the number of steps in the i-th
                        % element of the vector Y
                      
end

clf
hold on
grid on
set(gca,'FontSize',20,'FontName','Times')

plot(X,Y,'.b','MarkerSize',10)

title(strcat('Steps of the Collatz Conjecture for Starting Points 1 to',' ',num2str(N)),'Interpreter','Latex')

xlabel('Starting Value','Interpreter','Latex')
ylabel('Number of Steps','Interpreter','Latex')

end
The code can now be run in the command window using Plot_Collatz(1000) will give the following plot:
[image: figures/Coll_1_1000.jpg]
There are a few things that need to be observed in the above code:
· In Line 4, the for loop starts with i=X, this means that the values of i would run through all the values of the vector X in order. So the for loop does not need to take terms from a uniform set but it can be from any set of values and those will be taken in the order they appear.
· Line 6 runs the Collatz function for the input value i to produce a value y and this is then recorded in the vector Y in the  location in Line 8, hence Y(i)=y. Of course there will be no issues there since the size of Y is known and has already been initialised in Line 3 as a vector of zeros of the same size as X, the values are then replaced by the desired terms.
· Notice that here, the main function Plot_Collatz (also known as the top level function) refers to another function, namely Collatz. This code should be saved as a separate .m file and has to be in the same directory as Plot_Collatz, otherwise the code will not work. An alternative would be to put the Collatz function after the end of Plot_collatz.
function Plot_Collatz(N)

     Body of Plot_Collatz

end

function [n]=Collatz(a)

     Body of Collatz
     
end
· The Collatz function requires a single input, but in some cases, there could be many inputs and many outputs, in that case when calling the function, the sequence of inputs and outputs must be in exactly the same order as it appears in the function itself.


D.8 Plot Cheat Sheet
	MATLAB Command
	Purpose

	clf
	Clear figure space

	figure
	Opens a new figure space

	figure(n)
	Plots in figure space n

	hold on
	Allows more than one plot to be drawn on the same figure

	hold off
	Cancels hold on

	grid on
	Turns on the plot grid

	grid off
	Turns off the plot grid

	plot([a,b],[c,d])
	Plots a straight line from point (a,c) to (b,d)

	set(gca,'FontSize',20)
	Sets the global font size to 20

	set(gca,'FontName','Times')
	Sets the global font to Times

	axis([left right down up])
	Sets the axes where the -axis goes from left to right and the -axis from down to up

	title('Plot')
	Adds the title “Plot” to the figure

	xlabel('x')
	Labels the -axis with “x”

	xlabel('$x$','Interpreter','Latex')
	Labels the -axis with “”

	Leg=legend('Plot 1','Plot 2',...)
	Gives the legend a handle “Leg” for further modification and labels the first plotted line as “Plot 1”, the second as “Plot 2”, etc.

	set(Leg,'Interpreter','Latex')
	Renders the legend in LaTeX, just like the labels

	x=linspace(a,b)
	Generates a vector x with 100 points from a to b

	x=linspace(a,b,n)
	Generates a vector x with n points from a to b

	plot(x,y)
	Plots the vector x against the vector y as long as they are of the same size

	plot(x,y,'-b')
	Plots x against y with a blue line (continuous)

	plot(x,y,'-b','LineWidth',2)
	Plots x against y with a blue line of thickness 2

	plot(x,y,'xk')
	Plots x against y with black crosses (discrete)

	plot(x,y,'xk','MarkerSize',10)
	Plots x against y with black crosses of size 10


Appendix E — Reading & Writing Data
Reading and writing data files can be important for importing data for analysis on MATLAB and exporting data for further processing elsewhere.
E.1 Writing Into Data Files
Data can be exported from MATLAB into a .dat or .txt file, both of which can be opened with Notepad.
	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\caution.png]  Writing Data

	Suppose that a list of values of  from  to  need to be exported along with a corresponding list of ,  and  as seen here: 
First, define each of these columns.
>> x=[1:1:100]';   % Column vector of values from 1 to 100

>> c1=x.^2;        % Column of x^2 terms

>> c2=sin(x);      % Column of sin(x) terms

>> c3=exp(x);      % Column of e^x terms

>> M=[x,c1,c2,c3]; % Form a matrix out of the columns
Now that the matrix is ready to be exported, a file needs to be opened with the desired name, say “Data_Write.dat” (.txt would also work). First, the file itself needs to be created in order to write the data into, this can be done by using file_name=fopen('Data_Write.dat','w'). The 'w' indicates that MATLAB needs to write the data into this file. The data can then be written into the the file using the fprintf command as fprintf(file_name,'%f %f %f %f \r\n',M')
The % sign determines the specification of the output and here, %f indicates that the output should be in the form of a floating point number. There are four columns so four specifiers need to be declared (hence %f appearing four times). The \r\n syntax indicates that MATLAB needs to move to the next line, otherwise, all the values will be printed on a single line (\r\\n needs to be used when opening using Microsoft Notepad, otherwise \n would suffice). The matrix is printed as M' instead of M since Notepad works on the reverse dimensions, so the rows on MATLAB are columns on Notepad and vice versa (for some obscure reason).
After writing all the data, the file needs to be closed so the data is not removed or overwritten using fclose(file_name).
Without context, this data is meaningless so an additional row can be added before writing the data as a title for every column as fprintf(file_name,'x  x^2  sin(x)  exp(x) \r\n'). All these can be combined into the following executable section:
x=[1:1:100]';       % Column vector of values from 1 to 100

c1=x.^2;            % Column of x^2 terms
c2=sin(x);          % Column of sin(x) terms
c3=exp(x);          % Column of e^x terms

M=[x,c1,c2,c3];     % Form a matrix out of the columns

my_file=fopen('Data_Write.dat','w');    % Open the file 'Data_Write.dat',
                                       % also works with 'Data_Write.txt'

fprintf(my_file,'x x^2 sin(x) e^x \r\n');
fprintf(my_file,'%f %f %f %f \r\n',M');

fclose(my_file);
[image: figures/Data1_Write.png]


E.1.1 Output Formats
When writing data, it is often times important to present the data in a certain form or with certain spacings. For example,  is better presented as a floating point and  is better presented in scientific notation. These can be done by changing the format after the % sign as follows:
	Syntax
	Display
	Example

	%f
	Floating point
	0.5  0.50000

	%e
	Scientific notation
	pi  3.1415e+00

	%g
	Floating Point with no trailing 0’s
	0.5000  0.5

	%i
	Integer
	pi  3


 
	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\note.png]  Note

	There are many others that print numbers as strings (%s) or in hexadecimal notation (%x).


E.1.2 Alignment
The way in which the data is spaced out is important since it allows the data to be read more easily. By default, using %f will print the data as a floating point with six decimal places, one space will be added before the next item is printed. This can be changed to %15.10f which will print the data as a floating point but will dedicate 15 spaces to write the value to 10 decimal places.
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	The same code can be used as before with the alignment and decimal modifications.
>> x=[1:1:100]';

>> c1=x.^2;
>> c2=sin(x);
>> c3=exp(x);

>> M=[x,c1,c2,c3];

>> my_file=fopen('Data_Write.dat','w');

>> fprintf(my_file,'%5s %5s %15s %15s \r\n','x','x^2','sin(x)','exp(x)');

>> fprintf(my_file,'%5i %5i %15.10f %15.10e \r\n',M');

>> fclose(my_file);
[image: figures/Data2_Write.png]


E.2 Reading From Data Files
Reading data from a .dat or .txt files is similar to writing.
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	Suppose that there is a data file called “Data_Read.dat” (or .txt) that has three columns of unlabelled data.
[image: figures/Data1_Read.png]
First, the file needs to be opened with fopen but in order to prepare it for reading, use the augmentation 'r' (instead of 'w' for writing). The format has to be specified, in this case, it would be '%f %f %f' since there are three terms that need to be read which are all placed into a row and separated by a space. The size of the data itself also needs to be specified as well, and since there are three columns, that could be defined as [3 Inf] if the number of rows is unknown. The commands to read the data can be written as follows:
my_file=fopen('Data_Read.dat','r');

formatSpec = '%f %f %f';

Size_Data= [3 Inf];

M=fscanf(my_file,formatSpec,Size_Data);

M=M';

fclose(my_file);
This will produce an array M that contains all the data.


E.3 Reading & Writing Data with Excel
Writing data into Microsoft Excel is much simpler than .dat or .txt since spacing and formatting are built into excel. The difference is using writematrix and readmatrix instead of fprintf and fscanf and the file extension should be .xlsx and does not have to be opened and closed.
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	Suppose the data as before needs to be written into Excel, this can be done as follows:
x=[1:1:100]';

c1=x.^2;

c2=sin(x);

c3=exp(x);

M=[x,c1,c2,c3];

writematrix(M,'Data_Excel.xlsx');
[image: figures/Data1_XL.png]
The same data can be read using Data=readmatrix('Data_Excel.xlsx').


Appendix F — Gaussian Elimination Method
The Gaussian Elimination Method is an algorithm that transforms the linear system  where  and  into an equivalent upper triangular system  after  steps, where  is an upper triangular matrix and . This uses Elementary Row Operations (swapping rows, multiplying a row by a constant, adding two rows), after which point, the system  can solved by the backward substitution. Note that this method is possible when the elementary row operations are performed on both  and  simultaneously, so if rows  and  are swapped in , the rows  and  must also be swapped in , simialry for the other operations.
The Gaussian elimination method can be performed as follows (the superscripts in brackets will be the step number):
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	The algorithm will be explained and an example will be done in parallel to explain the steps with the matrix system  where



1. Establish the starting matrix: If , then set  and  as


· If , then swap the first row with any other row whose first term is not zero and the result will be the starting matrix .
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1. Form the multiplier vector: The desired outcome is to have the matrix  be upper triangular, i.e. all the terms below the diagonal should be 0. To achieve this, introduce a vector  of multipliers, whose  entry is given by

· hence the reason why the assumption  must be imposed. Essentially, the vector  is the first column of  divided the the first element of .
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1. Elimination terms in the first column: For , multiply row 1 by  and add it to row  to give the new row :
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Notice that by the definition of , the first element in every row must be equal to 0, therefore, this set of operation makes all the terms in the first column equal to 0 except the first. Define this new matrix as the second term in the iteration:  where for all 

	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\caution.png]  

	



1. Modification of the right hand side: The vector  has to also undergo the same operations as , i.e. for , let row  of  be row 1 multiplied by  plus row  and the final vector is the vector .
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1. Matrix representation of elimination: This whole procedure can be written as  and  where
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To check:




1. Repeat for other columns: The process must now be repeated for the rest of the rows, specifically, those that have non-zero pivot points, i.e. the first point in a row that is non-zero. This process can be done more simply by generating the  matrices in the same way as before without going through the starting steps. This process should be reapeated until the last row is reached.
	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\caution.png]  Multiplier Matrices

	The matrix  can be generated in the same way as , so

To check:




1. Solve using backwards substitution: After repeating for all other columns (a total of  times), the final matrix  will be an upper triangular matrix with non-zero terms on the diagonal and the system can then be solved by backwards substitution.
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The total number of operations in every step is given in the table below (the “steps” here refer to the matrix manipulation step and not exactly to the step numbers of the algorithm):
	Step
	Multiplications
	Additions
	Divisions

	1
	
	
	

	2
	
	
	

	3
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	


This means that the total number of multiplications is

similarly for the additions. Whereas the total number of divisions is

Therefore the total number of operations is

This means that for large , the Gaussian elimination algorithm requires  operations when  is a non-sparse matrix. This procedure is computationally expensive even for moderate sized matrices, this also assumes that the pivot points are non-zero, or more specifically, that the matrix has non-zero determinant. As an illustration of this computational complexity, if  (which not atypical), then for a computer with the computing power of 1 Gigaflops per second, an  system will need 21 years to find a solution. A lot of more modern computational techniques are based on attempting to reduce this computational complexity, either by eliminating terms in some suitable way or chnaging the matrix in a more pallatable form.
Overall, every step of this process can be represented by a matrix transformation . This means that in order to convert the matrix  into an upper triangular matrix , the matrix transformations  have to be applied reverse order as

This can be written as
[bookmark: eq-UMA]
Notice that every matrix  is lower triangular and this fact will be used later on in ?@sec-LU.
Appendix G — Matrix Decompositions
G.1 Orthogonality & QR Factorisation
Intuitively, the concept of orthogonality is crucial for defining the “amount of information” in a set of vectors; although this is also associated with the concept of linear independence, the “most informative” linearly independent vectors are those that are also orthogonal.
Recall that for a set of vectors  where , the vectors are Orthogonal if  for all . The set of vectors is called Orthonormal if

If , then the vectors form a linearly independent basis of .
A square matrix  is called Orthogonal if all its columns are orthonormal to one another. Some of the properties of orthogonal matrices are:
· An orthogonal matrix  satisfies , therefore ;
· The determinant of an orthogonal matrix is  or ;
· The product of two orthogonal matrices is orthogonal.
· Given a matrix  with  and with orthonormal columns, there exists a matrix  such that  is orthogonal. In other words, for a “tall” rectangular matrix with orthonormal columns, there exist a set of vectors that can be concatenated with the matrix to form an orthogonal square matrix.
· Orthogonal matrices preserve the 2-norm of vectors and matrices. In other words, if  is an orthogonal matrix, then for every  and :

There are two particularly relevant classes of orthogonal matrices:
· The Householder Reflection Matrix (named after Alston Scott Householder) is a reflection matrix on a plane that contains the origin. The reflection matrix is given by

· where  is the unit vector that is normal to the hyperplane in which the reflection has been performed. The matrix  is in fact symmetric and orthogonal (i.e. ). Reflection transformations appear in many numerical linear algebra algorithms and their main use is to transform a vector  to another vector  with the same magnitude (meaning that for given vectors  with , there exists a reflection matrix  such that ).
· [bookmark: fig-Rot_Mat]The Givens Rotation Matrix (named after James Wallace Givens) represents a rotation in the plane that can be spanned by two vectors. The matrix of transformation is denoted  where the vector  is simply the vector  rotated  radians anti-clockwise on a plane that is parallel to the -plane. The matrix  is essentially an identity matrix with the  and  terms replaced by , the  term replaced by  and the  term replaced by . For example, in , the matrix  is [image: figures/Rot_Mat.jpg]
[image: figures/Photo.jpg]
Photo of (from the left): Jim Wilkinson, Wallace Givens, George Forsythe, Alston Householder, Peter Henrici, Fritz Bauer
Since both reflection and rotation matrices are orthogonal matrix transformations, a sequence of reflections and rotations can be represented by the matrix  (which would also be orthogonal). To this end, any matrix  with  can be transformed by  to give a block matrix with an upper triangular matrix occupying the first  rows with  zero rows below it, i.e.

where  is an upper triangular square matrix. Equivalently,  can be written as  where  is the orthogonal transformation matrix and  is a block rectangular matrix consisting of a square lower triangular matrix and a block zero matrix. This type of decomposition is called the QR Factorisation. The full QR factorisation can be visually represented as follows:
	[bookmark: fig-QR1][image: figures/QR1.jpg]



There is a much more concise form of the QR factorisation where only the first several columns of  are considered since the rest will be multiplied by 0 anyway, this gives an “economy version” of the QR factorisation written as  which be visually represented as follows:
	[bookmark: fig-QR2][image: figures/QR2.jpg]



The QR decomposition of a matrix can be performed on any matrix (square or rectangular). The following sections will show how this can be done using reflections and rotations.
G.1.1 QR Decomposition Using Reflections
The following will explain how the QR decomposition can be performed using reflection matrices on a square matrix . Denote the  column of the matrix  by , this means  can be written as

The vector  will denote the  canonical basis vector, i.e. the vector with all its entries being equal to 0 except the element in location  which is equal to 1.
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	This process will also be applied in parallel to the following matrix

In this case,



First, find a reflection matrix that transforms the first column of  into  where . Let  and , then the first reflection matrix is

This can be verified by checking that all the terms in the first column of the matrix  are zero except for the first term.
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	The 2-norm of the first column of  is , then





The matrix  can be simplified to give

To verify that this matrix is valid, consider the product :


indeed, all the terms in the first column are 0 except for the first.


Repeat the same process for the  bottom right submatrix of  then once the new matrix  is obtained (of size ), place it at the bottom right of the  identity. When this process is repeated a total of  times, the result will be an upper triangular matrix.
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	Consider the matrix

Let  be the bottom right  submatrix of ,
	[bookmark: fig-A2][image: figures/A2_MultCol.jpg]



Repeat the same process as before with the matrix : The 2-norm of the first column of  is . Then




Consider the product :

which does change the matrix  into upper triangular form.
Let the matrix  be the identity matrix with the bottom  submatrix replaced with , i.e.

The product  should be lower triangular, indeed



This sequence of steps will generate  reflection matrices denoted  which when applied to  in reverse order (i.e. the product is ), must give an upper triangular matrix . Since  are orthogonal for all , then their product will also be orthogonal.
Let , then  meaning that . Since  is orthogonal, then  which will be equal to  in the QR factorisation.
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	The matrices in question are

The matrix product  should give the matrix  which is upper triangular, indeed

Let


Therefore

hence giving the QR decomposition of  as



G.1.2 QR Decomposition Using Rotations
The following will explain how the QR decomposition can be performed using rotation matrices on a square matrix .
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	This process will also be applied in parallel to the following matrix



The rotation matrices should make all the terms in the lower triangular part of the matrix equal to zero. Starting with the lower left most element , this element can be eliminated by using the rotation matrix  where . When applied to , this should eliminate the term .
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	For the matrix

The angle  will be . Therefore the rotation matrix will be

This can be verified by considering the product :

which does eliminate .


This process can be repeated for all other terms in the lower triangular section to reduce  into an upper triangular matrix. In these cases, to eliminate the element in position , the angle  and the rotation matrix is .
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	Repeat the same process as above to the matrix  to eliminate the term in position (2,1):  and  is

Applying  to  should eliminate the (2,1) element, indeed

Finally, the term in position (2,3) needs to be eliminated:  and  is

Applying  to  should eliminate the (3,2) element, indeed



This process will generate a sequence of at most  rotation matrices (since this is the number of terms that need to be eliminated). Suppose that  rotation matrices are needed where , then when these are applied to  in reverse order (the product ), then the result should be the upper triangular matrix . Let , then . Since all the rotation matrices are orthogonal, then their product must also be orthogonal, therefore if , then , hence giving the QR decomposition of .
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	The matrices in question are

The product of the rotation matrices is

Therefore

hence giving the QR decomposition of  as



Generally, the QR decomposition of a matrix is unique up to sign differences (as seen from the examples above where some of the rows and columns have different signs but in the end, the result will be the same).
G.1.3 QR Decomposition in MATLAB
In MATLAB, the QR decomposition can be done with the qr function.
>> A=[4,6,1;0,1,-1;0,1,2]
A =
     4   6   1
     0   1  -1
     0   1   2
>> [Q,R]=qr(A)
Q =
     1.0000         0         0
          0   -0.7071   -0.7071
          0   -0.7071    0.7071
R =
     4.0000    6.0000    1.0000
          0   -1.4142   -0.7071
          0         0    2.1213
If the matrix is rectangular, then the economy version of the QR decomposition can be found using qr(A,"econ").
G.2 Eigenvalue Decomposition
For a matrix , the value  and non-zero vector  are known as the Eigenvalue and Eigenvector, respectively, if they satisfy the relationship . These can be written in eigenpair notation as .
In MATLAB, to find the eigenvalues and eigenvectors of a matrix A, use [V,E]=eig(A). This will produce a matrix V whose columns are the eigenvectors of A and a diagonal matrix E whose entries are the corresponding eigenvalues where the  element of E is the eigenvalue that corresponds to the eigenvector in column  of V. However, if only eig(A) is run without specifying the outputs, MATLAB will produce a column vector of eigenvalues only.
>> A=[-2,-4,2;-2,1,2;4,2,5]
A =
    -2  -4   2
    -2   1   2
     4   2   5
>> eig(A)
ans =
    -5
     3
     6
>> [V,E]=eig(A)
v =
     0.8165   0.5345   0.0584
     0.4082  -0.8018   0.3505
    -0.4082  -0.2672   0.9347

E =
    -5   0   0
     0   3   0
     0   0   6
Therefore, the matrix  has the following eigenpairs

Notice that the eigenvectors are not represented in the most pleasant form, the reason is that MATLAB normalises eigenvectors by default, meaning that the magnitude of every eigenvector is 1. In order to convert this to a more palatable form, the columns should be individually multiplied or divided by any scalar value[footnoteRef:443]. The easiest way to do this is to, first of all, divide every individual column by its minimum value, then any other manipulations can be carried out afterwards. [443:  Remember that any scalar multiple of an eigenvector is still an eigenvector.] 

>> v1=V(:,1)/min(V(:,1))
ans =
    -2
    -1
     1
>> v2=V(:,2)/min(V(:,2))
ans =
    -0.6667
     1.0000
     0.3333
>> v2=3*v2
ans =
    -2
     3
     1
>> v3=V(:,3)/min(V(:,3))
ans =
     1
     6
     16
This produces a far more appealing set of eigenpairs:

G.2.1 Eigendecomposition
Suppose that the matrix  has  linearly independent eigenvectors  with their associated eigenvalues . Let  be the matrix whose columns are the eigenvectors of  and let  be the diagonal matrix whose entries are the corresponding eigenvalues (in the same way that MATLAB produces the matrices E and V). In other words, if the matrix  has the eigenpairs

then the matrices  and  are

The matrix  can then be written as  and this is called the Eigendecomposition of . If  is an orthogonal matrix (as MATLAB produces it), then the eigendecomposition of  is .
This particular decomposition of matrices is useful when the matrix  acts as a repeated transformation in a vector space. For example, suppose that the vector  can be found by applying the matrix transformation  on the vector  100 times, this means that . Under usual circumstances, calculating  is incredibly cumbersome but if the eigendecomposition of  is used, then the problem can be reduced into taking the power of a diagonal matrix instead. Indeed,





Therefore, instead of calculating , the matrix  can be calculated instead which will be much easier since  is a diagonal matrix (remember that the power of a diagonal matrix is just the power of its individual terms). If  is orthogonal, then the calculation will be simpler since the matrix  does not need to be inverted, only its transpose taken.
Luckily, MATLAB can perform this decomposition as seen with the eig command.
G.3 Singular Value Decomposition (SVD)
What happens if a square matrix  does not have a full system of eigenvectors? What happens if  is a rectangular matrix? In cases like this, some of the previous decompositions can fail, however there is one more way in which these issues can be resolved and it is by using the Singular Value Decomposition.
For , orthogonal matrices  and  can always be found such that  where  is a diagonal matrix that can be written as  where  whose entries are positive and arranged in descending order, i.e.

Since  is an orthogonal matrix, then  can be written as , this form is called the Singular Value Decomposition (SVD) of . If , this can be illustrated as follows:
[image: figures/SVD.jpg]
The scalar values  are called the Singular Values of , the columns of  are called Left Singular Vectors and the columns of  are called Right Singular Vectors. In a vector sense, the SVD of  given by  can be written as  for all  (where  and  are the columns of  and  respectively).
Properties of the SVD
· The SVD of a matrix  requires  computations (where ).
· The singular values are also useful when calculating the 2-norm of a matrix. Recall that for a matrix , the 2-norm of  can be written in terms of the spectral radius of  as

· where the spectral radius is the largest eigenvalue in absolute value. This can also be written in terms of the singular values as

· where  represents the largest singular value of matrix , which (as per the the way in which the singular values have been arranged) is going to be .
· If , then the eigenvalues of  and  are equal to the squares of the singular values of , indeed, if , then


· since  is a diagonal square matrix.
· Let  and , suppose that the singular values  of  satisfy

· Then  is the Rank of  and  is the -rank of . In fact, if  (the machine precision), then  is called the Numerical Rank of .
· Specific singular vectors span specific subspaces defined in connection to . For instance, if the rank of  is , then  for all . As a consequence, the vectors  span the null-space of , denoted by

· If , then  can be rewritten as

· where  is a rank-1 matrix. It can be seen that

· Since the norm of a matrix is a measure of the “magnitude” of a matrix, it can be said that  is made up of very specific elementary rank-1 matrices, in such a way that  is the most “influential” one.
The singular value decomposition of the matrix  can be done by following these steps:
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	These steps will be applied in parallel to the matrix



1. Calculate the eigenpairs of  and .
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	The eigenpairs of  are

Similarly, the eigenpairs of  are



1. Normalise the eigenvectors by dividing by their 2-norm (this will in fact be the default output from MATLAB’s eig function).
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	The normalised eigenpairs of  are

Similarly, the normalised eigenpairs of  are



1. The matrix of singular values  must be of the same size as , i.e. , where the diagonal terms are the square roots of the eigenvalues of  and  (only the ones that are shared by the two matrix products) arranged in descending order. There will only be  diagonal terms where .
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	The matrix  must be of size . The eigenvalues of  and  are  and . Therefore the matrix  and is given by



1. The matrix  will be the matrix whose columns are the normalised eigenvectors of  arranged in the same order as the values appear in . Note that if  is a normalised eigenvector, then  will also be a normalised eigenvector, therefore this will give rise to  possible cases for  (which will be narrowed down later).
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	The normalised eigenpairs of  are

If  is the first normalised eigenvector and  is the second normalised eigenvector (i.e.  and ), then the matrix  can take one of four possible forms 


1. The matrix  will be the matrix whose columns are the normalised eigenvectors of  arranged in the same order as the values appear in . Just as before, there will technically be  choices of . In this case, one choice of  or  should be fixed.
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	The normalised eigenpairs of  are

Since  has a larger size than , fix  as the matrix whose columns are the normalised eigenvectors of  with no sign changes. This can be accommodated for later on by picking an appropriate choice for . Then



1. The correct choice for the matrix  can be found in one of two ways:
· Trial & Error: Perform the multiplication  for the different choices of  until the correct one is found that gives . Alternatively,  can be fixed and the different choices for  can be investigated.
	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\caution.png]  Trial & Error

	Consider the product  for the different choices of  and see which one gives the matrix :  Therefore the correct choice for  is .


· Pseudo-Inversion: First, consider the expression , multiplying both sides by  on the right gives  (since  is orthogonal meaning that ). Since  is rectangular in general, it does not have an inverse but it does have a Pseudo-Inverse[footnoteRef:463]. Since  is a diagonal matrix, then the pseudo-inverse will also be a diagonal matrix with the diagonal entries being the reciprocals of the singular values. For example, if [463:  For a matrix  with , then the pseudo-inverse is the matrix  such that . Similarly, if  with , the pseudo-inverse is the matrix  such that . Note that if a matrix is square and invertible, then the pseudo-inverse is the inverse.] 


· then the pseudo-inverse of  is

· Similarly if

· then the pseudo-inverse of  is

· Therefore multiplying both sides of  by  on the right will give the desired expression for  which is .
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	The pseudo-inverse of  is  where its diagonal terms are the reciprocals of those in , i.e.

This can be verified by showing that . To find , calculate



1. This finally gives all the matrices required for the SVD of .
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Note that if the SVD of a matrix  is known, it can also be useful in finding pseudo inverse of :  Therefore, the matrix  is the pseudo-inverse of .
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	Find the pseudo-inverse of  where

The SVD of  is

The pseudo-inverse of  is



G.3.0.1 SVD in MATLAB
In MATLAB, the SVD of a matrix can be found with the SVD command.
>> A=[3, 2, 2; 2, 3, -2]
A =
     3   2   2
     2   3  -2
>> [U,S,V]=svd(A)
U =
    -0.7071    0.7071
    -0.7071   -0.7071
S =
     5.0000        0   0
          0   3.0000   0
V =
    -0.7071    0.2357   -0.6667
    -0.7071   -0.2357    0.6667
    -0.0000    0.9428    0.3333
>> U*S*V'-A    % Check is A=USV'
ans =
     1.0e-14 *
          0         0   -0.0222
    -0.0222   -0.1332    0.0666
Notice that sometimes, due to round-off error, U*S*V'-A may not exactly be equal to the zero matrix, but it is still close enough to it.
Appendix H — Data Fitting
H.1 Linear Regression
Linear Regression, or Linear Least Squares (LS), problems originally arose from the need to fit a mathematical model to given observations; typically, to reduce the influence of errors in the observations. It is desirable to use a greater number of measurements than the number of unknown parameters in the model (more equations than unknowns), hence leading to an overdetermined system of equations. In other words, given  and  with , a solution  needs to be found such that  is the ``best’’ approximation to .
For instance, consider a set of  data points (or measurements)  for . The idea behind linear regression is to find a parameter vector  such that the linear function  given by

can approximate the data in the best possible way, by reducing the error between the measurement  and the approximation .
There are  equations represented by the  measurements and  unknowns, which are the terms of . Replacing the measurements into the equation for  gives an overdetermined system

This system can be written in matrix form as  where the elements of  are  and the elements of  are . The ``best’’ way to fit the data can be different depending upon the discipline, but the one of the simplest and most statistically motivated choice is to find a vector  where the square of the distance between the points is reduced as much as possible, i.e. reduce the value of . More formally, this can be written as a minimisation problem to find

and the linear least squares solution is

Sometimes the solution  may not be unique (if the rank of  is less than ), in that case, the solution will be the one with the smallest 2-norm.
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	Hooke’s law states that the length  of an extension of a spring is directly proportional to the force  applied, specifically the extension can be written in terms of the force as  where  is the equilibrium position and  is the spring stiffness, both of which are constants to be determined. Assume that an experiment was conducted and the following data was obtained
	
	1
	2
	3
	4
	5

	
	7.97
	10.2
	14.2
	16.0
	21.2


Therefore, a system of 5 equations in 2 unknowns is  This system can be written in matrix form as

This is an example of ***Inverse Problem} in which the parameters need to be found from the given data.


This minimisation problem can also be solved using the QR decomposition of the matrix . Suppose that the matrix  can be written as  where  is an orthogonal matrix and  is upper triangular, then  Thus the 2-norm of the residual  is  As already noted, in many problems of estimating  parameters in a process with  experimental data points, the number of observations is usually larger than the number of parameters, i.e. . The problem of minimising  may be solved directly as follows: let , so that

This vector can be written as  where

Also note that the vector  can be written as  where  is the first  rows of .
It can be seen that the vectors  and  are orthogonal (since ), therefore
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	Recall that for two vectors  and , the Triangle Inequality states that  and the equality holds when  and  are orthogonal.


Since only the vector  depends on , then in order to minimise , a choice for  is needed such that , meaning that  must be the zero vector (by the rules of norms). Therefore, if , then

which will be the best least squares fit. The residual  will then be equal to  which will be an estimate for how good the best is.
H.2 Lines of Best Fit Using polyfit
Sometimes when experimental data is given, a lines of best fit is needed to see which lines would best fit the data.
Suppose there is data stored in an Excel file called Data.xlsx consisting of two columns that will be labelled x and y and the line of best fit needs to be found. The polyfit function can fit a polynomial function to this data, so if a linear function  needs to be fitted, then p=polyfit(x,y,1) will produce two outputs which are the coefficients  and  respectively. The fitted data can then be plotted using the polyval command. All in all, the function below will read data, plot the raw data and the line of best fit:
function Line_Best_Fit

Data = xlsread('Data.xlsx');

x = Data(:,1);
y = Data(:,2);

clf
hold on
grid on
plot(x,y,'.k')

p = polyfit(x,y,1);

X = linspace(min(x),max(x));

Y = polyval(p,X);

plot(X,Y,'-r')

end
The degree of the polynomial can be changed until the appropriate fitting is found. For this data, it seems that a degree three polynomial would be most appropriate
[image: figures/Best1.jpg]
polyfit(x,y,1) gives 
[image: figures/Best3.jpg]
polyfit(x,y,3) gives 
Appendix I — Eigenvalue Problems
Given a square matrix , the Eigenvalue Problem consists of finding a scalar  and a vector  such that . Any such  is called an Eigenvalue of , while  is the associated Eigenvector. For any matrix  and its eigenvalue , the associated eigenvector is not unique; in fact, any multiple of an eigenvector is still an eigenvector. The eigenvalue/eigenvector pair will be written in Eigenpair notation as 
In order to calculate the eigenvalues of a matrix , consider the polynomial

This will be a polynomial of degree , in fact, any root of the polynomial  is an eigenvalue of  and vice versa. Note that if the highest order coefficient of  is equal to 1, then the polynomial is known as the Characteristic Polynomial of . More generally, for any matrix , the characteristic polynomial is given by . This means that the matrix  of size  must have  eigenvalues (not necessarily unique). Also, if  is a real matrix, the polynomial  will have real coefficients and therefore (by the Fundamental Theorem of Algebra), any complex eigenvalues will appear in complex conjugate pairs. If  is a diagonal or triangular matrix, then the eigenvalues are simply the diagonal terms. After the eigenvalues have been found, the eigenvectors can be calculated by finding a general form of the vector  that satisfies .
If the eigenvector  is known, the eigenvalue  can be recovered by using the Rayleigh Quotient

where  is the Hermitian of  (the complex conjugate transpose).
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	Let

To find the eigenvalues, first consider the polynomial

This polynomial has two roots,  and , hence giving the two eigenvalues of .
To calculate the eigenvectors, consider the eigenvalues separately, then for each eigenvalue, find the vector  that satisfies :
· :

· which gives two equations in two unknowns. However, notice that if the first equation is multiplied by , the second equation will be obtained and therefore, the problem is underdetermined (i.e. one equation in two unknowns). This must always be the case, finding an eigenvector must always result in an underdetermined system. In this case, solving one equation would suffice. Solving the second equation will give  in terms of  as . Therefore the eigenvector  will be

· Now any value of  can be chosen (except 0), and the result will be the eigenvector (this also shows why any multiple of an eigenvector is also an eigenvector), in this case, choose . This gives the first eigenpair

· :

· which gives one equations in two unknowns (since the first equation multiplied by  gives the second). Solving the second equation will give  in terms of  as . Therefore the eigenvector  will be

· For the sake of simplicity, choose  (once again, any non-zero value of  can be chosen). This gives the second eigenpair

Therefore, the matrix has the eigenpairs

This can be verified by showing that  for each eigenpair:




For a matrix , there will always be  eigenvalues (not necessarily distinct). If an eigenvalue is repeated, then the same eigenvalue will have multiple eigenvectors however, it is possible that there might not necessarily be a total of  eigenvectors.
If the matrix  has a complete set of eigenvectors (meaning it has  distinct eigenvectors), then  is said to be Diagonalisable, i.e. there exists a non-singular matrix  whose columns are the eigenvectors of  and a diagonal matrix  whose entries are the eigenvalues of , such that . Note that the order in which the eigenvalues and eigenvectors are placed in columns should be the same in both matrices, in other words, if the matrix  has  eigenpairs given by , then
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	From the example above, the matrices  and  are

The matrix  is diagonalisable since the product  should give , indeed




Note that the existence of a complete system of eigenvectors is helpful in representing a linear transformation (or equivalently a square matrix) of a Euclidean space, such as , as a simple dilation or scaling (i.e. a multiplication by a suitable factor along each coordinate axis) in a suitable system of coordinates, obtained from the original one by a volume-preserving linear map.
If the matrix  is Hermitian, meaning that , (this happens to be the case in many important applications, then the eigenvalue problem is much simpler since the following properties hold:
· All eigenvalues are of  are real (since  is real and all eigenvalues are also real, then all eigenvectors can also be chosen to be real as well, usually by multiplying by an appropriate factor);
· The eigenvectors corresponding to distinct eigenvalues are orthogonal (in fact, the eigenvectors of  can be chosen to be orthonormal);
· The matrix  is always diagonalisable.
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	For example, in the numerical approximation of solutions of boundary value problems for second-order differential equations describing ``conservative” physical processes, i.e. those where there is no dissipation of energy or it is very weak and can be neglected in the first instance.


!!! Let  be an eigenpair of , i.e. , then 
Let  and  be real eigenpairs of  where , i.e.  and . Then 
Let  be the matrix whose columns are  which are the distinct eigenvectors of . Since all the eigenvectors of  are orthogonal, then  for all . This means that  must be an orthogonal matrix, i.e. . Moreover, since  and , then . Therefore the diagonal matrix of eigenvalues  is equal to , more specifically . !!!
Therefore, if a matrix  is real and symmetric, then the eigenvectors  must satisfy

Since  is a set of  linearly independent vectors in , then they must span . Therefore, any vector  with  can be written as a linear combination of , specifically

Therefore
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	There are many applications of the eigenvalue decomposition. A simple one involves the analysis of the Fibonacci numbers. Consider the sequence  which satisfies

It is known that the ratio  as . To show that in a different way using eigenvalue decomposition, consider the vector

This vector can form the recurrence relation

The vector  can then be written in terms of  by repeated substitution:

Therefore  but doing this requires calculating the  power of the matrix  which may be difficult to do.
In order to circumvent calculating  explicitly, consider the eigenpairs of  which are (noting that the eigenvectors of  are orthogonal since  is symmetric)

For the sake of convenience, define , then the eigenpairs can be rewritten as

Since any multiple of an eigenvector is still an eignevctrors, then both eigenvectors can be divided by 2 to give

Let  be the diagonal matrix whose entries are the eigenvalues of  and let  be the matrix whose columns are the eigenvectors, i.e.

Since the eigenvectors are distinct, then  is diagonalisable and can be written as 
This can be verified as follows: 
Now consider matrix :

Since  is a diagonal matrix, then  is also a diagonal matrix whose terms are the squares of , i.e.

Similarly, the higher powers can be done in the same way, therefore

This shows a way in which the matrix powers can be calculated easily. Returning to :


Therefore

Since , then  tends to 0 as  tends to infinity. Therefore, passing the limit as  tends to infinity gives

which is indeed the Golden Ratio.
In performing this procedure, there is one important caveat. The matrix  must be inverted which is simple in the  case but can be computationally expensive for much larger sizes. This, again, can be circumvented by ensuring that  is an orthogonal matrix. Recall that since  is Hermitian, all its eigenvectors, and hence all the columns of , must be orthogonal. In order to make  an orthogonal matrix, the 2-norm of each of its columns must be equal to 1, this can be done by dividing each column by its norm (which is feasible since any multiple of an eigenvector is still an eigenvector). To normalise the vectors, divide them by their 2-norm:

Therefore, after normalisation, eigenpairs will be

This means that the eigenvalue decomposition of  is  where

The most important fact about the matrix  is that it is an orthogonal matrix (meaning all its columns are orthonormal). Therefore

The normalisation procedure is computationally cheap and so is matrix transposition, much more so than matrix inversion. The same matrix power can be used as before:


Therefore

which is the same result as before. The eigenvalue decomposition is useful in this case but for larger matrices, normalisation needs to be done on the eigenvectors in order to avoid inverting matrices.


I.1 Calculating Eigenvalues Using the Power Method
For a diagonalisable matrix , the Power Method is a process used to calculate the smallest and largest eigenvalues (in absolute value) as well as their associated eigenvectors.
Let  be a real diagonalisable matrix, then  where  is the diagonal matrix whose terms are the eigenvalues of  and  is the matrix whose columns are the eigenvectors of  corresponding to .
For now, suppose, suppose that  is real and symmetric, then all the eigenvalues are real and all the eigenvectors are orthogonal, furthermore, the eigenvectors can be chosen to be orthonormal in order to make  an orthogonal matrix. Suppose that the eigenvalues of  are ordered in such a way that
[bookmark: eq-EVal_geq]
in this case, the largest eigenvalue in magnitude is called the Dominant Eigenvalue, which is  in this case.
The Power Method can be summarised as follows: Start with an arbitrary unit vector  that has a non-zero component in the direction of  (i.e.  and ), then starting from :
· Calculate ;
· Update  (meaning that  is still a unit vector);
· Update ;
· Update  and repeat until

· where  is the desired tolerance.
The final value of  will be the eigenvalue of  which has the largest magnitude. This result can be stated more formally as follows:
Theorem I.1 (Power Method) Let  be symmetric with the eigenvalues  and their corresponding eigenvectors  such that

Consider a unit vector  such that  (i.e.  has a component in the direction of ). Then the sequence of vectors

converges to  and

converges to  as  tends to .
Proof. Since  is real and symmetric, then the eigenvectors  can be chosen in such a way that they form an orthonormal basis of , therefore the unit vector  can be written as a linear combination of  as

(The division by  is to ensure that the vector  is a unit vector.)
It can be proven, by induction (as detailed in Appendix ), that

This can be rewritten by isolating the first term in the sum as

Since, by the way the eigenvalues have been arranged, it was assumed that  is the largest eigenvalue in absolute value, then  for all , and therefore  tends to 0 as  tends to . Meaning that as  tends to , then  and hence . Now consider the expression for , passing the limit as  tends to  gives

since  is diagonalisable and .
The power method can be generalised in several ways:
· Inverse Power Method: A possible generalization involves applying the method to the inverse of the matrix  (provided  is non-singular). Since the eigenvalues of  are the reciprocals of those of , the power method in that case gives an approximation to the eigenvalue of  of minimum modulus. This is called the Inverse Power Method which can be formally stated as follows: Given an initial unit vector , let . Then, for , compute

· If  has  linearly independent eigenvectors and the minimum eigenvalue is distinct from all the others, then

· if the eigenvalues are arranged by size as before. This means that  tends to  as  tends to . Effectively, at every step , a linear system of the form  needs to be solved. It is therefore convenient to find the LU decomposition of  then solving the system since this would require solving two triangular systems at each iteration.
· Power Method with Shift: Another generalization of the power method involves approximating the (unknown) eigenvalue of  nearest to a given number  (either real or complex). Let  denote such eigenvalue and define the shifted matrix  whose eigenvalues are . In order to approximate , we can first approximate the eigenvalue of minimum length of , say , by applying the inverse power method to , and then compute . This technique is known as the Power Method with Shift and the number  is called the Shift. Obviously, the inverse power method (without shift) is recovered by simply setting .
· QR Method: All the eigenvalues of  can be calculate at once by using the QR Method which is based on the QR decomposition of . Initialise the iteration with , then for , calculate the QR decomposition of  as  and the next iteration of  will be . It can be proven that  converges to an upper triangular matrix as  tends to . Also

· which means that, for all ,  has same eigenvalues as , meaning that the diagonal entries of  get closer and closer to the required eigenvalues of  as  tends to .
Appendix J — Numerical Solutions of Non-Linear Equations
An important task in numerical analysis is that of finding the root  of a function , i.e. finding the point(s)  such that  (equivalently, in higher-dimensions, the root of a function  is a vector/point  such that ). It is important to realise that for many real-life industrial problems (such as the discretisations of domains for partial differential equations), the system be very large, having a system of  parameters or even higher is not uncommon.
Throughout this section, the exact roots of non-linear functions will be denoted  or . Numerical algorithms for the approximation of  or  are usually iterative and the aim is to generate a sequence of values  or  such that

J.1 One-Dimensional Root-Finding Algorithm
In general, a non-linear function may have several roots and to find a root, an algorithm would require an initial guess  which guides the solution procedure. Finding such a guess is usually difficult and requires some a priori knowledge.
Any method for solving a problem of the form  (or indeed ) should have the following properties:
1. It should be “easy” to use, preferably using only information on , not on its derivatives;
1. It should be fast and be able to find a root to a specified tolerance. More specifically, a sequence  generated by a numerical method is said to converge to  with order  if there exists a constant  such that for a large enough ,

1. It should be reliable, i.e. it should converge to a root close to an initial guess and not diverge or become chaotic. The convergence of iterative methods for root-finding of a non-linear equation depends, in general, on the initial guess . The method is called:
· Locally Convergent if the convergence holds for any starting guess  that belongs to a suitable neighbourhood of the root ;
· Globally Convergent if the convergence holds for any choice of .
There is no ideal method, so more practical algorithms use a combination of methods to find the roots.
J.2 Bisection Method
For :
1. Find an interval  over which  changes sign (i.e.  or ) and set  and define ;
1. The function  must change sign over one of the two intervals  or ;
1. 
11. If  changes sign in the interval , then let  and ;
11. If  changes sign in the interval , then let  and ;
1. Update  and repeat steps 1-3 until  for some tolerance ;
1. The sequence of values  will converge to the exact root 
Advantages of the Bisection method:
· No information about the derivative of  is needed.
· For the right choices of  and , convergence is guaranteed, making it very reliable.
· The more iterations there are, the more accurate the solution will be (not susceptible to numerical errors).
· Iterations are easy to do since they require finding the average only.
Disadvantages of the Bisection method:
· The convergence is very slow, linear at best. This means that if  is an estimate for the exact root  of  and  is the error, then if  is small, the error at the next iteration will be  where  is a constant (usually for the bisection method ).
· Two initial guesses are needed (the values of  and ) in order to specify the bracketing interval, additionally, the function must change sign over this interval.
· The function has to be real and continuous.
· Relies on sign changes, meaning it cannot find repeated roots (like the root of ).
· The method does not work for systems of equations.
· The roots have to be reasonably far away from another another in order to ensure convergence to one root or the other.
J.3 Secant Method
For :
1. Consider the value of  at the two points  and ;
1. Draw a straight line through the two points  and ;
1. This line has a root at

1. Update  and repeat steps 1-3 for the points  and ;
1. Continue to produce a set of approximations  to the root  until either

· where  is some specified tolerance.
Advantages of the Secant method:
· No information about the derivative of  is needed.
· Converges super-linearly fashion, i.e. if , then  where  and  is the golden ratio.
· Requires only one function evaluation per iteration, making it computationally inexpensive.
Disadvantages of the Secant Method:
· It may not always converge if the initial values are not close enough to the root.
· The method may not converge if the root is near a turning point (i.e. if the function is differentiable and there is a point in  such that , then the method may not converge).
· There is no guaranteed error bound.
J.4 Newton-Raphson Method (NR)
For :
1. Evaluate  and  at ;
1. Approximate  by a line of slope  through the point ;
1. This line has a root at

1. Update  and repeat steps 1-3 until either

Advantages of the NR:
· The method is quadratically convergent, i.e. if , then .
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	To show this rate of convergence, consider the expression for the iteration: 
Recall that by Taylor’s Theorem[footnoteRef:504], the term in the square brackets can be written as [504: 
For a function , Taylor’s theorem states that for two points  which are close to one another:
] 

$$\left[ f(x_k)+f'(x_k)(x^{\ast}-x_k)-f(x^{\ast}) \right]=-\frac{1}{2} f"(\xi) (x^\ast - x_k)^2$$
where  is a point between  and . Therefore  Therefore the NR converges quadratically. Obviously, some analysis is needed to make this statement precise, but roughly speaking it shows that provided  and $f"$ are continuous near ,  and  is close enough to , then Newton’s method converges quadratically.


· The method converges locally very quickly.
· Can be generalised to higher dimensions and to sets of equations.
Disadvantages of the NR:
· The function has to be differentiable, meaning it might be difficult to implement if the function was obtained from a set of measurements.
· The initial value has to be reasonably close to the root, otherwise the method will not converge.
· If the gradient at the initial point is 0 or close to 0, then the method will not converge.
Note that the NR is a generalisation of the Secant method. Indeed, the general iteration step for the secant method is

The right hand side can be rearranged to give
[bookmark: eq-sec]
which is a simple approximation to the iteration
[bookmark: eq-new]
which is well-known as NR. The Secant method Equation J.1 is therefore an approximate version of NR which makes use of evaluations of the function  and does not require evaluations of the derivative of . The disadvantage of the Secant method is that it converges more slowly than NR (although both methods are faster than linear).
Python has an in-built root-finding algorithm called Brent’s Method (from Brent, R. P., Algorithms for Minimization Without Derivatives. Englewood Cliffs, NJ: Prentice-Hall, 1973. Ch. 3-4.), also sometimes referred to as the van Wijngaarden-Dekker-Brent Method. This is a more reliable version of the Secant method since it uses a combination of inverse quadratic extrapolation, root bracketing, interval bisection and inverse quadratic interpolation.
J.5 Solving Systems of Non-Linear Equations Numerically
Methods for solving non-linear systems of equations can be derived as generalisations of the scalar case. Consider the system of equations given by  where  is a given vector-valued function of the  variables .
For example, if the function  is given by

then the root-finding algorithm would need to find  and  such that

In this case, the first equation is a unit circle and the second is a straight line. Therefore the solution is where the circle and the line intersect, and it can easily be seen that the solutions are .
To write down NR for a system , first write down the “obvious” generalisation of the scalar case Equation J.2, i.e. 
[bookmark: eq-newsys]
where the role of the reciprocal of the derivative of  is replaced by the inverse of the Jacobian matrix  which is given by

(where  is the  component of  for ). More generally for a function , the Jacobian is given by

where  is the  component of  for . This can be written in element form as

More realistically, Equation Equation J.3 should be written as  where the Newton correction  is a vector that can be computed by solving the system of  linear equations . This means that each step of NR requires the solution of an -dimensional linear system where the matrix  and right hand side  have to be recomputed at every step (note that the inverse of the Jacobian is not normally computed since it is not needed, all that is needed is the solution of a single linear system with coefficient matrix , which can be done without actually computing the inverse of ).
J.6 Minimisation Problems
Closely related to the idea of root-finding is the question of minimising a function . Such a problem can take one of two forms:
1. Unconstrained optimisation which minimises ;
1. Constrained optimisation minimises  with an additional condition. For example, the value of  needs to be found such that the function  attains its minimum provided that  or .
An example of a constrained minimisation problem could be to minimise the cost of producing a product in a factory subject to keeping the pollution caused in this production as low as possible.
There are two kinds of minimum points, global} and local}: Given a function 
· A global minimum is a point  such that  for all , i.e.

· A local minimum is a point  such that  for all  in a small neighbourhood of . A necessary condition for a local minimum (for a sufficiently smooth function) is that  where  is the gradient operator given by

· Many algorithms are available for finding local minima but the global minimum is much more difficult since  must be smaller than all  in the entire domain of . Finding the global minimum of a general function  is not a simple task. Only recently have effective algorithms developed, these include Simulated Annealing and Genetic Algorithms. These algorithms are used mostly in bioinformatic industries for tasks such as protein design, and by the power generating industry to schedule the on-off times of its power stations.
J.7 Method of Steepest Descent
The simplest way to find a local minimum is the Method of Steepest Decent. This method starts from the realisation that for a function  and a point , the function  decreases most rapidly in the direction .
	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\note.png]  Note

	Indeed, consider the unit direction  where

By using the chain rule, this implies that

Therefore, this implies that  should be “as negative as possible”. By the Cauchy-Schwarz inequality[footnoteRef:513], [513: 
Recall that for vectors  and , the Cauchy-Schwarz inequality states that

where in this case, the inner product is simply the dot product. Note that equality hold only when  and  are linearly dependent.] 


In order for the equality to hold,  should be a scalar multiple of , i.e.  for some . In this case, since  is a unit vector and it is intended to minimise, then

meaning that the direction of steepest descent is . Note that in order to maximise the function , the direction of steepest ascen} is



The method of steepest descent can be described as follows: For a starting point  and :
· Let ;
· Find the expression for  in terms of ;
· Find the value of  which minimises ;
· Update  and repeat Steps 1-3 until  cannot be reduced further. One possible stopping criterion would be

· for some tolerance .
Note that Step 3 is a one-dimensional minimisation problem. It involves minimising a function of a single variable . This is conceptually an easy thing to do; just go downhill in one direction until it is not possible to go any further. There are many methods of doing this including the Bisection and the (faster) Golden Search Method.
The method of steepest descent is conceptually easy to understand and implement, however, the algorithm needs to calculate  at every step. The method can also be slow since the sequence of search directions are are always orthogonal to one another, meaning that the algorithm can often times make repeated searches in every direction since it will follow a perpendicular zigzag pattern.
	[image: C:\Users\walee\AppData\Local\Programs\Quarto\share\formats\docx\caution.png]  Caution

	Consider the function  where

The method of steepest descent is shown below with four different calculations from different starting points.
[image: figures/Contour.jpg] [image: figures/sd.jpg]


J.8 Variants of the Newton-Raphson Method
A special case of the NR for a system of equations would be to take the vector-valued function  to be equal to gradient of a function , i.e. . This means that the NR can be used in order to implement the steepest descent method. In this case, if , then the Jacobian will in fact become the Hessian matrix. For instance, if , then

In general, the elements of the Hessian matrix/Jacobian (which is symmetric) are given by

Therefore, NR for  is

where  is the Hessian matrix. Many methods attempt to approximate this by using the iteration

where  is a stepsize,  is the approximate search direction (usually ) and  is the inverse of the Hessian matrix, or at least an approximation to the Hessian. Note that the steepest descent method is one example of this general form where  is the result of a line search,  and  is the identity.
J.9 Applications of Minimisation Methods
· The minimisation of large systems: An interesting example of this arises in elliptic partial differential equations (for example problems in elasticity or electrostatics), where the solution minimises a function related to the energy of the system. Complicated engineering structures are designed by finding the local minima of a possible configuration as this represents a stable operating structure.
· Solving symmetric, positive definite linear systems: For the linear system given by  where  is a symmetric positive definite matrix, an approach to do this is by minimising the function

· This is the basis of the celebrated Conjugate Gradient method. There are also variants for non-symmetric matrices.
· Solving non-linear systems: For a non-linear system of the form

· a solution  would need to be found by minimising the function

· or more generally

· where  are suitably chosen weights. However, in order to solving the system  requires finding the global minimum of  and unconstrained minimisation algorithms will only find a local minimum. If the initial guess for the solution is good enough, then the “local” minimum of  near the initial guess will also be a “global” minimum.
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