

 Numerical Solutions of Differential Equations

 Waleed A A Ali

Introduction

This unit will cover some of the numerical techniques used for solving differential equations and using MATLAB to implement these numerical methods.

Material

All the material will be posted on the Microsoft Teams Page for the unit. Note that is document is regularly being updated so if you find any mistakes or parts missing then do let me know.

Unit Outline

All lectures will be held online on Fridays, 10.00 - 12.00 on Microsoft Teams, to which you should have received a link. The details for the link are as follows:

Meeting ID: 358 213 646 365 0

Passcode: Us2N6hB2

	Lecture
	Date
	Topic

	1
	17/10
	
	Introduction to NSDE unit for TCC

	Aims & Objectives of the unit

	Floating point arithmetic

	Computational complexity

	Code timing and profiling

	Applications for solving linear systems

	Computational stability

	Solving linear systems using direct methods

	Direct substitution

	Forward/Backward substitution

	2
	24/10
	
	Solving linear systems using direct methods

	Tridiagonal matrix algorithm

	Cramer’s Rule

	Solving linear systems using iterative methods

	3
	31/10
	
	Euler method for IVPs

	4
	07/11
	
	Modified Euler method

	Runge-Kutta method

	Backwards Euler method

	solving stiff IVPs

	5
	14/11
	
	Solving BVPs using the finite difference method

	6
	21/11
	
	Solving MVPs and symmetric BVPs

	7
	28/11
	
	Method of lines

	Apply MoL for diffusion and/or convection

	8
	05/12
	Stability of the method of lines

Aims & Objectives

The aim for this unit is to be able to understand and derive different numerical techniques for solving differential equations and being able to implement them on MATLAB.

Intended Learning Outcomes:

	Understand the internal working mechanisms of MATLAB,

	Solve linear systems using direct and iterative methods,

	Use different differencing schemes to assess their ability to solve ODEs and PDEs,

	Assess the stability of different numerical methods.

Questions

For any questions, queries or issues that you see in the material, do not hesitate to contact me on w.a.a.ali@bath.ac.uk.

1 Internal Workings of MATLAB

1.1 Floating-Point Arithmetic

Since computers have limited resources, only a finite strict subset ℱ\mathcal{F} of the real numbers can be represented. This set of possible stored values is known as Floating-Point Numbers and these are characterised by properties that are different from those in ℝ\mathbb{R}, since any real number xx is – in principle – truncated by the computer, giving rise to a new number denoted by fl(x)fl(x), which does not necessarily coincide with the original number xx.

A computer represents a real number xx as a floating-point number in ℱ\mathcal{F} as x=(−1)s×(a1a2…at)×βE(1.1) x = (-1)^s \times (a_1a_2\dots a_t) \times \beta^E \qquad(1.1) where:

	s∈{0,1}s\in\{0,1\} determines the sign of the number;

	β≥2\beta\geq 2 is the base;

	E∈ℤE\in\mathbb{Z} is the exponent.

	a1a2…ata_1a_2\dots a_t is the mantissa (or significand). The mantissa has length tt which is the maximum number of digits that can be stored. Each term in the mantissa must satisfy 0≤ai≤β−10\leq a_i\leq\beta-1 for all i=1,2,…,ti=1,2,\dots,t and a1≠0a_1 \neq 0 (to ensure that the same number cannot have different representations). The digits a1a2…apa_1a_2\dots a_p (with p≤tp\leq t) are often called the pp first significant digits of xx.

The set ℱ\mathcal{F} is therefore fully characterised by the basis β\beta, the number of significant digits tt and the range of values that EE can take.

A computer typically uses binary representation, meaning that the base is β=2\beta=2 with the available digits {0,1}\{0,1\} (also known as bits) and each digit is the coefficient of a power of 2. Available platforms (like MATLAB and Python) typically use the IEEE754 double precision format for ℱ\mathcal{F}, which uses 64-bits as follows:

	1 bit for ss (either 0 or 1) to determine the sign;

	11 bits for EE (which can be 0,1,2,…,100,1,2,\dots,10);

	52 bits for a2a3…a53a_2 a_3 \dots a_{53} (since a1≠0a_1\neq 0, it has to be equal to 1).

For 32-bit storage, the exponent is at most 7 and the mantissa has 23 digits. Note that 0 does not belong to ℱ\mathcal{F} since it cannot be represented in the form shown in Equation 1.1 and it is therefore handled separately.

The smallest and the largest positive real numbers that can be written in floating points can be found by using the realmin and realmax commands. A positive number smaller than xminx_{\min} yields underflow and a positive number greater than xmaxx_{\max} yields overflow. The elements in ℱ\mathcal{F} are more dense near xminx_{\min}, and less dense while approaching xmaxx_{\max}. However, the relative distance is small in both cases. Note that any number bigger than realmax or smaller than -realmax will be assigned the values ∞\infty and −∞-\infty respectively.

>> realmin
ans =
 2.2251e-308
>> realmax
ans =
 1.7977e308

If a non-zero real number xx is replaced by its floating-point representation fl(x)∈ℱfl(x)\in\mathcal{F}, then there will inevitably be a round-off error, especially if the number is either too large or too small relative to the other numbers involved. For a floating point number xx, there is a distance εx\varepsilon_x where any value in the interval (x−εx,x+εx)(x-\varepsilon_x,x+\varepsilon_x) cannot be written as a floating point and will therefore be assigned the value xx. This interval width is called the Machine Epsilon and can be found for any floating point number xx by using the command eps(x).

>> ep1=eps(1)
ep1 =
 2.2204e-16
>> 1-(1+ep1/2)
ans =
 0

The larger the floating number is, the larger the machine epsilon will be, meaning that larger numbers will have much greater tolerances of error. The smaller the number is, the larger the relative size will be, rendering the numbers insginifciant overall.

>> eps(2^100)
ans =
 2.8147e+14
>> eps(2^-50)
ans =
 1.9722e-31

Since ℱ\mathcal{F} is a strict subset of ℝ\mathbb{R}, elementary algebraic operations on floating-point numbers do not inherit all the properties of analogous operations on ℝ\mathbb{R}. Precisely, commutativity still holds for addition and multiplication, i.e. fl(x+y)=fl(y+x)fl(x + y) = fl(y + x) and fl(xy)=fl(yx)fl(xy) = fl(yx). Associativity is violated whenever a situation of overflow or underflow occurs or, similarly, whenever two numbers with opposite signs but similar absolute values are added, the result may be quite inexact and the situation is referred to as loss of significant digits.

Properly handling floating point computations can be tricky sometimes and, if not correctly done, may have serious consequences. There are many webpages (and books) collecting examples of different disasters caused by a poor handling of computer arithmetic or a bad algorithmic implementation. See, for instance, Software Bugs and the Patriot Missile Fail among others.

1.2 Computational Complexity

The Computational Complexity of an algorithm can be defined as the relationship between the size of the input and the difficulty of running the algorithm to completion. The size (or at least, an attribute of the size) of the input is usually denoted nn, for instance, for a 1-D array, nn can be its length.

The difficulty of a problem can be measured in several ways. One suitable way to describe the difficulty of the problem is to count the number of Floating-Point Operations, such as additions, subtractions, multiplications, divisions and assignments. Floating-point operations, also called flops, usually measures the speed of a computer, measured as the maximum number of floating-point operations which the computer can execute in one second. Although each basic operation takes a different amount of time, the number of basic operations needed to complete a function is sufficiently related to the running time to be useful, and it is usually easy to count and less dependent on the specific machine (hardware) that is used to perform the computations.

A common notation for complexity is the Big-O notation (denoted 𝒪\mathcal{O}), which establishes the relationship in the growth of the number of basic operations with respect to the size of the input as the input size becomes very large. In general, the basic operations grow in direct response to the increase in the size nn of the input and, as nn gets large, the highest power dominates. Therefore, only the highest power term is included in Big-O notation; moreover, coefficients are not required to characterise growth and are usually dropped (although this will also depend on the precision of the estimates).

Formally, a function ff behaves as f(x)∼𝒪(p(x))f(x) \sim \mathcal{O}\left(p(x)\right) as xx tends to infinity if limx→∞f(x)p(x)=constant.\lim_{x \to \infty}\frac{f(x)}{p(x)}=\text{constant}. For example, the polynomial f(x)=x4+2x2+x+5f(x)=x^4+2x^2+x+5 behaves like x4x^4 as xx tends to infinity since this term will be the fastest to grow. This can be written as f(x)∼𝒪(x4)f(x) \sim \mathcal{O}\left(x^4\right) as x→∞x \to \infty.

Couting flops

Let f:ℕ→ℕf:\mathbb{N} \to \mathbb{N} be given by f(n)=(∑j=1nj)2f(n)=\left(\sum\limits_{j=1}^{n} j\right)^2

This function ff can be coded as fun in MATLAB as follows:

function [out]=fun(n)

out = 0;

for i=1:1:n

 for j=1:1:n

 out = out + i*j;

 end

end

end

For example, f(3)f(3) should perform the overall calculation (1×1)+(1×2)+(1×3)+(2×1)+(2×2)+(2×3)+(3×1)+(3×2)+(3×3),(1 \times 1)+(1 \times 2)+(1 \times 3)+(2 \times 1)+(2 \times 2) +(2 \times 3) +(3 \times 1)+(3 \times 2)+(3 \times 3), so fun(3) should output out=36.

This code requires the following operations:

	1+n+2n21+n+2n^2 assignments:

	1: out=0;

	nn: i=1:1:n;

	n2n^2: for every i, j=1:1:n;

	n2n^2: for every i, out=out+i*j;

	n2n^2 multiplications: i*j;

	n2n^2 additions: out=out+i*j.

Therefore, for any nn, this code will need 4n2+n+14n^2+n+1 flops, meaning that the computational complexity is 𝒪(n2)\mathcal{O}\left(n^2\right), i.e. the code runs in polynomial time. It is not uncommon to find algorithms that run in exponential time 𝒪(cn)\mathcal{O}\left(c^n\right), like some recursive algorithms, or in logarithmic time 𝒪(logn)\mathcal{O}\left(\log n\right).

For more complicated codes, it is important to see where most of the time is spent in a code and how execution can be improved. A rudimentary way of timing can be done by the toc toc:

>> tic;
>> Run code or code block
>> toc;

This will produce a simple time in seconds that MATLAB took from tic until toc, so if toc has not been types, then the timer will continue.

For more advanced analysis, MATLAB uses a Code Profiler to analyse code which includes run times for each iteration, times a code has been called and a lot more.

Iterative vs Recursive

Suppose that a code needs to be written that finds the Nth{N}^{\mathrm{th}} Fibonacci number starting the sequence with (1,1). This can be done in two ways:

	Iteratively by having a self-contained code that generates all the terms of the sequence up to NN and displays the last term.

function [F]=Fib_Iter(N)

S=ones(1,N);

for n=3:1:N

 S(n)=S(n-1)+S(n-2);

end

F=S(end);

end

	Recursively by have a self-referential code that keeps referring back to itself to generate the last term in the sequence from the previous terms.

function [F]=Fib_Rec(N)

if N<3

 F=1;

else

 F=Fib_Rec(N-1)+Fib_Rec(N-2);

end

end

When running these codes for an input of N=10N=10, the times are very short, of the order of 10−510^{-5} seconds but as NN gets larger, the recursive code starts to take much longer. Suppose the code efficiency is to be analysed for the input N=40N=40, this can be done using the profiler as follows:

>> profile on
>> Fib_Iter(40);
>> profile off
>> profile viewer

This will give a full breakdown of how many times every line was run and how much time it took. For Fib_Iter(40), a total of 38 operations were performed, each taking such a short amount of time that it registers as “0 seconds”.

[image:]

However, performing the profiler for Fib_Rec(40) gives a dramatically different answer with the code taking nearly 247 seconds and having to call itself more than 102 million times.

[image:]

This is why it is important to profile longer codes to see which parts take the longest time and which loops are the most time consuming.

Good Practice

To reduce computational time in general, avoid self-referential codes because these tend to grow in usage exponentially. Another important practice is to use in-built MATLAB syntax, like using sum to add elements in a vector rather than manually hard coding it. This is where being familiar with a lot of the MATLAB syntax is important; MATLAB has a lot of built-in codes and syntaxes which can save a lot of time.

2 Solving Linear Systems of Equations

 ch008.xhtml

3 The Euler Method

Consider the first order ordinary differential equation (ODE) dydt=f(t,y),t∈[t0,tf]\frac{\mathrm{d} y}{\mathrm{d} t}=f(t,y), \quad t \in [t_0,t_f] where ff is a known function, t0t_0 is an initial time and tft_f is the final time. An initial condition can be prescribed to this differential equation which will assign a “starting value” for the unknown function yy at the starting time as y(t0)=y0y(t_0)=y_0. The combination of the first order ODE and the initial value gives the Initial Value Problem (or IVP) dydt=f(t,y)withy(t0)=y0,t∈[t0,tf].\frac{\mathrm{d} y}{\mathrm{d} t}=f(t,y) \quad \text{with} \quad y(t_0)=y_0, \quad t \in [t_0,t_f].

There are many analytic methods for solving first order ordinary differential equations, but they all hold restrictions, like linearity or homogeneity. This chapter will develop the simplest numerical technique for solving any first order ordinary differential equation, this method is called the Euler Method.

Consider the following first order IVP dydt=f(t,y),withy(t0)=y0t∈[t0,tf].\frac{\mathrm{d} y}{\mathrm{d} t}=f(t,y), \quad \text{with} \quad y(t_0)=y_0 \quad t \in [t_0,t_f]. The function ff is known and in most cases, is assumed to be “well-behaved” (does not have discontinuities or sharp corners). The term y0y_0 is known as the Initial Value of the function yy at the starting time t0t_0. Solving this initial value problem is essentially finding an unknown curve y(t)y(t) that starts at the point (t0,y0)(t_0, y_0) and ends at time tft_f.

The first step in the Euler method (as is the case in most numerical techniques) is to discretise the domain. This changes the domain from the continuous interval [t0,tf][t_0,t_f] to NN subintervals, each with constant1 width hh (sometimes also denoted δt\delta t), which is known as the Stepsize. The discretised interval will be the set of points {t0,t0+h,t0+2h,…,t0+Nh}.\left\{ t_0, t_0+h, t_0+2h, \dots, t_0+Nh \right\}. [image:]

The aim of the numerical procedure is to start from the starting point (t0,y0)(t_0,y_0) and progressively find consequent points until the final time tft_f is reached.

The Euler method uses the gradient, namely dydt\frac{\mathrm{d} y}{\mathrm{d} t}, at the starting point (t0,y0)(t_0, y_0) in order to find the value of yy at the subsequent point which will be labelled (t1,y1)(t_1, y_1). This will, in turn, determine the new gradient at (t1,y1)(t_1,y_1) and this process is then continued until the final time is reached. The smaller the value of hh is, the more points there will be between t0t_0 and tft_f resulting in a more accurate final solution to the initial value problem.

The accuracy of the Euler method is usually characterised by how small hh is or how large NN is. Since the stepsize may not always give an appropriate subdivision (like dividing the interval [0,1][0,1] into subintervals of width 0.40.4), then the number of subdivisions NN can be used to find an appropriate hh by using h=tf−t0N.h=\frac{t_f-t_0}{N}.

3.1 Steps of the Euler Method

Consider the IVP dydt=f(t,y),withy(t0)=y0t∈[t0,tf].\frac{\mathrm{d} y}{\mathrm{d} t}=f(t,y), \quad \text{with} \quad y(t_0)=y_0 \quad t \in [t_0,t_f].

Parallel Example

The steps of the Euler method will be explained theoretically and applied to this IVP in parallel to demonstrate the steps: dydt=6−2ywithy(0)=0,t∈[0,2].\frac{\mathrm{d} y}{\mathrm{d} t}=6-2y \quad \text{with} \quad y(0)=0, \quad t \in [0,2]. In this case, the function on the RHS is f(t,y)=6−2yf(t,y)=6-2y. Note that this IVP has the exact solution y(t)=3−3e−2t.y(t)=3-3\mathrm{e}^{-2t}.

	Discretise the interval [t0,tf][t_0,t_f] with stepsize hh to form the set of points {t0,t0+h,t0+2h,…,t0+Nh}.\left\{ t_0, t_0+h, t_0+2h, \dots, t_0+Nh \right\}.

Inverval Discretisation

Suppose that the interval [0,2][0,2] is to be split into 55 subintervals, then N=5N=5 and h=tf−t0N=2−05=0.4.h=\frac{t_f-t_0}{N}=\frac{2-0}{5}=0.4. Therefore the discretised points are {0.0,0.4,0.8,1.2,1.6,2.0}.\left\{ 0.0, 0.4, 0.8, 1.2, 1.6, 2.0 \right\}. Note that NN denotes the number of subintervals and not the number of points, that would be N+1N+1 points since the starting point is 00.

	At the starting point (t0,y0)(t_0,y_0), the gradient is known since y′(t0)=f(t0,y0).y'(t_0)=f(t_0,y_0).

Gradient at (𝐭𝟎,𝐲𝟎)\boldsymbol{(t_0,y_0)}

At the initial point, y′(t0)=f(t0,y0)⟹y′(0)=f(0,0)=6−2(0)=6.y'(t_0)=f(t_0,y_0) \quad \implies \quad y'(0)=f(0,0)=6-2(0)=6. So the starting gradient is 66.

	The next step is to find the the value of yy at the subsequent time t1=t0+ht_1=t_0+h. For this purpose, consider the Taylor series expansion of yy at t=t1t=t_1, y(t1)=y(t0+h)=y(t0)+hy′(t0)+h22!y″(t0)+𝒪(h3).y(t_1)=y(t_0+h)=y(t_0)+h y'(t_0)+ \frac{h^2}{2!} y''(t_0)+\mathcal{O}\left(h^3\right).

Note

The term 𝒪(h3)\mathcal{O}\left(h^3\right) simply means that the terms after this point have a common factor of h3h^3 and these terms are regarded as higher order terms and can be neglected since they are far smaller than the first terms provided hh is small.

Since hh is assumed to be sufficiently small, then all terms higher order terms, in this case h2h^2 or higher, can be neglected (i.e. hn≈0h^n \approx 0 for n≥2n \geq 2). Therefore y(t1)≈y(t0)+hy′(t0).y(t_1) \approx y(t_0)+h y'(t_0).

Let Y1Y_1 denote the approximated value of the solution at the point t1t_1, i.e. Y1≈y(t1)Y_1 \approx y(t_1), so in this case, Y1=y0+hy′(t0).(3.1)Y_1=y_0+h y'(t_0). \qquad(3.1) This determines the value of Y1Y_1 which is an approximation to y(t1)y(t_1).

Calcuating 𝐘𝟏\boldsymbol{Y_1}

The point Y1Y_1 can be calculated as follows: Y1=y0+hy′(t0)=0+(0.4)(6)=2.4.Y_1=y_0+hy'(t_0)=0+(0.4)(6)=2.4. This means that the next point is (t1,Y1)=(0.4,2.4)(t_1,Y_1)=(0.4,2.4).

	This iteration can be continued to find Yn+1Y_{n+1} (which is the approximate value of y(tn+1)y(t_{n+1})) for all n=1,2,…,N−1n=1, 2, \dots, N-1 Yn+1=Yn+hy′(tn)wherey′(tn)=f(tn,Yn).Y_{n+1}=Y_n+h y'(t_n) \quad \text{where} \quad y'(t_n)=f(t_n,Y_n).

Calculating 𝐘𝐧\boldsymbol{Y_n}

The values of Y2,Y3,Y4Y_2, Y_3, Y_4 and Y5Y_5 can be calculated as follows: Y2:y′(t1)=f(t1,Y1)⟹y′(0.4)=f(0.4,2.4)=6−2(2.4)=1.2Y_2: \quad y'(t_1)=f(t_1,Y_1) \quad \implies \quad y'(0.4)=f(0.4,2.4)=6-2(2.4)=1.2 ⟹Y2=Y1+hy′(t1)=2.4+(0.4)(1.2)=2.88\implies \quad Y_2=Y_1+hy'(t_1)=2.4+(0.4)(1.2)=2.88

Y3:y′(t2)=f(t2,Y2)⟹y′(0.8)=f(0.8,2.88)=6−2(2.88)=0.24Y_3: \quad y'(t_2)=f(t_2,Y_2) \quad \implies \quad y'(0.8)=f(0.8,2.88)=6-2(2.88)=0.24 ⟹Y3=Y2+hy′(t2)=2.88+(0.4)(0.24)=2.976\implies \quad Y_3=Y_2+hy'(t_2)=2.88+(0.4)(0.24)=2.976

Y4:y′(t3)=f(t3,Y3)⟹y′(1.2)=f(1.2,2.976)=6−2(2.976)=0.048Y_4: \quad y'(t_3)=f(t_3,Y_3) \quad \implies \quad y'(1.2)=f(1.2,2.976)=6-2(2.976)=0.048 ⟹Y4=Y3+hy′(t3)=2.976+(0.4)(0.048)=2.9952\implies \quad Y_4=Y_3+hy'(t_3)=2.976+(0.4)(0.048)=2.9952

Y5:y′(t4)=f(t4,Y4)⟹y′(1.6)=f(1.6,2.9952)=6−2(2.9952)=0.0096Y_5: \quad y'(t_4)=f(t_4,Y_4) \quad \implies \quad y'(1.6)=f(1.6,2.9952)=6-2(2.9952)=0.0096 ⟹Y5=Y4+hy′(t4)=2.9952+(0.4)(0.0096)=2.99904\implies \quad Y_5=Y_4+hy'(t_4)=2.9952+(0.4)(0.0096)=2.99904

	The solution to the IVP can now be approximated by the function that passes through the points (t0,Y0),(t1,Y1),…(tN,YN).(t_0,Y_0), \quad (t_1, Y_1), \quad \dots \quad (t_N,Y_N).

Solution to the IVP

The approximate solution to the IVP dydt=6−2ywithy(0)=0,t∈[0,2]\frac{\mathrm{d} y}{\mathrm{d} t}=6-2y \quad \text{with} \quad y(0)=0, \quad t \in [0,2] is the function that passes through the points: (0,0),(0.4,2.4),(0.8,2.88),(1.2,2.976),(1.6,2.9952),(2,2.99904).(0,0), \quad (0.4,2.4), \quad (0.8,2.88), \quad (1.2,2.976), \quad (1.6,2.9952), \quad (2,2.99904). This is a good approximation since the exact locations, as per the exact solution are, (to 4 decimal places): (0,0),(0.4,1.6520),(0.8,2.3943),(1.2,2.7278),(1.6,2.8777),(2,2.9451)(0,0), \quad (0.4,1.6520), \quad (0.8,2.3943), \quad (1.2,2.7278), \quad (1.6,2.8777), \quad (2,2.9451) which is not bad for such a coarse interval breakdown.

The Euler method needs NN steps to complete and every step n∈{1,2,…,N}n \in \left\{ 1,2,\dots,N \right\} requires finding y′(tn−1)=f(tn−1,yn−1)y'(t_{n-1})=f(t_{n-1},y_{n-1}) and Yn=Yn−1+hy′(tn−1)Y_n=Y_{n-1}+h y'(t_{n-1}). Of course, the larger NN is, the smaller hh becomes, meaning that more steps will be required but the solution will be closer to the exact solution

Notice that the terms on the right hand side of Equation 3.1 are all known and for this reason, the Euler method is known as an Explicit Method.

3.2 Accuracy

Consider the Taylor series expansion for the function yy at the point t1=t0+ht_1=t_0+h y(t1)=y(t0+h)=y(t0)+hy′(t0)+h22!y″(t0)+𝒪(h3).y(t_1)=y(t_0+h)=y(t_0)+h y'(t_0)+ \frac{h^2}{2!} y''(t_0)+\mathcal{O}\left(h^3\right). Using Taylor’s Theorem2, this can be written as y(t1)=y(t0+h)=y(t0)+hy′(t0)+h22!y″(τ1)y(t_1)=y(t_0+h)=y(t_0)+h y'(t_0)+ \frac{h^2}{2!} y''(\tau_1) for some point τ1\tau_1 between t0t_0 and t1t_1. The Euler method determines the approximation Y1Y_1 to the function yy at the point t1t_1, particularly, Y1=y(t0)+hy′(t0)≈y(t1).Y_1=y(t_0)+hy'(t_0) \approx y(t_1).

The Local Truncation Error at the first step, denoted e1e_1, is defined as the absolute difference between the exact and approximated values at the first step, and this is given by e1=|y(t1)−Y1|=h22!|y″(τ1)|.e_1=\left| y(t_1)-Y_1 \right|=\frac{h^2}{2!}\left| y''(\tau_1) \right|.

This can be done for all the locations to give a list of local truncation errors e1,e2,e3,…,eNe_1, e_2, e_3,\dots,e_N. Note that technically, these errors are hypothetical since the exact solution yy, and thus y(tn)y(t_n), are not known but these are put as placeholders to establish the full accuracy of the method. In this case, the local truncation error ee is said to be of second order since e=𝒪(h2)e=\mathcal{O}\left(h^2\right).

As the iteration progresses, the errors will accumulate to result in a Global Integration Error denoted EE. In this case, the global integration error is E=|y(tf)−YN|.E=|y(t_f)-Y_N|. The global integration error has to be at most the accumulation of all the local truncation errors, namely E=|y(tf)−YN|≤∑n=1Nen⏟sum of alllocal truncationerrors=∑n=1Nh22!|y″(τn)|=h2∑n=1N12|y″(τn)|.E=|y(t_f)-Y_N| \leq \underbrace{\sum_{n=1}^{N}{e_n}}_{\substack{\text{sum of all} \\ \text{local truncation} \\ \text{errors}}}= \sum_{n=1}^{N}{\frac{h^2}{2!}\left| y''(\tau_n) \right|}=h^2\sum_{n=1}^{N}{\frac{1}{2}\left| y''(\tau_n) \right|}.

⟹E≤h2∑n=1N12|y″(τn)|(3.2)\implies \quad E \leq h^2\sum_{n=1}^{N}{\frac{1}{2}\left| y''(\tau_n) \right|} \qquad(3.2)

A bound for the sum needs to be found in order bound the global integration error. To this end, consider the set of the second derivatives in the sum above, i.e. {12|y″(τ1)|,12|y″(τ2)|,…,12|y″(τn)|}.\left\{ \frac{1}{2}\left| y''(\tau_1) \right|, \frac{1}{2}\left| y''(\tau_2) \right|, \dots, \frac{1}{2}\left| y''(\tau_n) \right| \right\}.

Since all these terms take a finite value, then at least one of these terms must be larger than all the rest, this is denoted MM and can be written as M=max{12|y″(τ1)|,12|y″(τ2)|,…,12|y″(τn)|}.M=\max\left\{ \frac{1}{2}\left| y''(\tau_1) \right|, \frac{1}{2}\left| y''(\tau_2) \right|, \dots, \frac{1}{2}\left| y''(\tau_n) \right| \right\}.

This can also be expressed differently as M=maxτ∈[t0,tf]{12|y″(τ)|}.M=\max_{\tau \in [t_0, t_f]}\left\{ \frac{1}{2}\left| y''(\tau) \right| \right\}. Therefore, since 12|y″(τn)|≤Mfor alln=1,2,…,N\frac{1}{2}\left| y''(\tau_n) \right| \leq M \quad \text{for all} \quad n=1,2,\dots,N then ∑n=1N12|y″(τn)|≤∑n=1NM=NM.\sum_{n=1}^{N}{\frac{1}{2}\left| y''(\tau_n) \right|} \leq \sum_{n=1}^{N}{M}=NM. Thus, returning back to the expression for EE in Equation 3.2 E≤h2∑n=1N12|y″(τn)|≤NMh2=Mh⋅(Nh)=Mh(tf−t0)=𝒪(h).E \leq h^2\sum_{n=1}^{N}{\frac{1}{2}\left| y''(\tau_n) \right|} \leq NMh^2=Mh \cdot (Nh)=Mh(t_f-t_0)=\mathcal{O}\left(h\right). Hence, the global integration error E=𝒪(h)E=\mathcal{O}\left(h\right), this means that the Euler method is a First Order Method. This means that both hh and the global integration error behave linearly to one another, so if hh is halved, then the global integration error is halved as well.

In conclusion, the local truncation error of the Euler method is e=𝒪(h2)e=\mathcal{O}\left(h^2\right) while the global integration error E=𝒪(h)E=\mathcal{O}\left(h\right) when hh is small.

Different Stepsizes

Returning to the IVP dydt=6−2ywithy(0)=0,t∈[0,2].\frac{\mathrm{d} y}{\mathrm{d} t}=6-2y \quad \text{with} \quad y(0)=0, \quad t \in [0,2].

The Euler method can be repeated for different values of hh and these can be seen in the figure below.

[image:]

The table below shows the global integration error for the different values of hh:

	hh
	EE

	0.4
	0.05399

	0.2
	0.03681

	0.1
	0.02036

	0.05
	0.01060

When the value of hh is halved, the global integration error is approximately halved as well.

3.3 Set of IVPs

So far, the Euler Method has been used to solve a single IVP, however this can be extended to solving a set of linear IVPs.

Consider the set of KK linear IVPs defined on the interval [t0,tf][t_0,t_f]: dy1dt=a11y1+a12y2+…+a1KyK+b1,y1(t0)=ỹ1dy2dt=a21y1+a22y2+…+a2KyK+b2,y2(t0)=ỹ2⋮dyKdt=aK1y1+aK2y2+…+aKKyK+bK,yK(t0)=ỹK\begin{align*}
& \frac{\mathrm{d} y_1}{\mathrm{d} t} = a_{11} y_1 + a_{12} y_2 + \dots + a_{1K} y_K + b_1, & y_1(t_0)=\tilde{y}_1 \\
& \frac{\mathrm{d} y_2}{\mathrm{d} t} = a_{21} y_1 + a_{22} y_2 + \dots + a_{2K} y_K + b_2, & y_2(t_0)=\tilde{y}_2 \\
& \qquad \qquad \qquad \qquad \qquad \vdots & \\
& \frac{\mathrm{d} y_K}{\mathrm{d} t} = a_{K1} y_1 + a_{K2} y_2 + \dots + a_{KK} y_K + b_K, & y_K(t_0)=\tilde{y}_K \\
\end{align*} where, for i,j=1,2,…,Ki,j=1, 2, \dots, K, the functions yi=yi(t)y_i=y_i(t) are unknown, aija_{ij} are known constant coefficients and bib_i are all known (these can generally depend on tt).

This set of initial value problems need to be written in matrix form as d𝐲dt=A𝐲+𝐛with𝐲(t0)=𝐲0,t∈[t0,tf]\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} t}=A\boldsymbol{y}+\boldsymbol{b} \quad \text{with} \quad \boldsymbol{y}(t_0)=\boldsymbol{y}_0, \quad t \in [t_0,t_f] where𝐲(t)=(y1(t)y2(t)⋮yK(t)),A=(a11a12…a1Ka21a22…a2K⋮⋮⋱⋮aK1aK2…aKK),\text{where} \quad \boldsymbol{y}(t)=\begin{pmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_K(t) \end{pmatrix}, \quad A=\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1K} \\ a_{21} & a_{22} & \dots & a_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ a_{K1} & a_{K2} & \dots & a_{KK} \end{pmatrix}, 𝐛=(b1b2⋮bK),𝐲0=(ỹ1ỹ2⋮ỹK).\boldsymbol{b}=\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_K \end{pmatrix}, \quad \boldsymbol{y}_0=\begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \\ \vdots \\ \tilde{y}_K \end{pmatrix}. In this case, 𝐲(t)\boldsymbol{y}(t) is the unknown solution vector, AA is a matrix of constants, 𝐲0\boldsymbol{y}_0 is the vector of initial values and 𝐛\boldsymbol{b} is a vector of known terms (possibly depending on tt) and is referred to as the Inhomogeneity or Forcing Term.

The Euler iteration would be performed in a similar way as before. First, the interval [t0,tf][t_0,t_f] needs to be discretised into NN equally spaced subintervals, each of width hh to give the set of discrete times (t0,t1,…,tN)(t_0, t_1, \dots, t_N) where tn=t0+nht_n=t_0+nh for n=0,1,…,Nn=0,1,\dots,N. Let 𝐘n\boldsymbol{Y}_n be the approximation to the function vector 𝐲\boldsymbol{y} at the time t=tnt=t_n, then 𝐘n+1=𝐘n+h𝐲′(tn)where𝐲′(tn)=A𝐘𝐧+𝐛nforn=0,1,2,…,N−1\boldsymbol{Y}_{n+1}=\boldsymbol{Y}_n+h\boldsymbol{y}'(t_n) \quad \text{where} \quad \boldsymbol{y}'(t_n)=A\boldsymbol{Y_n}+\boldsymbol{b}_n \quad \text{for} \quad n=0,1,2,\dots,N-1 subject to the initial values 𝐘0=𝐲0\boldsymbol{Y}_0=\boldsymbol{y}_0. (Note that if the vector 𝐛\boldsymbol{b} depends on tt, then 𝐛n=𝐛(tn)\boldsymbol{b}_n=\boldsymbol{b}(t_n).)

Sets of IVPs

Consider the two coupled IVPs on the interval [0,1][0,1]: dydt=y+2z,y(0)=1dzdt=32y−z,z(0)=0\begin{align*}
\frac{\mathrm{d} y}{\mathrm{d} t} = y + 2z, & \quad y(0)=1 \\
\frac{\mathrm{d} z}{\mathrm{d} t} = \frac{3}{2}y-z, & \quad z(0)=0
\end{align*}

Before attempting to solve this set of IVPs, it needs to be written in matrix form as d𝐲dt=A𝐲+𝐛with𝐲(0)=𝐲0.\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} t}=A\boldsymbol{y}+\boldsymbol{b} \quad \text{with} \quad \boldsymbol{y}(0)=\boldsymbol{y}_0. In this case, 𝐲(t)=(y(t)z(t)),A=(1232−1),𝐛=(00),𝐲0=(10).\boldsymbol{y}(t)=\begin{pmatrix}y(t) \\ z(t)\end{pmatrix}, \quad A=\begin{pmatrix}1 & 2 \\ \frac{3}{2} & -1\end{pmatrix}, \quad \boldsymbol{b}=\begin{pmatrix}0 \\ 0\end{pmatrix}, \quad \boldsymbol{y}_0=\begin{pmatrix}1 \\ 0\end{pmatrix}.

Let N=5N=5, so h=tf−t0N=1−05=0.2.h=\frac{t_f-t_0}{N}=\frac{1-0}{5}=0.2. The Euler iteration will be 𝐘n+1=𝐘n+h𝐲′(tn)where𝐲′(tn)=A𝐘n+𝐛nforn=0,1,2,3,4.\boldsymbol{Y}_{n+1}=\boldsymbol{Y}_n+h\boldsymbol{y}'(t_n) \quad \text{where} \quad \boldsymbol{y}'(t_n)=A \boldsymbol{Y}_n+\boldsymbol{b}_n \quad \text{for} \quad n=0,1,2,3,4. This can be written as 𝐘n+1=𝐘n+h[A𝐘n+𝐛n]forn=0,1,2,3,4\boldsymbol{Y}_{n+1}=\boldsymbol{Y}_n+h\left[A \boldsymbol{Y}_n+\boldsymbol{b}_n \right] \quad \text{for} \quad n=0,1,2,3,4 keeping in mind that tn=hn=0.2nt_n=hn=0.2n the vector 𝐛n=𝐛(tn)=𝟎\boldsymbol{b}_n=\boldsymbol{b}(t_n)=\boldsymbol{0} and 𝐘0=𝐲0\boldsymbol{Y}_0=\boldsymbol{y}_0: 𝐘1=𝐘0+0.2[A𝐘0+𝐛0]=(10)+0.2[(1232−1)(10)+(00)]\boldsymbol{Y}_1=\boldsymbol{Y}_0+0.2\left[A \boldsymbol{Y}_0+\boldsymbol{b}_0 \right]=\begin{pmatrix}1 \\ 0\end{pmatrix}+0.2\left[\begin{pmatrix}1 & 2 \\ \frac{3}{2} & -1\end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}+\begin{pmatrix}0 \\ 0\end{pmatrix} \right] =(1.20.3)=\begin{pmatrix}1.2 \\ 0.3\end{pmatrix}

𝐘2=𝐘1+0.2[A𝐘1+𝐛1]=(1.20.3)+0.2[(1232−1)(1.20.3)+(00)]\boldsymbol{Y}_2=\boldsymbol{Y}_1+0.2\left[A \boldsymbol{Y}_1+\boldsymbol{b}_1 \right]=\begin{pmatrix}1.2 \\ 0.3\end{pmatrix}+0.2\left[\begin{pmatrix}1 & 2 \\ \frac{3}{2} & -1\end{pmatrix}\begin{pmatrix}1.2 \\ 0.3\end{pmatrix}+\begin{pmatrix}0 \\ 0\end{pmatrix} \right] =(1.560.6)=\begin{pmatrix}1.56 \\ 0.6\end{pmatrix}

𝐘3=𝐘2+0.2[A𝐘2+𝐛2]=(1.560.6)+0.2[(1232−1)(1.560.6)+(00)]\boldsymbol{Y}_3=\boldsymbol{Y}_2+0.2\left[A \boldsymbol{Y}_2+\boldsymbol{b}_2 \right]=\begin{pmatrix}1.56 \\ 0.6\end{pmatrix}+0.2\left[\begin{pmatrix}1 & 2 \\ \frac{3}{2} & -1\end{pmatrix}\begin{pmatrix}1.56 \\ 0.6\end{pmatrix}+\begin{pmatrix}0 \\ 0\end{pmatrix} \right] =(2.1120.948)=\begin{pmatrix}2.112 \\ 0.948\end{pmatrix}

𝐘4=𝐘3+0.2[A𝐘3+𝐛3]=(2.1120.948)+0.2[(1232−1)(2.1120.948)+(00)]\boldsymbol{Y}_4=\boldsymbol{Y}_3+0.2\left[A \boldsymbol{Y}_3+\boldsymbol{b}_3 \right]=\begin{pmatrix}2.112 \\ 0.948\end{pmatrix}+0.2\left[\begin{pmatrix}1 & 2 \\ \frac{3}{2} & -1\end{pmatrix}\begin{pmatrix}2.112 \\ 0.948\end{pmatrix}+\begin{pmatrix}0 \\ 0\end{pmatrix} \right] =(2.91361.3920)=\begin{pmatrix}2.9136 \\ 1.3920\end{pmatrix}

𝐘5=𝐘4+0.2[A𝐘4+𝐛4]=(2.91361.3920)+0.2[(1232−1)(2.91361.3920)+(00)]\boldsymbol{Y}_5=\boldsymbol{Y}_4+0.2\left[A \boldsymbol{Y}_4+\boldsymbol{b}_4 \right]=\begin{pmatrix}2.9136 \\ 1.3920\end{pmatrix}+0.2\left[\begin{pmatrix}1 & 2 \\ \frac{3}{2} & -1\end{pmatrix}\begin{pmatrix}2.9136 \\ 1.3920\end{pmatrix}+\begin{pmatrix}0 \\ 0\end{pmatrix} \right] =(4.05311.9877)=\begin{pmatrix}4.0531 \\ 1.9877\end{pmatrix}

thereforey(1)=4.0531,z(1)=1.9877.\text{therefore} \quad y(1)=4.0531, \quad z(1)=1.9877.

[image:]

3.4 Higher Order IVPs

The previous sections solved one first order IVP and a set of first order IVPs. What happens if a higher order IVP is to be solved? Or a set of higher order IVPs? The difference will be minimal, subject to a few manipulations first.

Consider the Kth{K}^{\mathrm{th}} order linear IVP on the interval [t0,tf][t_0,t_f] dKydtK+aK−1dK−1ydtK−1+…+a2d2ydt2+a1dydt+a0y=f(t)(3.3)\frac{\mathrm{d}^{K} y}{\mathrm{d} t^{K}}+a_{K-1} \frac{\mathrm{d}^{K-1} y}{\mathrm{d} t^{K-1}} + \dots + a_2 \frac{\mathrm{d}^{2} y}{\mathrm{d} t^{2}}+a_1 \frac{\mathrm{d} y}{\mathrm{d} t}+a_0 y=f(t) \qquad(3.3) where ak∈ℝa_k \in \mathbb{R} and ff is a known function. This IVP is to be solved subject to the initial conditions y(t0)=η0,dydt(t0)=η1…dK−1ydtK−1(t0)=ηK−1.y(t_0)=\eta_0, \quad \frac{\mathrm{d} y}{\mathrm{d} t}(t_0)=\eta_1 \quad \dots \quad \frac{\mathrm{d}^{K-1} y}{\mathrm{d} t^{K-1}}(t_0)=\eta_{K-1}.

This Kth{K}^{\mathrm{th}} order IVP can be written as a set of KK first order IVPs. Indeed, let the functions yky_k be given by y1(t)=dydty_1(t)=\frac{\mathrm{d} y}{\mathrm{d} t} y2(t)=y1′(t)=d2ydt2y_2(t)=y_1'(t)=\frac{\mathrm{d}^{2} y}{\mathrm{d} t^{2}} y3(t)=y2′(t)=d3ydt3y_3(t)=y_2'(t)=\frac{\mathrm{d}^{3} y}{\mathrm{d} t^{3}} ⋮\vdots yK−3(t)=yK−4′(t)=dK−3ydtK−3y_{K-3}(t)=y_{K-4}'(t)=\frac{\mathrm{d}^{K-3} y}{\mathrm{d} t^{K-3}} yK−2(t)=yK−3′(t)=dK−2ydtK−2y_{K-2}(t)=y_{K-3}'(t)=\frac{\mathrm{d}^{K-2} y}{\mathrm{d} t^{K-2}} yK−1(t)=yK−2′(t)=dK−1ydtK−1y_{K-1}(t)=y_{K-2}'(t)=\frac{\mathrm{d}^{K-1} y}{\mathrm{d} t^{K-1}}

Notice that dyK−1dt=dKydtK=−aK−1dK−1ydtK−1−…−a2d2ydt2−a1dydt−a0y+f(t)=−aK−1yK−1−…−a2y2−a1y1−a0y+f(t)\begin{align*}
\frac{\mathrm{d} y_{K-1}}{\mathrm{d} t}=\frac{\mathrm{d}^{K} y}{\mathrm{d} t^{K}} & =-a_{K-1} \frac{\mathrm{d}^{K-1} y}{\mathrm{d} t^{K-1}} - \dots - a_2 \frac{\mathrm{d}^{2} y}{\mathrm{d} t^{2}}- a_1 \frac{\mathrm{d} y}{\mathrm{d} t} - a_0 y+f(t) \\
& =-a_{K-1} y_{K-1}- \dots - a_2 y_2 - a_1 y_1 -a_0 y+ f(t)
\end{align*} Let 𝐲\boldsymbol{y} be the vector of the unknown functions y,y1,y2,…,yK−1y, y_1, y_2, \dots, y_{K-1}. This means that the IVP in Equation 3.3 can be written in matrix form 𝐲′=A𝐲+𝐛\boldsymbol{y}'=A\boldsymbol{y}+\boldsymbol{b} as follows: d𝐲dt=ddt(yy1y2⋮yK−3yK−2yK−1)=(y′y1′y2′⋮yK−3′yK−2′yK−1′)=(y1y2y3⋮yK−2yK−1dKydtK)\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} t}=\frac{\mathrm{d} }{\mathrm{d} t}\begin{pmatrix} y \\ y_1 \\ y_2 \\ \vdots \\ y_{K-3} \\ y_{K-2} \\ y_{K-1} \end{pmatrix}=\begin{pmatrix} y' \\ y_1' \\ y_2' \\ \vdots \\ y_{K-3}' \\ y_{K-2}' \\ y_{K-1}' \end{pmatrix}=\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{K-2} \\ y_{K-1} \\ \frac{\mathrm{d}^{K} y}{\mathrm{d} t^{K}} \end{pmatrix} =(y1y2y3⋮yK−2yK−1−aK−1yK−1−…−a2y2−a1y1−a0y+f(t))=\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{K-2} \\ y_{K-1} \\ -a_{K-1} y_{K-1}- \dots - a_2 y_2 - a_1 y_1 - a_0 y+ f(t) \end{pmatrix} =(010…000001…000000…000⋮⋮⋮⋱⋮⋮⋮000…010000…001−a0−a1−a2…−aK−3−aK−2−aK−1)⏟A(yy1y2⋮yK−3yK−2yK−1)⏟𝐲+(000⋮00f(t))⏟𝐛=A𝐲+𝐛.=\underbrace{\begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_{K-3} & -a_{K-2} & -a_{K-1} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} y \\ y_1 \\ y_2 \\ \vdots \\ y_{K-3} \\ y_{K-2} \\ y_{K-1} \end{pmatrix}}_{\boldsymbol{y}}+\underbrace{\begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ f(t) \end{pmatrix}}_{\boldsymbol{b}}=A \boldsymbol{y}+\boldsymbol{b}.

The initial condition vector will be 𝐲0=(y(0)y1(0)y2(0)⋮yK−3(0)yK−2(0)yK−1(0))=(y(0)dydt(0)d2ydt2(0)⋮dK−3ydtK−3(0)dK−2ydtK−2(0)dK−1ydtK−1(0))=(η0η1η2⋮ηK−3ηK−2ηK−1).\boldsymbol{y}_0=\begin{pmatrix} y(0) \\ y_1(0) \\ y_2(0) \\ \vdots \\ y_{K-3}(0) \\ y_{K-2}(0) \\ y_{K-1}(0) \end{pmatrix}=\begin{pmatrix} y(0) \\ \frac{\mathrm{d} y}{\mathrm{d} t}(0) \\ \frac{\mathrm{d}^{2} y}{\mathrm{d} t^{2}}(0) \\ \vdots \\ \frac{\mathrm{d}^{K-3} y}{\mathrm{d} t^{K-3}}(0) \\ \frac{\mathrm{d}^{K-2} y}{\mathrm{d} t^{K-2}}(0) \\ \frac{\mathrm{d}^{K-1} y}{\mathrm{d} t^{K-1}}(0) \end{pmatrix}=\begin{pmatrix} \eta_0 \\ \eta_1 \\ \eta_2 \\ \vdots \\ \eta_{K-3} \\ \eta_{K-2} \\ \eta_{K-1} \end{pmatrix}.

The matrix AA is called the Companion Matrix and is a matrix with 1 on the super diagonal and the last row is the minus of the coefficients in the higher order IVP, and zeros otherwise. Now that the Kth{K}^{\mathrm{th}} order IVP has been converted into a set of KK linear IVPs, it can be solved just as in Section 3.3. Note that any linear Kth{K}^{\mathrm{th}} order IVP can always be converted into a set of KK first order IVPs but the converse is not always possible.

Higher Order IVPs

Consider the following higher order IVP d4ydt4−8d3ydt3+7d2ydt2−dydt+2y=cos(t)fort∈ℝ≥0\frac{\mathrm{d}^{4} y}{\mathrm{d} t^{4}}-8\frac{\mathrm{d}^{3} y}{\mathrm{d} t^{3}}+7\frac{\mathrm{d}^{2} y}{\mathrm{d} t^{2}}-\frac{\mathrm{d} y}{\mathrm{d} t}+2y=\cos(t) \quad \text{for} \quad t \in \mathbb{R}_{\geq 0} withy(0)=4,dydt(0)=1,d2ydt2(0)=3,d3ydt3(0)=0.\text{with} \quad y(0)=4, \quad \frac{\mathrm{d} y}{\mathrm{d} t}(0)=1, \quad \frac{\mathrm{d}^{2} y}{\mathrm{d} t^{2}}(0)=3, \quad \frac{\mathrm{d}^{3} y}{\mathrm{d} t^{3}}(0)=0.

Let u=dydt,v=u′=d2ydt2u=\frac{\mathrm{d} y}{\mathrm{d} t}, v=u'=\frac{\mathrm{d}^{2} y}{\mathrm{d} t^{2}} and w=v′=d3ydt3w=v'=\frac{\mathrm{d}^{3} y}{\mathrm{d} t^{3}}. The derivatives of u,vu,v and ww are: u′=vv′=ww′=d4ydt4=8d3ydt3−7d2ydt2+dydt−2y+cos(t)=8w−7v+u+2y+cos(t)\begin{align*}
& u'=v \\
& v'=w \\
& w'= \frac{\mathrm{d}^{4} y}{\mathrm{d} t^{4}}=8\frac{\mathrm{d}^{3} y}{\mathrm{d} t^{3}}-7\frac{\mathrm{d}^{2} y}{\mathrm{d} t^{2}}+\frac{\mathrm{d} y}{\mathrm{d} t}-2y+\cos(t)=8w-7v+u+2y+\cos(t)
\end{align*} Define the vector 𝐲=(y,u,v,w)T\boldsymbol{y}={(y, u, v, w)}^{\mathrm{T}} d𝐲dt=ddt(yuvw)=(uvwcos(t)+8w−7v+u−2y)\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} t}=\frac{\mathrm{d} }{\mathrm{d} t}\begin{pmatrix} y \\ u \\ v \\ w \end{pmatrix}=\begin{pmatrix} u \\ v \\ w \\ \cos(t)+8w-7v+u-2y \end{pmatrix} =(010000100001−21−78)⏟A(yuvw)⏟𝐲+(000cos(t))⏟𝐛(t)=A𝐲+𝐛(t).=\underbrace{\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2 & 1 & -7 & 8 \end{pmatrix}}_{A}\underbrace{\begin{pmatrix} y \\ u \\ v \\ w \end{pmatrix}}_{\boldsymbol{y}}+\underbrace{\begin{pmatrix} 0 \\ 0 \\ 0 \\ \cos(t) \end{pmatrix}}_{\boldsymbol{b}(t)}=A\boldsymbol{y}+\boldsymbol{b}(t).

The initial condition vector will be 𝐲0=(y(0)u(0)v(0)w(0))=(y(0)dydt(0)d2ydt2(0)d3ydt3(0))=(4130).\boldsymbol{y}_0=\begin{pmatrix} y(0) \\ u(0) \\ v(0) \\ w(0) \end{pmatrix}=\begin{pmatrix} y(0) \\ \frac{\mathrm{d} y}{\mathrm{d} t}(0)\\ \frac{\mathrm{d}^{2} y}{\mathrm{d} t^{2}}(0) \\ \frac{\mathrm{d}^{3} y}{\mathrm{d} t^{3}}(0) \end{pmatrix}=\begin{pmatrix} 4 \\ 1 \\ 3 \\ 0 \end{pmatrix}.

Now the IVP can be solved using the Euler method as before but only the first function is the most relevant, all others have been used as placeholders.

3.4.1 Sets of Higher Order IVPs

The method above can be extended into a set of higher order IVPs.

Set of Higher Order IVPs

Consider the following coupled system of higher order IVPs y″+6y′+y=sin(t),z‴−8z″=5y−2y′+e2ty''+6y'+y=\sin(t), \quad z'''-8z''=5y-2y'+\mathrm{e}^{2t} withy(0)=1,dydt(0)=2,z(0)=4,dzdt(0)=1,d2zdt2(0)=2\text{with} \quad y(0)=1, \quad \frac{\mathrm{d} y}{\mathrm{d} t}(0)=2, \quad z(0)=4, \quad \frac{\mathrm{d} z}{\mathrm{d} t}(0)=1, \quad \frac{\mathrm{d}^{2} z}{\mathrm{d} t^{2}}(0)=2

In the case of a coupled system, the vector function 𝐲\boldsymbol{y} should consist of all the unknown functions and their derivatives up to but not including their highest order derivative. In other words, d𝐲dt=ddt(yy′zz′z″)=(y′y″z′z″z‴)=(y′−y−6y′+sin(t)z′z″5y−2y′+8z″+e2t)\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} t}=\frac{\mathrm{d} }{\mathrm{d} t}\begin{pmatrix} y \\ y' \\ z \\ z' \\ z'' \end{pmatrix}=\begin{pmatrix} y' \\ y'' \\ z' \\ z'' \\ z''' \end{pmatrix}=\begin{pmatrix} y' \\ -y-6y'+\sin(t) \\ z' \\ z'' \\ 5y-2y'+8z''+\mathrm{e}^{2t} \end{pmatrix} =(01000−1−600000010000015−2008)⏟A(yy′zz′z″)⏟𝐲+(0sin(t)00e2t)⏟𝐛.=\underbrace{\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & -6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 5 & -2 & 0 & 0 & 8 \end{pmatrix}}_{A}\underbrace{\begin{pmatrix} y \\ y' \\ z \\ z' \\ z'' \end{pmatrix}}_{\boldsymbol{y}}+\underbrace{\begin{pmatrix} 0 \\ \sin(t) \\ 0 \\ 0 \\ \mathrm{e}^{2t} \end{pmatrix}}_{\boldsymbol{b}}. The vector of initial values would be 𝐲(0)=(y(0)y′(0)z(0)z′(0)z″(0))=(12412).\boldsymbol{y}(0)=\begin{pmatrix} y(0) \\ y'(0) \\ z(0) \\ z'(0) \\ z''(0) \end{pmatrix}=\begin{pmatrix} 1 \\ 2 \\ 4 \\ 1 \\ 2 \end{pmatrix}.

Now this can be solved just as before with the most relevant terms being the first and third (since those are yy and zz).

3.4.2 Stability of a Set of ODEs

Consider the set of KK homogeneous ODEs d𝐲dt=A𝐲.\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} t}=A\boldsymbol{y}. Let λ1,λ2,…,λK\lambda_1, \lambda_2, \dots, \lambda_K be the eigenvalues of the matrix AA and 𝐯1,𝐯2,…,𝐯K\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_K be their distinct corresponding eigenvectors (distinct for the sake argument). Analytically, the set of differential equations 𝐲′=A𝐲\boldsymbol{y}'=A\boldsymbol{y} has the general solution 𝐲(t)=C1𝐯1eλ1t+C2𝐯2eλ2t+…+CK𝐯KeλKt\boldsymbol{y}(t)=C_1 \boldsymbol{v}_1 \mathrm{e}^{\lambda_1 t}+C_2 \boldsymbol{v}_2 \mathrm{e}^{\lambda_2 t}+\dots+C_K \boldsymbol{v}_K \mathrm{e}^{\lambda_K t} where C1,C2,…,CnC_1, C_2, \dots, C_n are constants that can be determined from the initial values.

Definition 3.1 The initial value problem d𝐲dt=A𝐲+𝐛with𝐲(0)=𝐲0\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} t}=A\boldsymbol{y}+\boldsymbol{b} \quad \text{with} \quad \boldsymbol{y}(0)=\boldsymbol{y}_0 is said to be Asymptotically Stable if 𝐲→𝟎\boldsymbol{y} \to \boldsymbol{0} as t→∞t \to \infty, in other words, all functions in 𝐲\boldsymbol{y} tend to 0 as tt tends to infinity.

This definition will be important when looking at the long term behaviour of solutions from the eigenvalues to then determine stepsize bounds.

Theorem 3.1 The initial value problem d𝐲dt=A𝐲+𝐛\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} t}=A\boldsymbol{y}+\boldsymbol{b} is asymptotically stable if all the eigenvalues of the matrix AA have negative real parts. If AA has at least one eigenvalue with a non-negative real part, then the system is not asymptomatically stable.

Notice that the stability of a set of ODEs does not depend on the forcing term 𝐛\boldsymbol{b} nor does it depend on the initial condition 𝐲(0)\boldsymbol{y}(0).

3.5 Limitations of the Euler Method

In some cases, if the stepsize hh is taken to be too large, then the Euler method can give misleading results.

For example, consider the initial value problem: dydt=−3ywithy(0)=1,t∈[0,5].\frac{\mathrm{d} y}{\mathrm{d} t}=-3y \quad \text{with} \quad y(0)=1, \quad t\in [0,5]. Choosing a large stepsize hh can render the method ineffective. Case in point, when h=1h=1, the approximate solution oscillates and grows quite rapidly, however choosing a smaller value of hh, say h=0.1h=0.1, gives a very good approximation to the exact solution. These are illustrated in the figures below.

[image:] [image:]

Another situation when the Euler method fails is when the IVP does not have a unique solution. For example, consider the IVP: dydt=y13withy(0)=0,t∈[0,2].\frac{\mathrm{d} y}{\mathrm{d} t}=y^{\frac{1}{3}} \quad \text{with} \quad y(0)=0, \quad t \in [0,2]. This has the exact solution y(t)=(23t)32y(t)=\left(\frac{2}{3}t \right)^{\frac{3}{2}} however this is not unique since y(t)=0y(t)=0 is also a perfectly valid solution. The Euler method in this case will not be able to capture the first non-trivial solution but will only capture the second trivial solution giving a straight line at 03.

3.5.1 Bounds on the Stepsize

Consider the initial value problem d𝐲dt=A𝐲+𝐛with𝐲(0)=𝐲0.\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} t}=A\boldsymbol{y}+\boldsymbol{b} \quad \text{with} \quad \boldsymbol{y}(0)=\boldsymbol{y}_0. If AA is asymptotically stable, then a maximum bound h0h_0 for the stepsize can be found to ensure that the iterations converge. (This means that asymptotic stability of AA is a necessary and sufficient condition for the existence of an upper bound h0h_0 such that if h<h0h<h_0, then the Euler iteration converges.)

If the stepsize is too large, then the method may not converge but on the other hand if it is too low, then the iteration will take a considerable amount of time to perform. Therefore an “optimal” stepsize is needed to obtain sufficiently accurate solutions.

Different Stepsizes

Consider the following initial value problem dydt=100(sin(t)−y)withy(0)=0.\frac{\mathrm{d} y}{\mathrm{d} t}=100(\sin(t)-y) \quad \text{with} \quad y(0)=0. The figure below shows the Euler method being used to solve the initial value problem in the interval [0,1][0,1] for the stepsizes h=0.03,0.02,0.01,0.001h=0.03, 0.02, 0.01, 0.001.

[image:]

When h=0.03h=0.03, the Euler method does not converge. At h=0.02h=0.02, the Euler method converges but there clearly is a distinct artefact in the solution that shows a slight oscillation. For hh less than 0.020.02, this oscillation is no longer observed and the Euler method is convergent.

Consider the IVP d𝐲dt=A𝐲+𝐛with𝐲(0)=𝐲0.\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} t}=A\boldsymbol{y}+\boldsymbol{b} \quad \text{with} \quad \boldsymbol{y}(0)=\boldsymbol{y}_0. Let λ1,λ2,…,λK\lambda_1, \lambda_2, \dots, \lambda_K be the eigenvalues of AA. Suppose that the matrix AA is asymptotically stable (i.e. ℜ(λk)<0\Re(\lambda_k)<0 for all k=1,2,…,Kk=1,2,\dots,K). In order for the Euler iterations to converge, the stepsize hh needs be less than the threshold stepsize h0h_0 where h0=2mink=1,2,…,K{|ℜ(λk)||λk|2}(3.4)h_0=2\min_{k=1,2,\dots,K}\left\{ \frac{|\Re(\lambda_k)|}{|\lambda_k|^2} \right\} \qquad(3.4) orh0=2mink=1,2,…,K{1|λk|}if all the eigenvalues are real.\text{or} \quad h_0=2 \min_{k=1,2,\dots,K} \left\{ \frac{1}{|\lambda_k|} \right\} \quad \text{if all the eigenvalues are real.} In other words, if the initial value problem is asymptotically stable, then the Euler method is stable if an only if h<h0h<h_0. This means that the convergence of the Euler is characterised by the eigenvalue that is furthest away from the origin, also called the Dominant Eigenvalue.

Euler Upper Bound

Consider the system of differential equations 𝐲′=A𝐲\boldsymbol{y}'=A\boldsymbol{y} with 𝐲(0)=𝐲0\boldsymbol{y}(0)=\boldsymbol{y}_0 where A=(−1030−10018−1−100).A=\begin{pmatrix} -1 & 0 & 3 \\ 0 & -10 & 0 \\ 18 & -1 & -100 \end{pmatrix}. The eigenvalues of the matrix AA are −0.4575,−100.5425,−10-0.4575, -100.5425, -10. Since all the eigenvalues are negative, this system is asymptotically stable. Since all the eigenvalues are real, then the threshold stepsize for a convergent Euler method is h0=2min{1|λk|}=2min{1|−0.4575|,1|−100.5425|,1|−10|}h_0=2\min\left\{ \frac{1}{|\lambda_k|} \right\} =2\min \left\{ \frac{1}{|-0.4575|}, \frac{1}{|-100.5425|}, \frac{1}{|-10|} \right\} =2min{2.0858,0.0099,0.1}=2×0.0099=0.0199.=2\min \left\{ 2.0858, 0.0099, 0.1 \right\}=2 \times 0.0099=0.0199.

Solutions for different stepsizes are as shown below with the initial values y1(0)=1y_1(0)=1 (blue), y2(0)=2y_2(0)=2 (red) and y3(0)=1y_3(0)=1 (magenta). It can be seen that if h≥h0h \geq h_0, then at least one solution will diverge but if h<h0h<h_0, then all solutions converge to 0.

[image:]

3.5.2 Estimated Bound

One drawback in attempting to determine the value of h0h_0 using Equation 3.4 is that all the eigenvalues of the matrix AA have to be determined before h0h_0 can be found. This can be computationally expensive for especially for very large matrices.

An estimate for the threshold stepsize h0h_0 can be found with far fewer computations using the sup-norm ∥⋅∥∞\left\| \cdot \right\|_{\infty} (also known as the infinity norm or the Chebyshev norm). Recall that for a vector 𝐱=(x1,x2,…,xn)\boldsymbol{x}=(x_1, x_2, \dots, x_n), the sup-norm of 𝐱\boldsymbol{x} is the maximum absolute value in the vector, i.e. ∥𝐱∥∞=max|xn|.\left\| \boldsymbol{x} \right\|_{\infty}=\max |x_n|.

Whereas for a matrix AA, the sup-norm of AA is the maximal absolute row sum. In other words, for a given matrix AA, take the absolute value of all the terms, take the sum of each row and the sup-norm will be the largest out of these.

Sup-Norm of Vectors & Matrices

Consider the vector 𝐱\boldsymbol{x} and matrix MM given by 𝐱=(1−4−97),M=(5241−953−760−1495−24).\boldsymbol{x}=\begin{pmatrix} 1 \\ -4 \\ -9 \\ 7 \end{pmatrix}, \quad M=\begin{pmatrix}
 5 & 2 & 4 & 1 \\
 -9 & 5 & 3 & -7 \\
 6 & 0 & -1 & 4 \\
 9 & 5 & -2 & 4
\end{pmatrix}.

The sup-norm of 𝐱\boldsymbol{x} is simply the largest absolute element which is 99, therefore ∥𝐱∥∞=9\left\| \boldsymbol{x} \right\|_{\infty}=9.

As for MM, to find the sup-norm, first take the absolute value of all the terms, then add the rows. The sup-norm is the maximum element that results: (5241−953−760−1495−24)→|•|(5241953760149524)→12→24→11→20}maximum is 24.
\begin{pmatrix}
 5 & 2 & 4 & 1 \\
 -9 & 5 & 3 & -7 \\
 6 & 0 & -1 & 4 \\
 9 & 5 & -2 & 4
\end{pmatrix} \quad \xrightarrow[| \bullet |]{} \quad
\begin{pmatrix}
 5 & 2 & 4 & 1 \\
 9 & 5 & 3 & 7 \\
 6 & 0 & 1 & 4 \\
 9 & 5 & 2 & 4
\end{pmatrix}
\left. \begin{matrix}
 \to 12 \\ \to 24 \\ \to 11 \\ \to 20
\end{matrix} \right\} \text{maximum is 24.}
 Therefore ∥M∥∞=24\left\| M \right\|_{\infty}=24.

Both of these can be found in MATLAB using norm(x,Inf) and norm(M,Inf).

Theorem 3.2 Consider the set of linear IVPs d𝐲dt=A𝐲+𝐛with𝐲(0)=𝐲0\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} t}=A\boldsymbol{y}+\boldsymbol{b} \quad \text{with} \quad \boldsymbol{y}(0)=\boldsymbol{y}_0 where AA is asymptotically stable. Then the Euler method is numerically convergent for any choice of hh which satisfies ∥ℐ+hA∥∞≤1.\left\| \mathcal{I}+hA \right\|_{\infty} \leq 1.

Computing all the eigenvalues of the matrix AA can be computationally expensive but obtaining the sup-norm is takes far fewer computations, however as a drawback, the resulting value of h0h_0 would be an estimate.

Stepsize Bound Estimate 1 (Tridiagonal)

Consider the differential equation 𝐲′=A𝐲\boldsymbol{y}'=A\boldsymbol{y} where A=(−210001−210001−210001−210001−2).
A=\begin{pmatrix}
 -2 & 1 & 0 & 0 & 0 \\
 1 & -2 & 1 & 0 & 0 \\
 0 & 1 & -2 & 1 & 0 \\
 0 & 0 & 1 & -2 & 1 \\
 0 & 0 & 0 & 1 & -2
\end{pmatrix}.

To find the upper bound for the stepsize for which the Euler method converges, first evaluate ℐ+hA\mathcal{I}+hA: ℐ+hA=(1−2hh000h1−2hh000h1−2hh000h1−2hh000h1−2h)
\mathcal{I}+hA=\begin{pmatrix}
 1-2h & h & 0 & 0 & 0 \\
 h & 1-2h & h & 0 & 0 \\
 0 & h & 1-2h & h & 0 \\
 0 & 0 & h & 1-2h & h \\
 0 & 0 & 0 & h & 1-2h
\end{pmatrix}

To find the sup-norm, take the absolute value of all the terms and find the maximal row sum: →|•|(|1−2h|h000h|1−2h|h000h|1−2h|h000h|1−2h|h000h|1−2h|)→→→→→|1−2h|+h|1−2h|+2h|1−2h|+2h|1−2h|+2h|1−2h|+h.
\xrightarrow[| \bullet |]{} \quad
\begin{pmatrix}
 |1-2h| & h & 0 & 0 & 0 \\
 h & |1-2h| & h & 0 & 0 \\
 0 & h & |1-2h| & h & 0 \\
 0 & 0 & h & |1-2h| & h \\
 0 & 0 & 0 & h & |1-2h|
\end{pmatrix}
\begin{matrix} \to \\ \to \\ \to \\\to \\ \to \end{matrix}\begin{matrix} |1-2h|+h \\ |1-2h|+2h \\ |1-2h|+2h \\ |1-2h|+2h \\ |1-2h|+h. \end{matrix}
 Let a=|1−2h|+2ha=|1-2h|+2h and b=|1−2h|+hb=|1-2h|+h. Since h>0h>0, then a>ba>b, therefore ∥ℐ+hA∥∞=|1−2h|+2h.\left\| \mathcal{I}+hA \right\|_{\infty}=|1-2h|+2h.

In order to satisfy the inequality ∥ℐ+hA∥∞≤1\left\| \mathcal{I}+hA \right\|_{\infty}\leq 1, consider the cases when 1−2h≥01-2h \geq 0 and 1−2h<01-2h<0 separately:

	If 1−2h≥01-2h \geq 0, then h≤12h \leq \frac{1}{2}: ∥ℐ+hA∥∞=|1−2h|+2h=1−2h+2h=1.\left\| \mathcal{I}+hA \right\|_{\infty}=|1-2h|+2h=1-2h+2h=1. Therefore ∥ℐ+hA∥∞=1≤1\left\| \mathcal{I}+hA \right\|_{\infty}=1 \leq 1 is indeed true.

	If 1−2h<01-2h < 0, then h>12h > \frac{1}{2}: ∥ℐ+hA∥∞=|1−2h|+2h=2h−1+2h=4h−1.\left\| \mathcal{I}+hA \right\|_{\infty}=|1-2h|+2h=2h-1+2h=4h-1. If ∥ℐ+hA∥∞≤1\left\| \mathcal{I}+hA \right\|_{\infty} \leq 1, then 4h−1≤14h-1 \leq 1. Simplifying this would result in h≤12h \leq \frac{1}{2} which contradicts with the assumption that h>12h>\frac{1}{2}.

From these two cases, it is clear that h≯12h \ngtr \frac{1}{2} (since that case leads to a contradiction), therefore h≤12h \leq \frac{1}{2}. Thus for a convergent Euler method, the stepsize hh must be less than the threshold stepsize h0=12h_0=\frac{1}{2}.

This can be compared to the exact bound; the eigenvalues of the matrix AA are −3.7321,−3,−2,−1,−0.2679.-3.7321, \quad -3, \quad -2, \quad -1, \quad -0.2679. Therefore h0=2min{1|λk|}=0.5359h_0=2 \min \left\{ \frac{1}{|\lambda_k|} \right\}=0.5359 which is a larger bound compared to the one obtained using the sup-norm method. Observe that if the size of the matrix was larger but followed the same theme (i.e. 22 on the main diagonal and −1-1 and the sub and super diagonals), then no further calculations are required for the sup-norm method, the outcome will still be h0=12h_0=\frac{1}{2}. As for the eigenvalue method, all the eigenvalues have to be recalculated again.

Stepsize Bound Estimate 2 (Bidiagonal)

Consider the differential equation 𝐲′=A𝐲\boldsymbol{y}'=A\boldsymbol{y} where A=(−100001−100001−100001−100001−1).
A=\begin{pmatrix}
 -1 & 0 & 0 & 0 & 0 \\
 1 & -1 & 0 & 0 & 0 \\
 0 & 1 & -1 & 0 & 0 \\
 0 & 0 & 1 & -1 & 0 \\
 0 & 0 & 0 & 1 & -1
\end{pmatrix}.

To find the upper bound for the stepsize for which the Euler method converges, first evaluate ℐ+hA\mathcal{I}+hA: ℐ+hA=(1−h0000h1−h0000h1−h0000h1−h0000h1−h)
\mathcal{I}+hA=\begin{pmatrix}
 1-h & 0 & 0 & 0 & 0 \\
 h & 1-h & 0 & 0 & 0 \\
 0 & h & 1-h & 0 & 0 \\
 0 & 0 & h & 1-h & 0 \\
 0 & 0 & 0 & h & 1-h
\end{pmatrix}
 To find the sup-norm, take the absolute value of all the terms and find the maximal row sum: →|•|(|1−h|0000h|1−h|0000h|1−h|0000h|1−h|0000h|1−h|)→→→→→|1−h||1−h|+h|1−h|+h|1−h|+h|1−h|+h.
\xrightarrow[| \bullet |]{} \quad
\begin{pmatrix}
 |1-h| & 0 & 0 & 0 & 0 \\
 h & |1-h| & 0 & 0 & 0 \\
 0 & h & |1-h| & 0 & 0 \\
 0 & 0 & h & |1-h| & 0 \\
 0 & 0 & 0 & h & |1-h|
\end{pmatrix}
\begin{matrix} \to \\ \to \\ \to \\\to \\ \to \end{matrix}\begin{matrix} |1-h| \\ |1-h|+h \\ |1-h|+h \\ |1-h|+h \\ |1-h|+h. \end{matrix}
 Let a=|1−h|+ha=|1-h|+h and b=|1−h|b=|1-h|. Clearly a>ba>b since h>0h>0, therefore ∥ℐ+hA∥∞=|1−h|+h.\left\| \mathcal{I}+hA \right\|_{\infty}=|1-h|+h.

In order to satisfy the inequality, ∥ℐ+hA∥∞≤1\left\| \mathcal{I}+hA \right\|_{\infty}\leq 1, consider the cases when 1−h≥01-h \geq 0 and 1−h<01-h<0:

	If 1−h≥01-h \geq 0, then h≤1h \leq 1: ∥ℐ+hA∥∞=|1−h|+h=1−h+h=1,\left\| \mathcal{I}+hA \right\|_{\infty}=|1-h|+h=1-h+h=1, therefore ∥ℐ+hA∥∞≤1\left\| \mathcal{I}+hA \right\|_{\infty} \leq 1 is indeed true.

	If 1−h<01-h < 0, then h>1h > 1: ∥ℐ+hA∥∞=|1−h|+h=h−1+h=2h−1.\left\| \mathcal{I}+hA \right\|_{\infty}=|1-h|+h=h-1+h=2h-1. If ∥ℐ+hA∥∞≤1\left\| \mathcal{I}+hA \right\|_{\infty} \leq 1, then 2h−1≤12h-1 \leq 1, meaning that h≤1h \leq 1 which contradicts with the assumption that h>1h>1.

This means that for a convergent Euler method, the stepsize hh must be less than h0=1h_0=1.

This can be compared to the exact upper bound. The eigenvalues of the matrix AA are just −1-1 five times, therefore h0=2min{1|λk|}=2,h_0=2 \min \left\{ \frac{1}{|\lambda_k|} \right\}=2, this shows that the sup-norm method gives a tighter than using eigenvalues.

The sup-norm method works well when the matrix in question has a diagonal, bidiagonal or tridiagonal structure where the diagonal terms are the same. In general, the sup-norm method might not be suitable for any matrix.

Stepsize Bound Estimate 3 (General)

Consider the differential equation 𝐲′=A𝐲\boldsymbol{y}'=A\boldsymbol{y} where A=(−1−24−3).A=\begin{pmatrix} -1 & -2 \\ 4 & -3 \end{pmatrix}.

Find the sup-norm: ℐ+hA=(1−h−2h4h1−3h)→|•|(|1−h|2h4h|1−3h|)→→|1−h|+2h|1−3h|+4h\mathcal{I}+hA=\begin{pmatrix}
 1-h & -2h \\
 4h & 1-3h
 \end{pmatrix} \xrightarrow[| \bullet |]{} \begin{pmatrix}
 |1-h| & 2h \\
 4h & |1-3h|
 \end{pmatrix} \begin{matrix}
 \to \\ \to
 \end{matrix} \begin{matrix}
 |1-h|+2h \\ |1-3h|+4h
 \end{matrix}
 Let a=|1−h|+2ha=|1-h|+2h and b=|1−3h|+4hb=|1-3h|+4h. Here, it is not obvious which is larger, aa or bb. Therefore, consider the three cases 0<h<130<h<\frac{1}{3}, 13<h<1\frac{1}{3}<h<1 and h>1h>1.

	0<h<130<h<\frac{1}{3}: In this case, 1−h>01-h>0 and 1−3h>01-3h>0, therefore a=|1−h|+2h=1+ha=|1-h|+2h=1+h and b=|1−3h|+4h=1+hb=|1-3h|+4h=1+h, hence ∥ℐ+hA∥∞=1+h\left\| \mathcal{I}+hA \right\|_{\infty}=1+h. In order to satisfy ∥ℐ+hA∥∞≤1\left\| \mathcal{I}+hA \right\|_{\infty} \leq 1, this would mean that h<0h<0 which contradicts with the fact that h>0h>0. Therefore h∉(0,13)h \notin \left(0,\frac 13 \right).

	13<h<1\frac{1}{3}<h<1: In this case, 1−h>01-h>0 and 1−3h<01-3h<0, therefore a=|1−h|+2h=1+ha=|1-h|+2h=1+h and b=|1−3h|+4h=7h−1b=|1-3h|+4h=7h-1. This should now be split into two subcases to check which one will lead to a contradiction:

	Suppose that a>ba>b, then 1+h>7h−1⟹h<131+h > 7h-1 \quad \implies \quad h<\frac{1}{3} which contradicts with h>13h>\frac13

	Suppose that a<ba<b, then 1+h<7h−1⟹h>131+h < 7h-1 \quad \implies \quad h>\frac{1}{3} not leading to any contradiction. therefore since b>ab>a, then ∥ℐ+hA∥∞=b=7h−1\left\| \mathcal{I}+hA \right\|_{\infty}=b=7h-1.

In order to satisfy ∥ℐ+hA∥∞≤1\left\| \mathcal{I}+hA \right\|_{\infty} \leq 1 then h<27h<\frac{2}{7} which contradicts with the fact that 13<h\frac{1}{3}<h. Therefore h∉(13,1)h \notin \left(\frac 13,1 \right).

	h>1h>1: In this case, 1−h<01-h<0 and 1−3h<01-3h<0, therefore a=|1−h|+2h=3h−1a=|1-h|+2h=3h-1 and b=|1−3h|+4h=7h−1b=|1-3h|+4h=7h-1. Clearly b>ab>a since h>0h>0, so ∥ℐ+hA∥∞=7h−1\left\| \mathcal{I}+hA \right\|_{\infty}=7h-1. In order to satisfy ∥ℐ+hA∥∞≤1\left\| \mathcal{I}+hA \right\|_{\infty} \leq 1 then h<27h<\frac{2}{7} which contradicts with the fact that h>1h>1. This means that h≯1h \ngtr 1.

So in every possible case, there will be a contradiction when using the sup-norm method. This does not mean that the system is asymptotically unstable, in fact, the eigenvalues of the matrix AA are −2±2.65i-2 \pm 2.65 \mathrm{i} meaning that the system is asymptotically stable and the threshold stepsize is in fact h0=0.0992h_0=0.0992.

This example shows that the sup-norm method cannot be used for any matrix system, but if a matrix has a banded structure, then it would be appropriate and would require fewer computations compared to finding all the eigenvalues.

3.6 MATLAB Code

The following MATLAB code performs the Euler iteration for the following set of IVPs on the interval [0,1][0,1]: dudt=2u+v+w+cos(t),u(0)=0dvdt=sin(u)+e−v+w,v(0)=1dwdt=uv−w,w(0)=0.\begin{align*}
& \frac{\mathrm{d} u}{\mathrm{d} t}=2u+v+w+\cos(t), & \quad u(0)=0 \\
& \frac{\mathrm{d} v}{\mathrm{d} t}=\sin(u)+\mathrm{e}^{-v+w}, & \quad v(0)=1 \\
& \frac{\mathrm{d} w}{\mathrm{d} t}=uv-w, & \quad w(0)=0.
\end{align*}

Linearity

Note that this code is built for a general case that does not have to be linear even though the entire derivation process was built on the fact that the system is linear.

function IVP_Euler

%% Solve a set of first order IVPs using Euler

% This code solves a set of IVP when written explicitly
% on the interval [t0,tf] subject to the initial conditions
% y(0)=y0. The output will be the graph of the solution(s)
% and the vector value at the final point tf. Note that the
% IVPs do not need to be linear or homogeneous.

%% Lines to change:

% Line 28 : t0 - Start time
% Line 31 : tf - End time
% Line 34 : N - Number of subdivisions
% Line 37 : y0 - Vector of initial values
% Line 106+ : Which functions to plot, remembering to assign
% a colour, texture and legend label
% Line 120+ : Set of differential equations written
% explicitly. These can also be non-linear and
% include forcing terms. These equations can
% also be written in matrix form if the
% equations are linear.

%% Set up input values

% Start time
t0=0;

% End time
tf=1;

% Number of subdivisions
N=5000;

% Column vector initial values y0=y(t0)
y0=[0;1;0];

%% Set up IVP solver parameters

% T = Vector of times t0,t1,...,tN.
% This is generated using linspace which splits the
% interval [t0,tf] into N+1 points (or N subintervals)
T=linspace(t0,tf,N+1);

% Stepsize
h=(tf-t0)/N;

% Number of differential equations
K=length(y0);

%% Perform the Euler iteration

% Y = Solution matrix
% The matrix Y will contain K rows and N+1 columns. Every
% row corresponds to a different IVP and every column
% corresponds to a different time. So the matrix Y will
% take the following form:
% y_1(t_0) y_1(t_1) y_1(t_2) ... y_1(t_N)
% y_2(t_0) y_2(t_1) y_2(t_2) ... y_2(t_N)
% ...
% y_K(t_0) y_K(t_1) y_K(t_2) ... y_K(t_N)
Y=zeros(K,N+1);

% The first column of the vector Y is the initial vector y0
Y(:,1)=y0;

% Set the current time t to be the starting time t0 and the
% current value of the vector y to be the strtaing values y0
t=t0;
y=y0;

for n=2:1:N+1

 dydt=DYDT(t,y,K); % Find gradient at the current step

 y=y+h*dydt; % Find y at the current step

 t=T(n); % Update the new time

 Y(:,n)=y; % Replace row n in Y with y

end

%% Setting plot parameters

% Clear figure
clf

% Hold so more than one line can be drawn
hold on

% Turn on grid
grid on

% Setting font size and style
set(gca,'FontSize',20,'FontName','Times')
set(legend,'Interpreter','Latex')

% Label the axes
xlabel('t','Interpreter','Latex')
ylabel('$\mathbf{y}(t)$','Interpreter','Latex')

% Plot the desried solutions. If all the solutions are
% needed, then consider using a for loop in that case
plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_2(t)$')
plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_3(t)$')

% Display the values of the vector y at tf
disp(strcat('The vector y at t=',num2str(tf),' is:'))
disp(Y(:,end))

end

function [dydt]=DYDT(t,y,K)

% When the equation are written in explicit form

dydt=zeros(K,1);

dydt(1)=2*y(1)+y(2)+y(3)+cos(t);

dydt(2)=sin(y(1))+exp(-y(2)+y(3));

dydt(3)=y(1)*y(2)-y(3);

% If the set of equations is linear, then these can be
% written in matrix form as dydt=A*y+b(t). For example, if
% the set of equations is:
% dudt = 7u - 2v + w + exp(t)
% dvdt = 2u + 3v - 9w + cos(t)
% dwdt = 2v + 5w + 2
% Then:
% A=[7,-2,1;2,3,-9;0,2,5];
% b=@(t) [exp(t);cos(t);2];
% dydt=A*y+b(t)

end

1. In most cases, the interval width hh is constant but more advanced numerical techniques have different subinterval widths.

2. Taylor’s Theorem states that for a function ff that is at least N+1N+1 times differentiable in the open interval (x,x0)(x,x_0) (or (x0,x)(x_0,x)), then f(x)=f(x0)+f′(x0)(x−x0)+12!f″(x0)(x−x0)2+13!f‴(x0)(x−x0)f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\frac{1}{3!}f'''(x_0)(x-x_0) +…+1N!f(N)(x0)(x−x0)N+1(N+1)!f(N+1)(ξ)(x−x0)N+1+\dots+\frac{1}{N!}f^{(N)}(x_0)(x-x_0)^N+\frac{1}{(N+1)!}f^{(N+1)}(\xi)(x-x_0)^{N+1} for some point ξ\xi between xx and x0x_0.

3. In general, according to the Picard-Lindelöf Theorem, an IVP of the form y′=f(t,y)y'=f(t,y) with y(0)=y0y(0)=y_0 has a unique solution if the function ff is continuous in tt and uniformly Lipschitz continuous in yy. In this example shown above, the function f(t,y)=y13f(t,y)=y^{\frac{1}{3}} does not satisfy the aforementioned conditions and therefore the initial value problem does not have a unique solution. These concepts of continuity are far beyond the realms of this course and no further mention of them will be made.

 ch009.xhtml

4 The Modified Euler Method

The Euler method can be effective when it comes to solving differential equations numerically but on occasions, the global error of 𝒪(h)\mathcal{O}\left(h\right) is rather poor. The Euler method can modified and improved to give Modified or Improved Euler Method (also known as the Heun Method, named after Karl Heun).

4.1 Steps of the Modified Euler Method

The Modified Euler Method utilises the Fundamental Theorem of Calculus which states that for a differentiable function yy defined on the interval [t0,t1][t_0,t_1] (where t1=t0+ht_1=t_0+h for some stepsize hh), y(t1)−y(t0)=∫t0t1y′(t)dt.y(t_1)-y(t_0)=\int\limits_{t_0}^{t_1} \! y'(t) \; \mathrm{d} t. In the interval [t0,t1][t_0,t_1], the derivative y′(t)y'(t) may be approximated by the derivative at the leftmost point y′(t0)y'(t_0), this approximation forms the basis of the standard Euler method; y(t1)−y(t0)=∫t0t1y′(t)dt=∫t0t1y′(t0)dt=hy′(t0)\begin{align*}
y(t_1)-y(t_0) & =\int\limits_{t_0}^{t_1} \! y'(t) \; \mathrm{d} t \\
& =\int\limits_{t_0}^{t_1} \! y'(t_0) \; \mathrm{d} t \\
& =h y'(t_0)
\end{align*} ⟹y(t1)=y(t0)+hy′(t0).\implies \quad y(t_1)=y(t_0)+hy'(t_0).

However, if y′(t)y'(t) varies substantially then this approximation can lead to some poor predictions. This can be modified so rather than approximating y′(t)y'(t) by y′(t0)y'(t_0) only, it can be approximated by taking an average between y′(t0)y'(t_0) and y′(y1)y'(y_1), namely y′(t)≈12(y′(t0)+y′(t1)).y'(t) \approx \frac{1}{2}\left(y'(t_0)+y'(t_1) \right). Thus y(t1)−y(t0)=∫t0t1y′(t)dt=∫t0t112(y′(t0)+y′(t1))dt=h2(y′(t0)+y′(t1))\begin{align*}
y(t_1)-y(t_0) & =\int\limits_{t_0}^{t_1} \! y'(t) \; \mathrm{d} t \\
& =\int\limits_{t_0}^{t_1} \! \frac{1}{2}\left(y'(t_0)+y'(t_1) \right) \; \mathrm{d} t \\
& = \frac{h}{2}\left(y'(t_0)+y'(t_1) \right)
\end{align*} ⟹y(t1)=y(t0)+h2(y′(t0)+y′(t1)).\implies \quad y(t_1)=y(t_0)+\frac{h}{2}\left(y'(t_0)+y'(t_1) \right).

Initially, one might suspect that the derivative y′(t1)y'(t_1) can be found from the differential equation itself, namely, y′(t1)=f(t1,y(t1))y'(t_1)=f(t_1,y(t_1)) but to do that, a Prediction-Correction procedure needs to be employed where the Euler method can be used to predict a value of y(t1)y(t_1) and this is then corrected afterwards. This is done as follows: •Predictor:Ỹn+1=Yn+hf(tn,Yn)•Corrector:Yn+1=Yn+h2[f(tn,Yn)+f(tn+1,Ỹn+1)].\begin{align*}
 \bullet \quad \text{Predictor:} \quad & \tilde{Y}_{n+1}=Y_n+h f(t_n,Y_n) \\
 \bullet \quad \text{Corrector:} \quad & Y_{n+1}=Y_n+\frac{h}{2} \left[f(t_n,Y_n)+f(t_{n+1},\tilde{Y}_{n+1}) \right].
\end{align*}

Modified Euler Method

Consider the differential equation dydt=(1−2t)y2withy(0)=1,t∈[0,2].\frac{\mathrm{d} y}{\mathrm{d} t}=(1-2t)y^2 \quad \text{with} \quad y(0)=1, \quad t\in [0,2]. This differential equation is non-linear but has a known particular solution which is y(t)=1t2−t+1y(t)=\frac{1}{t^2-t+1} and this will be compared to the approximate solutions obtained from the standard and Modified Euler methods.

The figure below shows how the standard and modified Euler methods compare to the exact solution for the same stepsize h=0.1h=0.1. This suggests that the Modified Euler method has improved accuracy compared to the Euler method for the same stepsize, however as a consequence, the function ff on the right hand side of the differential equation has to be calculated twice for every step; once in the prediction stage and once for the correction. However even with this in mind, doubling the number of calculations to improve accuracy can also warrant for a coarser choice of the stepsize to allow for a more efficient use of computational time.

[image:]

4.2 Accuracy of the Modified Euler Method

In order to asses the accuracy of the Modified Euler method, consider the Taylor series expansion of yy at the points t0t_0 and t1t_1 about t0.5=t0+12ht_{0.5}=t_0+\frac12 h:

y(t1)=y(t0.5+h2)=y(t0.5)+h2y′(t0.5)+(h2)212!y″(t0.5)+𝒪(h3),y(t_1)=y\left(t_{0.5}+\frac{h}{2} \right)=y(t_{0.5})+\frac{h}{2}y'(t_{0.5})+\left(\frac{h}{2} \right)^2 \frac{1}{2!} y''(t_{0.5})+\mathcal{O}\left(h^3\right), y(t0)=y(t0.5−h2)=y(t0.5)−h2y′(t0.5)+(h2)212!y″(t0.5)+𝒪(h3).y(t_0)=y\left(t_{0.5}-\frac{h}{2} \right)=y(t_{0.5})-\frac{h}{2}y'(t_{0.5})+\left(\frac{h}{2} \right)^2 \frac{1}{2!} y''(t_{0.5})+\mathcal{O}\left(h^3\right).

Subtracting y(t0)y(t_0) from y(t1)y(t_1) gives y(t1)−y(t0)=hy′(t0.5)+𝒪(h3).(4.1)y(t_1)-y(t_0)=hy'(t_{0.5})+\mathcal{O}\left(h^3\right). \qquad(4.1)

The Taylor series expansion can also be done for the derivative of yy at the points t0t_0 and t1t_1 about t0.5=t0+12ht_{0.5}=t_0+\frac12 h in a similar way as above, i.e. y′(t1)=y′(t0.5+h2)=y′(t0.5)+h2y″(t0.5)+𝒪(h2),y'(t_1)=y'\left(t_{0.5}+\frac{h}{2} \right)=y'(t_{0.5})+\frac{h}{2}y''(t_{0.5})+\mathcal{O}\left(h^2\right), y′(t0)=y′(t0.5−h2)=y′(t0.5)−h2y″(t0.5)+𝒪(h2).y'(t_0)=y'\left(t_{0.5}-\frac{h}{2} \right)=y'(t_{0.5})-\frac{h}{2}y''(t_{0.5})+\mathcal{O}\left(h^2\right). Adding y′(t0)y'(t_0) to y′(t1)y'(t_1) gives y′(t1)+y′(t0)=2y′(t0.5)+𝒪(h2),y'(t_1)+y'(t_0)=2y'(t_{0.5})+\mathcal{O}\left(h^2\right), thus multiplying by h2\frac{h}{2} and using equation Equation 4.1 yields h2[y′(t1)+y′(t0)]=y(t1)−y(t0)+𝒪(h3).(4.2)\frac{h}{2}\left[y'(t_1)+y'(t_0) \right]=y(t_1)-y(t_0)+\mathcal{O}\left(h^3\right). \qquad(4.2)

The first step of the Modified Euler method is to predict the value of y′(t1)y'(t_1) using the Euler iteration; Ỹ1=y(t0)+hy′(t0)⏟≈y(t1)+𝒪(h2).\tilde{Y}_1=\underbrace{y(t_0)+h y'(t_0)}_{\approx y(t_1)}+\mathcal{O}\left(h^2\right). Hence y′(t1)=f(t1,y(t1))≈f(t1,Ỹ1)+𝒪(h2).y'(t_1)=f(t_1,y(t_1))\approx f(t_1,\tilde{Y}_1)+\mathcal{O}\left(h^2\right). All this information can now be used to obtain the improved update Y1Y_1 which is the corrected form of Ỹ1\tilde{Y}_1. Thus from equation Equation 4.2, y(t1)⏟≈Y1=y(t0)⏟=Y0+h2[y′(t1)⏟=f(t1,Ỹ1)+y′(t0)⏟=f(t0,Y0)]+𝒪(h3)\underbrace{y(t_1)}_{\approx Y_1} =\underbrace{y(t_0)}_{=Y_0}+ \frac{h}{2}[\underbrace{y'(t_1)}_{=f(t_1,\tilde{Y}_1)}+\underbrace{y'(t_0)}_{=f(t_0,Y_0)}]+\mathcal{O}\left(h^3\right) ⟹Y1=Y0+h2[f(t1,Ỹ1)+f(t0,Y0)].(4.3)\implies \quad Y_1=Y_0+\frac{h}{2}\left[f(t_1,\tilde{Y}_1)+f(t_0,Y_0) \right]. \qquad(4.3)

Equations Equation 4.3 and Equation 4.2 can be used to find the local truncation error for the Modified Euler method at the first time step which is e=|y(t1)−Y1|=|y(t1)−[y(t0)+h2(y′(t1)+y′(t0))]|+𝒪(h3)=𝒪(h3).e=\left| y(t_1)-Y_1 \right|=\left| y(t_1)-\left[y(t_0)+\frac{h}{2}\left(y'(t_1)+y'(t_0) \right) \right]\right|+\mathcal{O}\left(h^3\right)=\mathcal{O}\left(h^3\right). Therefore the local truncation error e=𝒪(h3)e=\mathcal{O}\left(h^3\right) meaning that the Modified Euler method is third order accurate which is an improvement over the Euler method.

The global integration error can be obtained just as before to show that the global integration error of the Modified Euler method is E=𝒪(h2)E=\mathcal{O}\left(h^2\right) meaning that this is a second order method. In particular, if the stepsize hh is halved, the global integration error will be reduced by a factor of four while the local truncation error will reduce by a factor of eight.

4.3 MATLAB Code

The following MATLAB code performs the Modified Euler iteration for the following set of IVPs on the interval [0,1][0,1]: dudt=2u+v+w+cos(t),u(0)=0dvdt=sin(u)+e−v+w,v(0)=1dwdt=uv−w,w(0)=0.\begin{align*}
& \frac{\mathrm{d} u}{\mathrm{d} t}=2u+v+w+\cos(t), & \quad u(0)=0 \\
& \frac{\mathrm{d} v}{\mathrm{d} t}=\sin(u)+\mathrm{e}^{-v+w}, & \quad v(0)=1 \\
& \frac{\mathrm{d} w}{\mathrm{d} t}=uv-w, & \quad w(0)=0.
\end{align*}

Linearity

Note that this code is built for a general case that does not have to be linear even though the entire derivation process was built on the fact that the system is linear.

function IVP_Mod_Euler

%% Solve a set of first order IVPs using Modified Euler

% This code solves a set of IVP when written explicitly
% on the interval [t0,tf] subject to the initial conditions
% y(0)=y0. The output will be the graph of the solution(s)
% and the vector value at the final point tf. Note that the
% IVPs do not need to be linear or homogeneous.

%% Lines to change:

% Line 28 : t0 - Start time
% Line 31 : tf - End time
% Line 34 : N - Number of subdivisions
% Line 37 : y0 - Vector of initial values
% Line 116+ : Which functions to plot, remembering to assign
% a colour, texture and legend label
% Line 130+ : Set of differential equations written
% explicitly. These can also be non-linear and
% include forcing terms. These equations can
% also be written in matrix form if the
% equations are linear.

%% Set up input values

% Start time
t0=0;

% End time
tf=1;

% Number of subdivisions
N=5000;

% Column vector initial values y0=y(t0)
y0=[0;1;0];

%% Set up IVP solver parameters

% T = Vector of times t0,t1,...,tN.
% This is generated using linspace which splits the
% interval [t0,tf] into N+1 points (or N subintervals)
T=linspace(t0,tf,N+1);

% Stepsize
h=(tf-t0)/N;

% Number of differential equations
K=length(y0);

%% Perform the Modified Euler iteration

% Y = Solution matrix
% The matrix Y will contain K rows and N+1 columns. Every
% row corresponds to a different IVP and every column
% corresponds to a different time. So the matrix Y will
% take the following form:
% y_1(t_0) y_1(t_1) y_1(t_2) ... y_1(t_N)
% y_2(t_0) y_2(t_1) y_2(t_2) ... y_2(t_N)
% ...
% y_K(t_0) y_K(t_1) y_K(t_2) ... y_K(t_N)
Y=zeros(K,N+1);

% The first column of the vector Y is the initial vector y0
Y(:,1)=y0;

% Set the current time t to be the starting time t0 and the
% current value of the vector y to be the strtaing values y0
t=t0;
y=y0;

for n=2:1:N+1

 % Prediction Step:
 % Use the Euler iteration to obtain an appromxation for
 % the derivatives at the current time step

 dydt=DYDT(t,y,K); % Find gradient at the current step
 y_pred=y+h*dydt; % Predict y at current time step

 % Corrector Step:
 % Use the Modified Euler to correct y_pred

 dydt_pred=DYDT(t,y_pred,K); % Predict the gradient
 % from the predicted y
 y=y+0.5*h*(dydt+dydt_pred); % Find y at the current step

 t=T(n); % Update the new time

 Y(:,n)=y; % Replace row n in Y with y

end

%% Setting plot parameters

% Clear figure
clf

% Hold so more than one line can be drawn
hold on

% Turn on grid
grid on

% Setting font size and style
set(gca,'FontSize',20,'FontName','Times')
set(legend,'Interpreter','Latex')

% Label the axes
xlabel('t','Interpreter','Latex')
ylabel('$\mathbf{y}(t)$','Interpreter','Latex')

% Plot the desried solutions. If all the solutions are
% needed, then consider using a for loop in that case
plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_1(t)$')
plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_1(t)$')

% Display the values of the vector y at tf
disp(strcat('The vector y at t=',num2str(tf),' is:'))
disp(Y(:,end))

end

function [dydt]=DYDT(t,y,K)

% When the equation are written in explicit form

dydt=zeros(K,1);

dydt(1)=2*y(1)+y(2)+y(3)+cos(t);

dydt(2)=sin(y(1))+exp(-y(2)+y(3));

dydt(3)=y(1)*y(2)-y(3);

% If the set of equations is linear, then these can be
% written in matrix form as dydt=A*y+b(t). For example, if
% the set of equations is:
% dudt = 7u - 2v + w + exp(t)
% dvdt = 2u + 3v - 9w + cos(t)
% dwdt = 2v + 5w + 2
% Then:
% A=[7,-2,1;2,3,-9;0,2,5];
% b=@(t) [exp(t);cos(t);2];
% dydt=A*y+b(t)

end

 ch010.xhtml

5 Fourth Order Runge-Kutta Method

The Modified Euler method extended the Euler method to a two-stage procedure with a global integration error of 𝒪(h2)\mathcal{O}\left(h^2\right). This can be extended further to a Multi-Stage Method, also called a Runge-Kutta Method with pp stages and a global error integration error of 𝒪(hp)\mathcal{O}\left(h^p\right) for any arbitrarily large pp (in this case, the Modified Euler method is known as a second order Runge-Kutta method since it has two stages). For instance, the fourth order Runge-Kutta method requires four calculations for every step and has a global integration error of 𝒪(h4)\mathcal{O}\left(h^4\right), this is formulated as follows: K1=f(tn,YN),K2=f(tn+h2,Yn+h2K1),K3=f(tn+h2,Yn+h2K2),K4=f(tn+1,Yn+hK3)Yn+1=Yn+h6[K1+2K2+2K3+K4].\begin{align*}
 K_1 & = f(t_n, Y_N), \\
 K_2 & = f\left(t_n+\frac{h}{2}, Y_n+\frac{h}{2}K_1 \right),\\
 K_3 & = f\left(t_n+\frac{h}{2}, Y_n+\frac{h}{2}K_2 \right),\\
 K_4 & = f\left(t_{n+1}, Y_n+hK_3 \right)\\
 Y_{n+1} & = Y_n +\frac{h}{6}\left[K_1+2K_2+2K_3+K_4 \right].
\end{align*}

Runge-Kutta methods like this are quite versatile and are generally the most used methods for their accuracy since the stepsize hh does not need to be too small to achieve good results. Even though every step requires four calculations, the value of hh can be made larger in order to reduce the cost but retain considerable accuracy.

Runge-Kutta Method

Consider the differential equation dydt=y(1−2t)wherey(0)=1,t∈[0,3.2].\frac{\mathrm{d} y}{\mathrm{d} t}=y(1-2t) \quad \text{where} \quad y(0)=1, \quad t \in [0,3.2]. The exact solution to this differential equation is known to be y(t)=et(1−t).y(t)=\mathrm{e}^{t(1-t)}.

[image:]

The figure above shows the exact solution to the differential equation (solid line) with the three different methods used to approximate the solution all at the same resolution of h=0.4h=0.4. The stepsize hh is quite coarse but this is merely for the purposes of demonstration. The Euler method is the least accurate for this coarse grid, the Heun method improves the accuracy while the fourth order Runge-Kutta method is the most accurate out of the three even for the same stepsize.

5.1 MATLAB Code

The following MATLAB code performs the fourth order Runge-Kutta iteration for the following set of IVPs on the interval [0,1][0,1]: dudt=2u+v+w+cos(t),u(0)=0dvdt=sin(u)+e−v+w,v(0)=1dwdt=uv−w,w(0)=0.\begin{align*}
& \frac{\mathrm{d} u}{\mathrm{d} t}=2u+v+w+\cos(t), & \quad u(0)=0 \\
& \frac{\mathrm{d} v}{\mathrm{d} t}=\sin(u)+\mathrm{e}^{-v+w}, & \quad v(0)=1 \\
& \frac{\mathrm{d} w}{\mathrm{d} t}=uv-w, & \quad w(0)=0.
\end{align*}

Linearity

Note that this code is built for a general case that does not have to be linear even though the entire derivation process was built on the fact that the system is linear.

function IVP_RK4

%% Solve a set of first order IVPs using RK4

% This code solves a set of IVP when written explicitly
% on the interval [t0,tf] subject to the initial conditions
% y(0)=y0. The output will be the graph of the solution(s)
% and the vector value at the final point tf. Note that the
% IVPs do not need to be linear or homogeneous.

%% Lines to change:

% Line 28 : t0 - Start time
% Line 31 : tf - End time
% Line 34 : N - Number of subdivisions
% Line 37 : y0 - Vector of initial values
% Line 110+ : Which functions to plot, remembering to assign
% a colour, texture and legend label
% Line 124+ : Set of differential equations written
% explicitly. These can also be non-linear and
% include forcing terms. These equations can
% also be written in matrix form if the
% equations are linear.

%% Set up input values

% Start time
t0=0;

% End time
tf=1;

% Number of subdivisions
N=50;

% Column vector initial values y0=y(t0)
y0=[0;1;0];

%% Set up IVP solver parameters

% T = Vector of times t0,t1,...,tN.
% This is generated using linspace which splits the
% interval [t0,tf] into N+1 points (or N subintervals)
T=linspace(t0,tf,N+1);

% Stepsize
h=(tf-t0)/N;

% Number of differential equations
K=length(y0);

%% Perform the RK4 iteration

% Y = Solution matrix
% The matrix Y will contain K rows and N+1 columns. Every
% row corresponds to a different IVP and every column
% corresponds to a different time. So the matrix Y will
% take the following form:
% y_1(t_0) y_1(t_1) y_1(t_2) ... y_1(t_N)
% y_2(t_0) y_2(t_1) y_2(t_2) ... y_2(t_N)
% ...
% y_K(t_0) y_K(t_1) y_K(t_2) ... y_K(t_N)
Y=zeros(K,N+1);

% The first column of the vector Y is the initial vector y0
Y(:,1)=y0;

% Set the current time t to be the starting time t0 and the
% current value of the vector y to be the strtaing values y0
t=t0;
y=y0;

for n=2:1:N+1

 % Determine the coefficients of RK4

 K1=DYDT(t,y,K);
 K2=DYDT(t+h/2,y+h*K1/2,K);
 K3=DYDT(t+h/2,y+h*K2/2,K);
 K4=DYDT(t+h,y+h*K3,K);
 y=y+(h/6)*(K1+2*K2+2*K3+K4);

 t=T(n); % Update the new time

 Y(:,n)=y; % Replace row n in Y with y

end

%% Setting plot parameters

% Clear figure
clf

% Hold so more than one line can be drawn
hold on

% Turn on grid
grid on

% Setting font size and style
set(gca,'FontSize',20,'FontName','Times')
set(legend,'Interpreter','Latex')

% Label the axes
xlabel('t','Interpreter','Latex')
ylabel('$\mathbf{y}(t)$','Interpreter','Latex')

% Plot the desried solutions. If all the solutions are
% needed, then consider using a for loop in that case
plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_2(t)$')
plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_3(t)$')

% Display the values of the vector y at tf
disp(strcat('The vector y at t=',num2str(tf),' is:'))
disp(Y(:,end))

end

function [dydt]=DYDT(t,y,K)

% When the equation are written in explicit form

dydt=zeros(K,1);

dydt(1)=2*y(1)+y(2)+y(3)+cos(t);

dydt(2)=sin(y(1))+exp(-y(2)+y(3));

dydt(3)=y(1)*y(2)-y(3);

% If the set of equations is linear, then these can be
% written in matrix form as dydt=A*y+b(t). For example, if
% the set of equations is:
% dudt = 7u - 2v + w + exp(t)
% dvdt = 2u + 3v - 9w + cos(t)
% dwdt = 2v + 5w + 2
% Then:
% A=[7,-2,1;2,3,-9;0,2,5];
% b=@(t) [exp(t);cos(t);2];
% dydt=A*y+b(t)

end

 ch011.xhtml

6 MATLAB’s In-Built Procedures

So far, the three main iterative methods have been developed that solve IVPs numerically. MATLAB, however, has its own built-in procedures that can solve IVPs with a combination of several methods. The two main ones are ode23 (which uses a combination of a second and third order RK methods) and ode45 (which uses a combination of a fourth and fifth order RK methods).

Both ode45 and ode23 are hybrid methods and use adaptive meshing, this means that the time span grid is not necessarily uniform, but it changes depending on the gradients; if the gradient is large at some point, then the stepsize will be small to capture these drastic changes.

The following MATLAB code solves the following set of IVPs on the interval [0,1][0,1] using ode45: dudt=2u+v+w+cos(t),u(0)=0dvdt=sin(u)+e−v+w,v(0)=1dwdt=uv−w,w(0)=0.\begin{align*}
& \frac{\mathrm{d} u}{\mathrm{d} t}=2u+v+w+\cos(t), & \quad u(0)=0 \\
& \frac{\mathrm{d} v}{\mathrm{d} t}=\sin(u)+\mathrm{e}^{-v+w}, & \quad v(0)=1 \\
& \frac{\mathrm{d} w}{\mathrm{d} t}=uv-w, & \quad w(0)=0.
\end{align*}

function IVP_InBuilt

%% Solve a set of first order IVPs using In-Built codes

% This code solves a set of IVP when written explicitly
% on the interval [t0,tf] subject to the initial conditions
% y(0)=y0. The output will be the graph of the solution(s)
% and the vector value at the final point tf. Note that the
% IVPs do not need to be linear or homogeneous.

%% Lines to change:

% Line 28 : t0 - Start time
% Line 31 : tf - End time
% Line 43 : T_Span - Time span for evaluation
% Line 46 : y0 - Vector of initial values
% Line 86+ : Which functions to plot, remembering to assign
% a colour, texture and legend label
% Line 100+ : Set of differential equations written
% explicitly. These can also be non-linear and
% include forcing terms. These equations can
% also be written in matrix form if the
% equations are linear.

%% Set up input values

% Start time
t0=0;

% End time
tf=1;

% Time span
% In-built methods tend to use adaptive meshing; decreasing
% the stepsize near locations with drastic derivative
% changes and increasing near small derivative changes.
% Sometimes this is not desired but a uniform meshing is
% requiredfrom the start time t0 to the end time tf being
% split into N equal sub intervals. This can be changed
% here:
% Adaptive meshing: T_Span=[t0 tf]
% Specific meshing: T_Span=linspace(t0,tf,N)
T_Span=[t0 tf];

% Column vector initial values y0=y(t0)
y0=[0;1;0];

%% Set up IVP solver parameters

% Number of differential equations
K=length(y0);

%% Use solver

% Set the solver tolerance
tol=odeset('RelTol',1e-6);

% Solve the IVP using ode45 or ode23
[T,Y]=ode45(@(t,y) DYDT(t,y,K),T_Span,y0,tol);

% Convert T and Y to columns for consistency
T=T';
Y=Y';

%% Setting plot parameters

% Clear figure
clf

% Hold so more than one line can be drawn
hold on

% Turn on grid
grid on

% Setting font size and style
set(gca,'FontSize',20,'FontName','Times')
set(legend,'Interpreter','Latex')

% Label the axes
xlabel('t','Interpreter','Latex')
ylabel('$\mathbf{y}(t)$','Interpreter','Latex')

% Plot the desried solutions. If all the solutions are
% needed, then consider using a for loop in that case
plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_2(t)$')
plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_3(t)$')

% Display the values of the vector y at tf
disp(strcat('The vector y at t=',num2str(tf),' is:'))
disp(Y(:,end))

end

function [dydt]=DYDT(t,y,K)

% When the equation are written in explicit form

dydt=zeros(K,1);

dydt(1)=2*y(1)+y(2)+y(3)+cos(t);

dydt(2)=sin(y(1))+exp(-y(2)+y(3));

dydt(3)=y(1)*y(2)-y(3);

% If the set of equations is linear, then these can be
% written in matrix form as dydt=A*y+b(t). For example, if
% the set of equations is:
% dudt = 7u - 2v + w + exp(t)
% dvdt = 2u + 3v - 9w + cos(t)
% dwdt = 2v + 5w + 2
% Then:
% A=[7,-2,1;2,3,-9;0,2,5];
% b=@(t) [exp(t);cos(t);2];
% dydt=A*y+b(t)

end

 ch012.xhtml

7 Implicit IVP Solvers

In some cases, IVPs can be difficult to solve because of the non-linearity of its terms, this is where Implicit Methods should be used to accommodate for these issues.

7.1 Backwards Euler Method

Consider the Euler method at the starting time t=t0t=t_0. The value of the function yy at t1=t0+ht_1=t_0+h is approximated by y(t1)≈Y1=Y0+hy′(t0)
 y(t_1) \approx Y_1=Y_0+hy'(t_0)
 and this gives an upper bound for a stable stepsize of h0=2min(|ℜ(λk)||λk|2)
 h_0=2\min\left(\frac{|\Re(\lambda_k)|}{|\lambda_k|^2}\right)
 in order to ensure that the Euler method is computationally stable. However, suppose that this modified slightly by using the gradient at y(t1)y(t_1) rather than at y(t0)y(t_0), in other words, suppose that the value of yy at t1t_1 is approximated by y(t1)≈Y1=Y0+hy′(t1)__.
 y(t_1) \approx Y_1=Y_0+h\underline{\underline{y'(t_1)}}.
 This approach is known as the Backwards Euler Method and is an implicit procedure since the value of y′(t1)y'(t_1) is not known to begin with.

The general formulation is as follows: Consider the system of differential equations 𝐲′=A𝐲+𝐛(t)with𝐲(t0)=𝐲0,x∈[t0,tf].\boldsymbol{y}'=A\boldsymbol{y}+\boldsymbol{b}(t) \quad \text{with} \quad \boldsymbol{y}(t_0)=\boldsymbol{y}_0, \quad x \in [t_0,t_f]. Discretise the interval [t0,tf][t_0,t_f] into NN equal subintervals, each with width h=tf−t0Nh=\frac{t_f-t_0}{N}. At the time step t=tn=t0+nht=t_n=t_0+nh, the backwards Euler method is 𝐘n+1=𝐘n+h𝐲′(tn+1)=𝐘n+h[A𝐘n+1+𝐛(tn+1)].\boldsymbol{Y}_{n+1}=\boldsymbol{Y}_n+h\boldsymbol{y}'(t_{n+1})=\boldsymbol{Y}_n+h\left[A\boldsymbol{Y}_{n+1}+\boldsymbol{b}(t_{n+1}) \right]. This can be rearranged to give (I−hA)𝐘n+1=𝐘n+h𝐛(tn+1).(I-hA)\boldsymbol{Y}_{n+1}=\boldsymbol{Y}_n+h\boldsymbol{b}(t_{n+1}).

Rearranging further fives the basis for the Backwards Euler iteration which is 𝐘n+1=(I−hA)−1[𝐘n+h𝐛(tn+1)]\boldsymbol{Y}_{n+1}=(I-hA)^{-1}\left[\boldsymbol{Y}_n+h\boldsymbol{b}(t_{n+1})\right] whereas the standard Euler method in matrix form is 𝐘n+1=(I+hA)−1𝐘n+h𝐠(tn+1).\boldsymbol{Y}_{n+1}=(I+hA)^{-1}\boldsymbol{Y}_n+h\boldsymbol{g}(t_{n+1}). The Euler method requires explicit calculations using matrix multiplications but the backwards Euler method requires matrix inversion instead.

7.2 Stability of the Backwards Euler Method

Consider the initial value problem in its scalar form dydt=λy+b(t)withy(0)=y0.\frac{\mathrm{d} y}{\mathrm{d} t}=\lambda y+b(t) \quad \text{with} \quad y(0)=y_0. The backwards Euler method at the time t=tn+1=t0+(n+1)ht=t_{n+1}=t_0+(n+1)h gives Yn+1=(1−hλ)−1[Yn+hg(tn+1)].Y_{n+1}=(1-h \lambda)^{-1}\left[Y_n+hg(t_{n+1})\right]. This initial condition can be perturbed by adding a small parameter ε≠0\varepsilon\neq 0 to give the perturbed differential equation dzdt=λz+g(t)withz(0)=y0+ε.\frac{\mathrm{d} z}{\mathrm{d} t}=\lambda z+g(t) \quad \text{with} \quad z(0)=y_0+\varepsilon. The backwards Euler then yields Zn+1=(1−hλ)−1[Zn+hg(tn+1)]Z_{n+1}=(1-h \lambda)^{-1}\left[Z_n+hg(t_{n+1})\right] The differential equations in YY and ZZ can be subtracted to give a perturbation term EE where En+1=Zn+1−Yn+1=(1−hλ)−1[Zn−Yn]=(1−hλ)−1En.E_{n+1}=Z_{n+1}-Y_{n+1}=(1-h \lambda)^{-1}\left[Z_n-Y_n\right]=(1-h \lambda)^{-1}E_n. Notice that once again, the forcing function g(t)g(t) has been eliminated and therefore does not affect the stability of the backwards Euler method. The differential equation for EE will have the initial condition E0=Z0−Y0=εE_0=Z_0-Y_0=\varepsilon. This expression can be used to represent EnE_n in terms of ε\varepsilon recursively as: En=(1−hλ)−1En−1=(1−hλ)−2En−2=…=(1−hλ)−(n−1)E1=(1−hλ)−nE0=(1−hλ)−nε.\begin{multline*}
E_n=(1-h\lambda)^{-1}E_{n-1}=(1-h\lambda)^{-2}E_{n-2}\\
=\dots=(1-h\lambda)^{-(n-1)}E_1=(1-h\lambda)^{-n}E_0=(1-h\lambda)^{-n}\varepsilon.
\end{multline*} ⟹En=(1−hλ)−nε.\implies \quad E_n=(1-h\lambda)^{-n}\varepsilon. This means that the method is stable for stepsizes hh that satisfy |1−hλ|>1|1-h\lambda|>1 and since λ<0\lambda<0 for an asymptotically stable system, then this inequality is always satisfied. This means that the backwards Euler method is stable for all stepsizes h>0h>0, no matter how large.

Backwards Euler Method

Consider the differential equation y′=−100y+100sin(t)withy(0)=1.
 y'=-100y+100\sin(t) \quad \text{with} \quad y(0)=1.
 In this case, λ<0\lambda<0 meaning that this differential equation is asymptotic stable. The maximum allowable stepsize for the Euler method is h0=2|−100|=0.02h_0=\frac{2}{|-100|}=0.02. However, the backwards Euler method is stable for any stepsize hh as seen below (very large stepsizes will still converge but they will not give any useful information).

[image:]

The formulation presented above also holds for sets of differential equations in the same way with one difference. Instead of having (1−hλ)−1=11−hλ(1-h\lambda)^{-1}=\frac{1}{1-h\lambda}, the procedure for systems will require the matrix inverse (1−λA)−1(1-\lambda A)^{-1} or the MATLAB backslash operator can be used instead.

7.3 Order of Accuracy

The backwards Euler method is numerically stable for all values the stepsize hh and has the same order of accuracy as the Euler method, i.e. the local truncation error is of 𝒪(h2)\mathcal{O}\left(h^2\right) while the global integration error is of 𝒪(h)\mathcal{O}\left(h\right). However, this increased stability comes at a cost, the backwards Euler methods requires double the computational cost compared to the Euler method.

7.4 MATLAB Code

The following MATLAB code performs the Backwards Euler iteration for the system 𝐲′=A𝐲+𝐛(t)\boldsymbol{y}'=A\boldsymbol{y}+\boldsymbol{b}(t) subject to 𝐲(0)=𝐲0\boldsymbol{y}(0)=\boldsymbol{y}_0 where A=(−7−212−1−900−5),𝐛(t)=(sin(t)02),𝐲0=(010).A=\begin{pmatrix} -7 & -2 & 1 \\ 2 & -1 & -9 \\ 0 & 0 & -5 \end{pmatrix}, \quad \boldsymbol{b}(t)=\begin{pmatrix} \sin(t) \\ 0 \\ 2 \end{pmatrix}, \quad \boldsymbol{y}_0=\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.

function IVP_Back_Euler

%% Solve a set of first order IVPs using Backwards Euler

% This code solves a set of IVP when written in the form
% dydt=A*y+b(t) on the interval [t0,tf] subject to the
% initial conditions y(0)=y0. The output will be the graph
% of the solution(s) and the vector value at the final
% point tf.

%% Lines to change:

% Line 25 : t0 - Start time
% Line 28 : tf - End time
% Line 31 : N - Number of subdivisions
% Line 34 : A - Matrix A
% Line 37 : b - Forcing vector b(t)
% Line 40 : y0 - Vector of initial values
% Line 106+ : Which functions to plot, remembering to assign
% a colour, texture and legend label

%% Set up input values

% Start time
t0=0;

% End time
tf=1;

% Number of subdivisions
N=5000;

% Matrix A
A=[-7,-2,1;2,-1,-9;0,0,-5];

% Vector b, which can be a function of t in general
b=@(t) [sin(t);0;2];

% Column vector initial values y0=y(t0)
y0=[0;1;0];

%% Set up IVP solver parameters

% T = Vector of times t0,t1,...,tN.
% This is generated using linspace which splits the
% interval [t0,tf] into N+1 points (or N subintervals)
T=linspace(t0,tf,N+1);

% Stepsize
h=(tf-t0)/N;

% Number of differential equations
K=length(y0);

%% Perform the Euler iteration

% Y = Solution matrix
% The matrix Y will contain K rows and N+1 columns. Every
% row corresponds to a different IVP and every column
% corresponds to a different time. So the matrix Y will
% take the following form:
% y_1(t_0) y_1(t_1) y_1(t_2) ... y_1(t_N)
% y_2(t_0) y_2(t_1) y_2(t_2) ... y_2(t_N)
% ...
% y_K(t_0) y_K(t_1) y_K(t_2) ... y_K(t_N)
Y=zeros(K,N+1);

% The first column of the vector Y is the initial vector y0
Y(:,1)=y0;

% Set the current time t to be the starting time t0 and the
% current value of the vector y to be the strtaing values y0
y=y0;

for n=2:1:N+1

 t=T(n); % Update the new time

 y=(eye(K,K)-h*A)\(y+h*b(t));% Find y at the current step

 Y(:,n)=y; % Replace row n in Y with y

end

%% Setting plot parameters

% Clear figure
clf

% Hold so more than one line can be drawn
hold on

% Turn on grid
grid on

% Setting font size and style
set(gca,'FontSize',20,'FontName','Times')
set(legend,'Interpreter','Latex')

% Label the axes
xlabel('t','Interpreter','Latex')
ylabel('$\mathbf{y}(t)$','Interpreter','Latex')

% Plot the desried solutions. If all the solutions are
% needed, then consider using a for loop in that case
plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_1(t)$')
plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_1(t)$')

end

7.5 Stiff Differential Equations

Stiff sets of differential equations with a large value of the total computational cost N0N_0 can be very difficult to solve numerically using explicit methods but implicit methods can work very well. MATLAB has its very own built-in stiff differential equation solver under the command ode15s and this can be implemented exactly as ode45. This solves sets of differential equations implicitly using numerical differentiation of orders 1 to 5.

Stiff IVPs

Consider the set of differential equations on the interval [0,3500][0,3500] dy1dt=y2y1(0)=2dy2dt=1000(1−y12)y2−y1y2(0)=0.\begin{align*}
& \frac{\mathrm{d} y_1}{\mathrm{d} t}=y_2 & y_1(0)=2 \\
& \frac{\mathrm{d} y_2}{\mathrm{d} t}=1000(1-y_1^2)y_2-y_1 & y_2(0)=0.
\end{align*}

This is a very stiff set of differential equations, solving this using ode45 takes upwards of 92 seconds while solving using the stiff solver ode15s requires a mere 0.233 seconds (depending on you machine). The result of solving this differential equation is shown below for y1(t)y_1(t) only since y2(t)y_2(t) takes very large values and this distorts the graphical interpretation.

[image:]

Using the stiff solver optimises the stepsizes for stiff regions. Particularly, if a region is deemed to be considerably “stiff”, the ode15s will use smaller stepsizes to solve the problem but if there is a region where the differential is not “stiff”, then larger stepsizes will be used. Therefore, ode15s usually requires fewer grid points overall, for instance to solve the above set of differential equations, ode15s only requires 1,836 grid points while ode45 requires 7,820,485 grid points, that is over 4,200 times more grid points than ode15s. This just goes to show that stiff differential need implicit methods, even though the cost for every step is greater than that of an explicit method, fewer steps are required in total.

An alternative stiff differential equation solver is ode23s which achieves that same outcome as ode15s but with a lower accuracy and more grid points using only second and third order methods.

 ch013.xhtml

8 Boundary Value Problems

Boundary Value Problems (BVPs) are similar in many ways to initial value problems in the sense that a set of differential equations are given that are to be solved subject to certain conditions. In initial value problems, these conditions are imposed at the starting time but in boundary value problems, they are imposed at particular locations.

One of the most important differences when it comes to solving BVPs versus IVPs is the existence of solutions. Solutions to initial value problems always exist and are unique (subject to certain restriction on the right hand side), this is as a consequence of the Picard-Lindelöf theorem. The same cannot be said for boundary value problems; the solution to BVPs could exist and be unique, exist and not be unique or not exist at all.

8.1 Example of Boundary Value Problems

Consider a mass mm hanging from a spring with spring constant KK. Suppose that the spring is extended (by pulling the mass) by a distance xx as seen below. [image:]

Then by Hooke’s Law, the force pulling the mass back to its equilibrium position is given by F=−Kx.F=-Kx. As the mass is released, it will accelerate upwards with an acceleration aa and the force responsible for this acceleration is given by Newton’s Second Law of Motion F=ma.F=ma. The acceleration aa is the second derivative of the displacement xx with respect to time and since it acts in a direction opposite to the extension, then a=−d2xdt2⟹F=−md2xdt2a=-\frac{\mathrm{d}^{2} x}{\mathrm{d} t^{2}} \quad \implies \quad F=-m\frac{\mathrm{d}^{2} x}{\mathrm{d} t^{2}} Equating the two expressions for the force from Newton’s Second Law and Hooke’s Law will give −Kx=−md2xdt2⟹d2xdt2+ω2x=0whereω=Km.-Kx=-m\frac{\mathrm{d}^{2} x}{\mathrm{d} t^{2}} \quad \implies \quad\frac{\mathrm{d}^{2} x}{\mathrm{d} t^{2}}+\omega^2x=0 \quad \text{where} \quad \omega=\sqrt{\frac{K}{m}}. This differential equation represents the simple harmonic motion of a mass hanging on a frictionless massless spring which oscillates with a frequency ω\omega. Since this is a second order differential equation, two conditions need to be imposed:

	Initial conditions can be imposed at the starting time, specifically x(0)x(0) and x′(0)x'(0) which prescribe the initial position and initial speed,

	Boundary conditions can be imposed at different times, say x(0)x(0) and x(10)x(10) which prescribe the location at time t=0t=0 and time t=10t=10.

 ch014.xhtml

9 Mixed Value Problems

Initial and boundary value problems are not the only two ways in which conditions can be expressed. Sometimes these conditions can be presented in a mixed form where the condition on one or both boundaries may depend on the derivative of the solution function. For instance, consider the steady-state convection-diffusion equation on a bar on length 55 with density ρ\rho, convective velocity vv, specific heat capacity CpC_p, thermal conductivity kfk_f and heat source ff: −kfd2Tdx2+ρvCpdTdx=f(x)onx∈[0,5]withT(0)=100anddTdx(5)=0-k_f \frac{\mathrm{d}^{2} T}{\mathrm{d} x^{2}}+\rho v C_p \frac{\mathrm{d} T}{\mathrm{d} x}=f(x) \quad \text{on} \quad x \in [0,5] \quad \text{with} \quad T(0)=100 \quad \text{and} \quad \frac{\mathrm{d} T}{\mathrm{d} x}(5)=0 where T(x)T(x) is the temperature at xx. This set of conditions are known as Mixed Conditions: the first T(0)=100T(0)=100 means that the temperature at the location x=0x=0 is 100100, the second dTdx(5)=0\frac{\mathrm{d} T}{\mathrm{d} x}(5)=0 means that at the location x=5x=5, there is no heat flux. This can be quite useful if say, a metal rod is being heated to 100∘100^{\circ}C on one side an insulated on the other.

The method to solving MVPs is the same as boundary value problems subject to a few modifications.

9.1 Finite Difference Method for MVPs

Consider the differential equation a(x)d2udx2+b(x)dudx+c(x)u=f(x)with0<x<La(x) \frac{\mathrm{d}^{2} u}{\mathrm{d} x^{2}}+b(x) \frac{\mathrm{d} u}{\mathrm{d} x}+c(x) u=f(x) \quad \text{with} \quad 0< x < L as before. The interval [0,L][0,L] will be split into NN equally sized sections each of width h=LNh=\frac{L}{N} and the grid points are labelled xn=nhx_n=nh for n=0,1,2,…,Nn=0,1,2,\dots,N. This differential equation can be discretised using the centred difference approximation just as before to give αnUn−1+βnUn+γnUn+1=f(xn)forn=1,2,…,N−1\alpha_n U_{n-1}+\beta_n U_n+\gamma_n U_{n+1}=f(x_n) \quad \text{for} \quad n=1, 2, \dots, N-1 whereαn=a(xn)h2−b(xn)2h,βn=−2a(xn)h2+c(xn),γn=a(xn)h2+b(xn)2h.\text{where} \quad \alpha_n=\frac{a(x_n)}{h^2}-\frac{b(x_n)}{2h}, \quad \beta_n=-\frac{2a(x_n)}{h^2}+c(x_n), \quad \gamma_n=\frac{a(x_n)}{h^2}+\frac{b(x_n)}{2h}. This gives a set of N−1N-1 equations in N+1N+1 unknowns, namely U0,U1,U2,…,UNU_0, U_1, U_2, \dots, U_N (recall that Un≈u(xn)U_n \approx u(x_n) for n=0,1,2,…,Nn=0, 1, 2, \dots, N).

When the differential equation is subjected to two boundary conditions, say u(0)=ulandu(L)=ur,u(0)=u_l \quad \text{and} \quad u(L)=u_r, then expressions for U0U_0 and ULU_L are provided which gives N−1N-1 equations in N−1N-1 unknowns, hence resulting in a well-defined system which can be solved as before.

However, suppose that a set of mixed conditions is given as dudx(0)=ũlandu(L)=ur.\frac{\mathrm{d} u}{\mathrm{d} x}(0)=\tilde{u}_l \quad \text{and} \quad u(L)=u_r. In this case, only UN≈u(L)=urU_N \approx u(L)=u_r is explicitly known, meaning that there will be N−1N-1 equations in NN unknowns since U0≈u(x0)U_0 \approx u(x_0) is not known giving an under-determined system (a system with more unknowns than equations). So either one more equation is needed or one more unknown needs to be removed. All the unknowns are certainly needed, otherwise the solution will be incomplete, so the alternative is to find another equation to add to the set of equations.

The set of N−1N-1 equations is: n=1:α1U0+β1U1+γ1U2=f(x1)n=2:α2U1+β2U2+γ2U3=f(x2)⋮n=N−1:αN−1UN−2+βN−1UN−1=f(xN−1)−γN−1uL.\begin{align*}
 n=1: & \quad \alpha_1 U_0+\beta_1 U_1+\gamma_1 U_{2}=f(x_1) \\
 n=2: & \quad \alpha_2 U_{1}+\beta_2 U_2+\gamma_2 U_{3}=f(x_2) \\
 & \qquad \qquad \qquad \vdots \\
 n=N-1: & \quad \alpha_{N-1} U_{N-2}+\beta_{N-1} U_{N-1}=f(x_{N-1})-\gamma_{N-1} u_{L}.
\end{align*} All these come from the discretisation αnUn−1+βnUn+γnUn+1=f(xn).\alpha_n U_{n-1}+\beta_n U_n+\gamma_n U_{n+1}=f(x_n). Evaluating this at n=0n=0 gives α0U−1+β0U0+γ0U1=f(x0).(9.1)\alpha_0 U_{-1}+\beta_0 U_0+\gamma_0 U_{1}=f(x_0). \qquad(9.1) Initially, this may seem to be quite strange since there is a point U−1U_{-1} which is the approximation to the solution uu at the point x=x−1=−hx=x_{-1}=-h which is certainly out of the range of consideration. This point is considered to be an artificial grid point that will act as a placeholder in meantime.

Consider the condition at the start point dudx(0)=ũl.\frac{\mathrm{d} u}{\mathrm{d} x}(0)=\tilde{u}_l. Using the centred finite difference approximation on the derivative gives ũl=dudx(0)=dudx(x0)≈u(x1)−u(x−1)2h≈U1−U−12h⟹U1−U−12h≈ũl\tilde{u}_l=\frac{\mathrm{d} u}{\mathrm{d} x}(0)=\frac{\mathrm{d} u}{\mathrm{d} x}(x_0) \approx \frac{u(x_{1})-u(x_{-1})}{2h} \approx \frac{U_{1}-U_{-1}}{2h} \quad \implies \quad \frac{U_{1}-U_{-1}}{2h} \approx \tilde{u}_l This approximation can be manipulated to provide an expression for the artificial point U−1U_{-1} as U−1=U1−2hũl.U_{-1}=U_{1}-2h\tilde{u}_l. Replacing this into the equation Equation 9.1 will eliminate U−1U_{-1} completely giving an equation in terms of U0U_0 and U1U_1 only, namely β0U0+(γ0+α0)U1=f(x0)+2hũlα0.\beta_0 U_0+(\gamma_0+\alpha_0) U_{1}=f(x_0)+2h\tilde{u}_l\alpha_0. Therefore, another equation has been found which now completes the system of NN equations in NN unknowns. Thus the system of equations is: n=0:β0U0+(γ0+α0)U1=f(x0)+2hũlα0n=1:α1U0+β1U1+γ1U2=f(x1)n=2:α2U1+β2U2+γ2U3=f(x2)⋮n=N−1:αN−1UN−2+βN−1UN−1=f(xN−1)−γN−1uL.\begin{align*}
 n=0: & \quad \beta_0 U_0+(\gamma_0+\alpha_0) U_{1}=f(x_0)+2h\tilde{u}_l\alpha_0 \\
 n=1: & \quad \alpha_1 U_0+\beta_1 U_1+\gamma_1 U_{2}=f(x_1) \\
 n=2: & \quad \alpha_2 U_{1}+\beta_2 U_2+\gamma_2 U_{3}=f(x_2) \\
 & \qquad \qquad \qquad \vdots \\
 n=N-1: & \quad \alpha_{N-1} U_{N-2}+\beta_{N-1} U_{N-1}=f(x_{N-1})-\gamma_{N-1} u_{L}.
\end{align*} This can be written in matrix form as A𝐔=𝐠A\boldsymbol{U}=\boldsymbol{g} where (β0γ0+α00…000α1β1γ1…0000α2β2…000⋮⋮⋮⋱⋮⋮⋮000…βN−3γN−30000…αN−2βN−2γN−2000…0αN−1βN−1)⏟A(U0U1U2⋮UN−3UN−2UN−1)⏟𝐔=(f(x0)+2hα0ũlf(x1)f(x2)⋮f(xN−3)f(xN−2)f(xN−1)−γN−1ur)⏟𝐠.\begin{multline*}
\underbrace{\begin{pmatrix}
 \beta_0 & \gamma_0+\alpha_0 & 0 & \dots & 0 & 0 & 0 \\
 \alpha_1 & \beta_1 & \gamma_1 & \dots & 0 & 0 & 0 \\
 0 & \alpha_2 & \beta_2 & \dots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & \dots & \beta_{N-3} & \gamma_{N-3} & 0 \\
 0 & 0 & 0 & \dots & \alpha_{N-2} & \beta_{N-2} & \gamma_{N-2} \\
 0 & 0 & 0 & \dots & 0 & \alpha_{N-1} & \beta_{N-1}
\end{pmatrix}}_{A}
\underbrace{\begin{pmatrix}
 U_0 \\ U_1 \\ U_2 \\ \vdots \\ U_{N-3} \\ U_{N-2} \\ U_{N-1}
\end{pmatrix}}_{\boldsymbol{U}}=\\
\underbrace{\begin{pmatrix}
 f(x_0)+2h\alpha_0 \tilde{u}_l \\ f(x_1) \\ f(x_2) \\ \vdots \\ f(x_{N-3}) \\ f(x_{N-2}) \\ f(x_{N-1})-\gamma_{N-1}u_r
\end{pmatrix}}_{\boldsymbol{g}}.
\end{multline*} This can once again be solved on MATLAB using U=inv(A)*g or U=A\g.

If, on the other hand, the mixed conditions were instead u(0)=ulanddudx(L)=ũr,u(0)=u_l \quad \text{and} \quad\frac{\mathrm{d} u}{\mathrm{d} x}(L)=\tilde{u}_r, then the artificial point will be located at x=xN+1x=x_{N+1} but the same procedure can be done give the matrix system A𝐔=𝐠A \boldsymbol{U}=\boldsymbol{g} where (β1γ10…000α2β2γ2…0000α3β3…000⋮⋮⋮⋱⋮⋮⋮000…βN−2γN−20000…αN−1βN−1γN−1000…0αN+γNβN)⏟A(U1U2U3⋮UN−2UN−1UN)⏟𝐔=(f(x1)−α1ulf(x2)f(x3)⋮f(xN−2)f(xN−1)f(xN)−2hγNũr)⏟𝐠.\begin{multline*}
\underbrace{\begin{pmatrix}
 \beta_1 & \gamma_1 & 0 & \dots & 0 & 0 & 0 \\
 \alpha_2 & \beta_2 & \gamma_2 & \dots & 0 & 0 & 0 \\
 0 & \alpha_3 & \beta_3 & \dots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & \dots & \beta_{N-2} & \gamma_{N-2} & 0 \\
 0 & 0 & 0 & \dots & \alpha_{N-1} & \beta_{N-1} & \gamma_{N-1} \\
 0 & 0 & 0 & \dots & 0 & \alpha_{N}+\gamma_N & \beta_{N}
\end{pmatrix}}_{A}
\underbrace{\begin{pmatrix}
 U_1 \\ U_2 \\ U_3 \\ \vdots \\ U_{N-2} \\ U_{N-1} \\ U_{N}
\end{pmatrix}}_{\boldsymbol{U}}=\\
\underbrace{\begin{pmatrix}
 f(x_1)-\alpha_1 u_l \\ f(x_2) \\ f(x_3) \\ \vdots \\ f(x_{N-2}) \\ f(x_{N-1}) \\ f(x_{N})-2h\gamma_{N}\tilde{u}_r
\end{pmatrix}}_{\boldsymbol{g}}.
\end{multline*}

Mixed Value Problem

Consider the differential equation for a damped harmonic oscillator d2udt2+0.5dudt+u=0for0<t<2π\frac{\mathrm{d}^{2} u}{\mathrm{d} t^{2}}+0.5\frac{\mathrm{d} u}{\mathrm{d} t}+u=0 \quad \text{for} \quad 0<t<2\pi with the mixed conditions dudt(0)=1andu(2π)=0.\frac{\mathrm{d} u}{\mathrm{d} t}(0)=1 \quad \text{and} \quad u(2\pi)=0. This MVP is to determine the trajectory of the mass if the launching speed at the start is 11, which is dudt(0)=1\frac{\mathrm{d} u}{\mathrm{d} t}(0)=1, and after 2π2\pi seconds, the mass reaches its equilibrium state, which is u(2π)=0u(2\pi)=0. Notice that there is no restriction on the starting location, only the starting speed, so the mass can start anywhere as long as it is launched with a velocity 11. [image:] The starting location here happens to be at 0.21880.2188 but that is no restricted by the mixed conditions as long as the gradient at the start is 11.

 ch015.xhtml

10 Symmetric Boundary Conditions

The use of symmetric boundary conditions arises in many cases where conditions at the ends are not known explicitly but they are related. For instance, consider the ODE representing the conduction problem −kfd2Tdx2=qgen(x)in−L<x<L-k_f\frac{\mathrm{d}^{2} T}{\mathrm{d} x^{2}}=q_{gen}(x) \quad \text{in} \quad -L< x < L where kfk_f is the material’s conductivity and qgenq_{gen} is the heat transfer. Symmetric boundary conditions can be imposed as T(−L)=T(L)andkfdTdx(L)=α(T(L)−Tair)T(-L)=T(L) \quad \text{and} \quad k_f\frac{\mathrm{d} T}{\mathrm{d} x}(L)=\alpha(T(L)-T_{air}) for some constant α\alpha. This problem can be interpreted as an insulated metal rod of length 2L2L that has been heated all the way through and then as it cools, it loses heat equally from both ends (which is the condition T(−L)=T(L)T(-L)=T(L)), and that this heat loss at LL is proportional to the temperature gradient between the rod and the air (which is the second condition kfdTdx(L)=α(T(L)−Tair)k_f\frac{\mathrm{d} T}{\mathrm{d} x}(L)=\alpha(T(L)-T_{air})). The issue with this type of problems is that the temperature at both boundaries are not explicitly known, but it is known that they are the same.

10.1 Finite Difference Method for Symmetric Boundary Value Problems

This problem can be tackled in a very similar way to BVPs and MVPs. Consider the differential equation a(x)d2udx2+b(x)dudx+c(x)u=f(x)with−L<x<L.a(x) \frac{\mathrm{d}^{2} u}{\mathrm{d} x^{2}}+b(x) \frac{\mathrm{d} u}{\mathrm{d} x}+c(x) u=f(x) \quad \text{with} \quad -L< x < L. The interval [−L,L][-L,L] will be split into NN equally sized sections each of width h=2LNh=\frac{2L}{N} and the grid points are labelled xn=−L+nhx_n=-L+nh for n=0,1,2,…,Nn=0,1,2,\dots,N. This differential equation can be discretised using the centred difference approximation (just as in Section 8.2) to give αnUn−1+βnUn+γnUn+1=f(xn)forn=1,2,…,N−1\alpha_n U_{n-1}+\beta_n U_n+\gamma_n U_{n+1}=f(x_n) \quad \text{for} \quad n=1, 2, \dots, N-1 whereαn=a(xn)h2−b(xn)2h,βn=−2a(xn)h2+c(xn),γn=a(xn)h2+b(xn)2h.\text{where} \quad \alpha_n=\frac{a(x_n)}{h^2}-\frac{b(x_n)}{2h}, \quad \beta_n=-\frac{2a(x_n)}{h^2}+c(x_n), \quad \gamma_n=\frac{a(x_n)}{h^2}+\frac{b(x_n)}{2h}. This gives a set of N−1N-1 equations in N+1N+1 unknowns, namely U0,U1,U2,…,UNU_0, U_1, U_2, \dots, U_N. In this case, neither U0U_0 nor UNU_N are explicitly known, therefore none of the unknowns can be eliminated from the boundary conditions per se.

Suppose the given conditions are u(−L)=u(L)anddudx(L)=pu(L)+qu(-L)=u(L) \quad \text{and} \quad \frac{\mathrm{d} u}{\mathrm{d} x}(L)=pu(L)+q where pp and qq are some constants. The first condition is the symmetric boundary condition which represents the fact that the value of the unknown solution uu at both ends is the same, then U0=UNU_0=U_N, even though neither is explicitly known. The term U0U_0 can be eliminated since determining UNU_N automatically determines U0U_0, this reduces the number of unknowns to NN.

Consider the discretisation at n=1n=1, namely α1U0+β1U1+γ1U2=f(x1),\alpha_1 U_{0}+\beta_1 U_1+\gamma_1 U_{2}=f(x_1), since U0=UNU_0=U_N, this can be rewritten in terms of UNU_N instead as β1U1+γ1U2+α1UN=f(x1).\beta_1 U_1+\gamma_1 U_{2}+\alpha_1 U_{N}=f(x_1).

The discretised form of the differential equation at n=Nn=N is αNUN−1+βNUN+γNUN+1=f(xN).(10.1)\alpha_N U_{N-1}+\beta_N U_N+\gamma_N U_{N+1}=f(x_N). \qquad(10.1) Just as in the case with the MVPs, an artificial point UN+1U_{N+1} is introduced which is the solution approximated at the point x=xN+1=L+hx=x_{N+1}=L+h which is beyond the computational domain.

To find an expression for UN+1U_{N+1}, first consider the second condition dudx(xN)=dudx(L)pu(L)+q≈pUN+q.\frac{\mathrm{d} u}{\mathrm{d} x}(x_N)=\frac{\mathrm{d} u}{\mathrm{d} x}(L) pu(L)+q \approx pU_N+q. The LHS can be rewritten in terms of its centred differencing approximation as dudx(xN)≈u(xN+1)−u(xN−1)2h≈UN+1−UN−12h.\frac{\mathrm{d} u}{\mathrm{d} x}(x_N) \approx \frac{u(x_{N+1})-u(x_{N-1})}{2h} \approx \frac{U_{N+1}-U_{N-1}}{2h}.

Combining these two can give an expression for UN+1U_{N+1} as: UN+1−UN−12h≈pUN+q⟹UN+1=UN−1+2hpUN+2hq.\frac{U_{N+1}-U_{N-1}}{2h} \approx pU_N+q \quad \implies \quad U_{N+1}=U_{N-1}+ 2hpU_N+2hq.

Replacing this into Equation 10.1 gives (αN+γN)UN−1+(βN+2hpγN)UN=f(xN)−2hqγN,(\alpha_N+\gamma_N)U_{N-1}+(\beta_N+2hp\gamma_N)U_N=f(x_N)-2hq\gamma_N, thus providing the last equation to complete the set. Finally, this system can be written in matrix form as A𝐔=𝐠A\boldsymbol{U}=\boldsymbol{g} where (β1γ10…00α1α2β2γ2…0000α3β3…000⋮⋮⋮⋱⋮⋮⋮000…βN−2γN−20000…αN−1βN−1γN−1000…0αN+γNβN+2hpγN)⏟A(U1U2U3⋮UN−2UN−1UN)⏟𝐔=(f(x1)f(x2)f(x3)⋮f(xN−2)f(xN−1)f(xN)−2hqγN)⏟𝐠.\begin{multline*}
\underbrace{\begin{pmatrix}
 \beta_1 & \gamma_1 & 0 & \dots & 0 & 0 & \alpha_1 \\
 \alpha_2 & \beta_2 & \gamma_2 & \dots & 0 & 0 & 0 \\
 0 & \alpha_3 & \beta_3 & \dots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & \dots & \beta_{N-2} & \gamma_{N-2} & 0 \\
 0 & 0 & 0 & \dots & \alpha_{N-1} & \beta_{N-1} & \gamma_{N-1} \\
 0 & 0 & 0 & \dots & 0 & \alpha_{N}+\gamma_N & \beta_{N}+2hp\gamma_N
\end{pmatrix}}_{A}
\underbrace{\begin{pmatrix}
 U_1 \\ U_2 \\ U_3 \\ \vdots \\ U_{N-2} \\ U_{N-1} \\ U_{N}
\end{pmatrix}}_{\boldsymbol{U}}=\\
\underbrace{\begin{pmatrix}
 f(x_1) \\ f(x_2) \\ f(x_3) \\ \vdots \\ f(x_{N-2}) \\ f(x_{N-1}) \\ f(x_{N})-2hq\gamma_{N}
\end{pmatrix}}_{\boldsymbol{g}}.
\end{multline*} This can then be solved in MATLAB but bearing in mind that U0=UNU_0=U_N which determines the function UU at −L-L and LL.

Symmetric Boundary Value Problem

Consider the conduction problem −d2Tdx2=40sin(x)in−1<x<1-\frac{\mathrm{d}^{2} T}{\mathrm{d} x^{2}}=40\sin(x) \quad \text{in} \quad -1< x < 1 with the conditions T(−1)=T(1)anddTdx(1)=12(T(1)−25).T(-1)=T(1) \quad \text{and} \quad \frac{\mathrm{d} T}{\mathrm{d} x}(1)=\frac{1}{2}(T(1)-25). [image:]

 ch016.xhtml

11 Heat Equation

Ordinary differential equations have been the main focus of this course so far but this will now be extended to partial differential equations. The differential equations that will be studied here are the 1-Dimensional Heat (or Diffusion) Equation and the 1-Dimensional Advection (or Convection) Equation.

The 1-dimensional heat (or diffusion) equation is a partial differential equation that represents the heat transfer across a rod and is given by ∂u∂t=α∂2u∂x2with0<x<Landt>0\frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}} \quad \text{with} \quad 0<x<L \quad \text{and} \quad t>0 where u=u(x,t)u=u(x,t) is the temperature at location xx at time tt and α\alpha is the thermal diffusivity1. This equation represents the flow of heat along the length of a rod of length LL.

This partial differential equation has three derivatives in total, two derivatives in xx and one derivative in tt, this means that three conditions are needed, two on xx and one on tt:

	u(x,0)=uinit(x)u(x,0)=u_{init}(x) for x∈[0,L]x \in [0,L]: Initial heat distribution across the rod;

	u(0,t)=ul(t)u(0,t)=u_l(t) for t>0t>0: The temperature at the left end of the rod;

	u(L,t)=ur(t)u(L,t)=u_r(t) for t>0t>0: The temperature at the right end of the rod.

This set of conditions along with the differential equation are known collectively as an Initial-Boundary Value Problem and can be solved using the Method of Lines.

11.1 The Method of Lines for the Heat Equation

The outline of the method of lines for the heat equation is as follows:

	Divide the spatial interval [0,L][0,L] into NxN_x equally sized sections and label the points as x0,x1,x2,…,xNxx_0, x_1, x_2, \dots, x_{N_x} where xn=nhxx_n=nh_x and the spatial interval width is hx=LNxh_x=\frac{L}{N_x}.

[image:]

	Left Hand Side: For each point xnx_n, define the approximation Un(t)≈u(xn,t)U_n(t) \approx u(x_n,t). Therefore the left hand side of the heat equation can be written as ∂u∂t(xn,t)≈dUndt(t)\frac{\partial u}{\partial t}(x_n,t) \approx \frac{\mathrm{d} U_n}{\mathrm{d} t}(t) and this holds for n=1,2,…,Nx−1n=1, 2, \dots, N_x-1 since U0(t)≈u(0,t)=ul(t)U_0(t) \approx u(0,t)=u_l(t) and UN(t)≈u(L,t)=ur(t)U_N(t) \approx u(L,t)=u_r(t) are already known from the boundary conditions. Notice that the derivative of UnU_n is an ordinary derivative since UnU_n is a function of tt only.

	Right Hand Side: Use the finite difference approximation to approximate the spatial derivative in the differential equation. Here, the centred difference approximation for the second derivative will be used, namely ∂2u∂x2(xn,t)≈Un+1(t)−2Un(t)+Un−1(t)hx2.\frac{\partial^{2} u}{\partial x^{2}}(x_n,t) \approx \frac{U_{n+1}(t)-2U_{n}(t)+U_{n-1}(t)}{h_x^2}. Therefore the right hand side of the heat equation will become α∂2u∂x2(xn,t)≈αhx2[Un−1(t)−2Un(t)+Un+1(t)].\alpha \frac{\partial^{2} u}{\partial x^{2}}(x_n,t) \approx \frac{\alpha}{h_x^2}\left[U_{n-1}(t)-2U_n(t)+U_{n+1}(t) \right]. This holds for n=1,2,…,Nx−1n=1, 2, \dots, N_x-1 bearing in mind, once again, that U0(t)≈u(0,t)=ul(t)U_0(t) \approx u(0,t)=u_l(t) and UNx(t)≈u(L,t)=ur(t)U_{N_x}(t) \approx u(L,t)=u_r(t) are known beforehand.

	These can be combined to give the discretised form of the heat equation dUndt=αhx2[Un−1−2Un+Un+1]\frac{\mathrm{d} U_n}{\mathrm{d} t}=\frac{\alpha}{h_x^2}\left[U_{n-1}-2U_n+U_{n+1} \right] for all n=1,2,…,Nx−1n=1,2,\dots,N_x-1 where Un=Un(t)U_n=U_n(t). This means that the partial differential equation has been split into Nx−1N_x-1 ordinary differential equations.

	This entire system of Nx−1N_x-1 equations can now be written in matrix form as d𝐔dt=A𝐔+𝐛\frac{\mathrm{d} \boldsymbol{U}}{\mathrm{d} t}=A\boldsymbol{U}+\boldsymbol{b} where ddt(U1(t)U2(t)U3(t)⋮UNx−3(t)UNx−2(t)UNx−1(t))⏟𝐔=αhx2(−210…0001−21…00001−2…000⋮⋮⋮⋱⋮⋮⋮000…−210000…1−21000…01−2)⏟A(U1(t)U2(t)U3(t)⋮UNx−3(t)UNx−2(t)UNx−1(t))⏟𝐔+αhx2(ul(t)00⋮00ur(t))⏟𝐛\begin{multline*}
\frac{\mathrm{d} }{\mathrm{d} t}\underbrace{\begin{pmatrix}
 U_1(t) \\
 U_2(t) \\
 U_3(t) \\
 \vdots \\
 U_{N_x-3}(t) \\
 U_{N_x-2}(t) \\
 U_{N_x-1}(t) \\
\end{pmatrix}}_{\boldsymbol{U}}=
\underbrace{\frac{\alpha}{h_x^2}\begin{pmatrix}
 -2 & 1 & 0 & \dots & 0 & 0 & 0 \\
 1 & -2 & 1 & \dots & 0 & 0 & 0 \\
 0 & 1 & -2 & \dots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & \dots & -2 & 1 & 0 \\
 0 & 0 & 0 & \dots & 1 & -2 & 1 \\
 0 & 0 & 0 & \dots & 0 & 1 & -2 \\
\end{pmatrix}}_{A}
\underbrace{\begin{pmatrix}
 U_1(t) \\
 U_2(t) \\
 U_3(t) \\
 \vdots \\
 U_{N_x-3}(t) \\
 U_{N_x-2}(t) \\
 U_{N_x-1}(t) \\
\end{pmatrix}}_{\boldsymbol{U}} \\
+\underbrace{\frac{\alpha}{h_x^2}\begin{pmatrix}
 u_l(t) \\
 0 \\
 0 \\
 \vdots \\
 0 \\
 0 \\
 u_r(t) \\
\end{pmatrix}}_{\boldsymbol{b}}
\end{multline*} subject to the initial condition 𝐔0=(U1(0)U2(0)U3(0)⋮UNx−3(0)UNx−2(0)UNx−1(0))≈(u(x1,0)u(x2,0)u(x3,0)⋮u(xNx−3,0)u(xNx−2,0)u(xNx−1,0))=(uinit(x1)uinit(x2)uinit(x3)⋮uinit(xNx−3)uinit(xNx−2)uinit(xNx−1)).
\boldsymbol{U}_0=\begin{pmatrix}
U_1(0) \\ U_2(0) \\ U_3(0) \\ \vdots \\ U_{N_x-3}(0) \\ U_{N_x-2}(0) \\ U_{N_x-1}(0)
\end{pmatrix}\approx\begin{pmatrix}
u(x_1,0) \\ u(x_2,0) \\ u(x_3,0) \\ \vdots \\ u(x_{N_x-3},0) \\ u(x_{N_x-2},0) \\ u(x_{N_x-1},0)
\end{pmatrix} =\begin{pmatrix}
 u_{init}(x_1) \\
 u_{init}(x_2) \\
 u_{init}(x_3) \\
 \vdots \\
 u_{init}(x_{N_x-3}) \\
 u_{init}(x_{N_x-2}) \\
 u_{init}(x_{N_x-1}) \\
\end{pmatrix}.
 This system can now be solved using any of the IVP solvers with a temporal stepsize hth_t.

In essence, the Method of Lines has converted a PDE into a set of ODEs using the same techniques as BVPs and will be solved in the same way as IVPs.

Heat Equation

Consider an iron rod (of thermal diffusivity α=2.3×10−5\alpha=2.3\times 10^{-5}) of length 1 where the middle section of length 0.2 has been heated to a temperature of 1 while the rest is at 0. The ends of the rod have been kept at a constant temperature of 2. This system can be represented by the IBVP ∂u∂t=α∂2u∂t2,x∈[0,1],t>0\frac{\partial u}{\partial t}=\alpha\frac{\partial^{2} u}{\partial t^{2}}, \quad x \in [0,1], \quad t>0 u(x,0)=uinit(x)={00≤x<0.410.4≤x<0.600.6≤x≤1,u(x,0)=u_{init}(x)=\left\{
\begin{matrix}
 0 & 0 \leq x<0.4 \\
 1 & 0.4 \leq x <0.6 \\
 0 & 0.6 \leq x \leq 1 \\
\end{matrix} \right. , u(0,t)=ul(t)=2,u(L,t)=ur(t)=2.u(0,t)=u_l(t)=2, \quad u(L,t)=u_r(t)=2.

First, divide the interval [0,1][0,1] into five equal sections (which will be of width hx=1−05=0.2h_x=\frac{1-0}{5}=0.2). [image:]

This system can be discretised using the centred difference method and written in matrix form as d𝐔dt=A𝐔+𝐛\frac{\mathrm{d} \boldsymbol{U}}{\mathrm{d} t}=A\boldsymbol{U}+\boldsymbol{b} where ddt(U1(t)U2(t)U3(t)U4(t)U5(t))⏟𝐔=αh2(−210001−210001−210001−210001−2)⏟A(U1(t)U2(t)U3(t)U4(t)U5(t))⏟𝐔+αh2(ul(t)000ur(t))⏟𝐛
 \frac{\mathrm{d} }{\mathrm{d} t}\underbrace{\begin{pmatrix}
 U_1(t) \\
 U_2(t) \\
 U_3(t) \\
 U_4(t) \\
 U_5(t)
 \end{pmatrix}}_{\boldsymbol{U}}=
 \underbrace{\frac{\alpha}{h^2}\begin{pmatrix}
 -2 & 1 & 0 & 0 & 0 \\
 1 & -2 & 1 & 0 & 0 \\
 0 & 1 & -2 & 1 & 0 \\
 0 & 0 & 1 & -2 & 1 \\
 0 & 0 & 0 & 1 & -2
 \end{pmatrix}}_{A}
 \underbrace{\begin{pmatrix}
 U_1(t) \\
 U_2(t) \\
 U_3(t) \\
 U_4(t) \\
 U_5(t) \\
 \end{pmatrix}}_{\boldsymbol{U}}+
 \underbrace{\frac{\alpha}{h^2}\begin{pmatrix}
 u_l(t) \\
 0 \\
 0 \\
 0 \\
 u_r(t) \\
 \end{pmatrix}}_{\boldsymbol{b}}
 The differential equation d𝐔dt=A𝐔+𝐛\frac{\mathrm{d} \boldsymbol{U}}{\mathrm{d} t}=A\boldsymbol{U}+\boldsymbol{b} can be solved using the Euler method with the initial condition 𝐔(0)=(uinit(x1)uinit(x2)uinit(x3)uinit(x4)uinit(x5))
 \boldsymbol{U}(0)=\begin{pmatrix}
 u_{init}(x_1) \\
 u_{init}(x_2) \\
 u_{init}(x_3) \\
 u_{init}(x_4) \\
 u_{init}(x_5) \\
 \end{pmatrix}
 subject to a time stepsize hth_t. Below are the plots of the heat distribution at t=0,100,1000t=0, 100, 1000 for Nx=500N_x=500 (hx=0.002h_x=0.002) and ht=0.02h_t=0.02 (Nt=50000N_t=50000). [image:] [image:] [image:] At the beginning, the temperature at the ends is 2 and the middle section is at a temperature of 1. As time progresses, the heat evens out across the iron bar until eventually, the whole bar will be the same temperature.

11.2 Linear Advection Equation

The heat equation deals with heat transfer through diffusion throughout a material. Another way in which heat transfer can be achieved by advection (or convection) and this is given by ∂u∂t=−v∂u∂xwith0<x<Landt>0\frac{\partial u}{\partial t}=-v \frac{\partial u}{\partial x} \quad \text{with} \quad 0<x<L \quad \text{and} \quad t>0 where u=u(x,t)u=u(x,t) is the temperature at location xx at time tt and vv is the flow speed.

This partial differential equation has two derivatives in total, one in xx and one in tt, this means that two conditions are needed, one spatial and one temporal:

	u(x,0)=uinit(x)u(x,0)=u_{init}(x) for x∈[0,L]x \in [0,L]: Initial heat distribution across the rod;

	u(0,t)=ul(t)u(0,t)=u_l(t) for t>0t>0: The temperature at the left end of the rod.

Consider the PDE along with the initial condition only, namely u(x,0)=uinit(x)u(x,0)=u_{init}(x) for x∈[0,L]x \in [0,L]. The exact solution to this differential equation is given by u(x,t)=uinit(x−vt),u(x,t)=u_{init}(x-vt), this can be verified from the partial differential equation as follows: ∂u∂t=−v∂u∂xatu(x,t)=uinit(x−vt)\frac{\partial u}{\partial t}=-v \frac{\partial u}{\partial x} \quad \text{at} \quad u(x,t)=u_{init}(x-vt) LHS=∂∂tu(x,t)=∂∂t(uinit(x−vt))=−vuinit′(x−vt)RHS=∂∂xu(x,t)=∂∂x(uinit(x−vt))=−vuinit′(x−vt).\begin{align*}
 &\text{LHS}=\frac{\partial }{\partial t}u(x,t)=\frac{\partial }{\partial t}\left(u_{init}(x-vt) \right)=-vu_{init}'(x-vt)\\
 &\text{RHS}=\frac{\partial }{\partial x}u(x,t)=\frac{\partial }{\partial x}\left(u_{init}(x-vt) \right)=-vu_{init}'(x-vt).
\end{align*} This means that if the initial heat profile takes the form of uinit(x)u_{init}(x), then after time tt, the profile will look exactly the same but shifted to the right by a distance vtvt.

[image:]

The “information” moves from left to right so if the finite differences are to be used, the centred differencing approach would not be suitable since the information on the right is not known yet. Therefore the backwards differencing approximation will be the most suitable. This is known as an upwind/upstream scheme (i.e. against the direction of the wind/stream) if v>0v>0. Therefore using the convention Un(t)≈u(xn,t)U_n(t) \approx u(x_n,t) where x=xnx=x_n is the discretisation of the spatial points for n=0,1,2,…,Nxn=0,1,2,\dots,N_x, the backward differencing approximation to the spatial derivative is ∂u∂x(xn,t)≈∂Un∂x=Un−Un−1hx.\frac{\partial u}{\partial x}(x_n,t) \approx \frac{\partial U_n}{\partial x}=\frac{U_n-U_{n-1}}{h_x}. Therefore is discretised advection equation is dUndt=vhx(Un−1−Un)forn=1,2,…,Nx\frac{\mathrm{d} U_n}{\mathrm{d} t}= \frac{v}{h_x}\left(U_{n-1}-U_n \right) \quad \text{for} \quad n=1,2,\dots,N_x and this can be solved subject to the initial condition u(x,0)=uinit(x)u(x,0)=u_{init}(x) and boundary condition u(0,t)=ul(t)u(0,t)=u_{l}(t) to give the discretised set of equations in the form d𝐔dt=A𝐔+𝐛\frac{\mathrm{d} \boldsymbol{U}}{\mathrm{d} t}=A\boldsymbol{U}+\boldsymbol{b} where ddt(U1(t)U2(t)U3(t)⋮UNx−2(t)UNx−1(t)UNx(t))⏟𝐔=vhx(−100…0001−10…00001−1…000⋮⋮⋮⋱⋮⋮⋮000…−100000…1−10000…01−1)⏟A(U1(t)U2(t)U3(t)⋮UNx−2(t)UNx−1(t)UNx(t))⏟𝐔+vhx(ul(t)00⋮000)⏟𝐛\begin{multline*}
 \frac{\mathrm{d} }{\mathrm{d} t}\underbrace{\begin{pmatrix}
 U_1(t) \\
 U_2(t) \\
 U_3(t) \\
 \vdots \\
 U_{N_x-2}(t) \\
 U_{N_x-1}(t) \\
 U_{N_x}(t)
 \end{pmatrix}}_{\boldsymbol{U}}=
 \underbrace{\frac{v}{h_x}\begin{pmatrix}
 -1 & 0 & 0 & \dots & 0 & 0 & 0 \\
 1 & -1 & 0 & \dots & 0 & 0 & 0 \\
 0 & 1 & -1 & \dots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & \dots & -1 & 0 & 0 \\
 0 & 0 & 0 & \dots & 1 & -1 & 0 \\
 0 & 0 & 0 & \dots & 0 & 1 & -1 \\
 \end{pmatrix}}_{A}
 \underbrace{\begin{pmatrix}
 U_1(t) \\
 U_2(t) \\
 U_3(t) \\
 \vdots \\
 U_{N_x-2}(t) \\
 U_{N_x-1}(t) \\
 U_{N_x}(t)
 \end{pmatrix}}_{\boldsymbol{U}}\\+
 \underbrace{\frac{v}{h_x}\begin{pmatrix}
 u_l(t) \\
 0 \\
 0 \\
 \vdots \\
 0 \\
 0 \\
 0 \\
 \end{pmatrix}}_{\boldsymbol{b}}
\end{multline*} and the initial condition is 𝐔0=(U1(0)U2(0)U3(0)⋮UNx−2(0)UNx−1(0)UNx(0))≈(u(x1,0)u(x2,0)u(x3,0)⋮u(xNx−2,0)u(xNx−1,0)u(xNx,0))=(uinit(x1)uinit(x2)uinit(x3)⋮uinit(xNx−2)uinit(xNx−1)uinit(xNx))
\boldsymbol{U}_0=\begin{pmatrix}
 U_1(0) \\ U_2(0) \\ U_3(0) \\ \vdots \\ U_{N_x-2}(0) \\ U_{N_x-1}(0) \\ U_{N_x}(0)
\end{pmatrix}\approx\begin{pmatrix}
 u(x_1,0) \\ u(x_2,0) \\ u(x_3,0) \\ \vdots \\ u(x_{N_x-2},0) \\ u(x_{N_x-1},0) \\ u(x_{N_x},0)
\end{pmatrix} =\begin{pmatrix}
 u_{init}(x_1) \\
 u_{init}(x_2) \\
 u_{init}(x_3) \\
 \vdots \\
 u_{init}(x_{N_x-2}) \\
 u_{init}(x_{N_x-1}) \\
 u_{init}(x_{N_x}) \\
\end{pmatrix}
.

11.3 Convection-Diffusion Equation

The heat (or diffusion) equation dictates the spread of heat across a length of material while on the other hand, the advection (or convection) equation dictates the flow of heat in a certain direction. The combination of these two effects gives rise to the Convection-Diffusion Equation which takes the form ∂u∂t=α∂2u∂x2−v∂u∂xwith0<x<L,t>0.\frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}}-v \frac{\partial u}{\partial x} \quad \text{with} \quad 0<x<L, \quad t>0.

Just as in the heat equation, this partial differential equation has three derivatives in total, two derivatives in xx and one derivative in tt, this means that three conditions are needed, two on xx and one on tt, these will be as follows:

	u(x,0)=uinit(x)u(x,0)=u_{init}(x) for x∈[0,L]x \in [0,L]: Initial heat distribution across the rod;

	u(0,t)=ul(t)u(0,t)=u_l(t) for t>0t>0: The temperature at the left end of the rod;

	u(L,t)=ur(t)u(L,t)=u_r(t) for t>0t>0: The temperature at the right end of the rod.

In order to discretise this system, a finite difference approximation needs to be chosen first. The centred difference approximation was used for the heat equation and the backwards difference approximation for the advection. Here, the combination of both will be used. Even though this might initially seem like an inconsistency, but in fact, this will allow the system to present a distinct stable advantage as will be seen in the next section.

This system can be discretised in exactly the same way as before, so for n=1,2,…,Nx−1n=1,2,\dots,N_x-1, dUndt(t)=αhx2[Un−1(t)−2Un(t)+Un+1(t)]−vhx[Un(t)+Un−1(t)].\frac{\mathrm{d} U_n}{\mathrm{d} t}(t)= \frac{\alpha}{h_x^2}\left[U_{n-1}(t)-2U_n(t)+U_{n+1}(t) \right]-\frac{v}{h_x}\left[U_n(t)+U_{n-1}(t) \right]. This system can be written in the form d𝐔dt=A𝐔+𝐛\frac{\mathrm{d} \boldsymbol{U}}{\mathrm{d} t}=A\boldsymbol{U}+\boldsymbol{b} where A=αhx2(−210…0001−21…00001−2…000⋮⋮⋮⋱⋮⋮⋮000…−210000…1−21000…01−2)+vhx(−100…0001−10…00001−1…000⋮⋮⋮⋱⋮⋮⋮000…−100000…1−10000…01−1),\begin{multline}
A=\frac{\alpha}{h_x^2}\begin{pmatrix}
 -2 & 1 & 0 & \dots & 0 & 0 & 0 \\
 1 & -2 & 1 & \dots & 0 & 0 & 0 \\
 0 & 1 & -2 & \dots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & \dots & -2 & 1 & 0 \\
 0 & 0 & 0 & \dots & 1 & -2 & 1 \\
 0 & 0 & 0 & \dots & 0 & 1 & -2 \\
\end{pmatrix} \\ +\frac{v}{h_x}\begin{pmatrix}
 -1 & 0 & 0 & \dots & 0 & 0 & 0 \\
 1 & -1 & 0 & \dots & 0 & 0 & 0 \\
 0 & 1 & -1 & \dots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & \dots & -1 & 0 & 0 \\
 0 & 0 & 0 & \dots & 1 & -1 & 0 \\
 0 & 0 & 0 & \dots & 0 & 1 & -1 \\
\end{pmatrix},
\end{multline} 𝐔=(U1(t)U2(t)⋮UN−2(t)UN−1(t)),𝐛=αhx2(ul(t)0⋮0ur(t))+vhx(ul(t)0⋮00).
\boldsymbol{U}=\begin{pmatrix}
 U_1(t) \\
 U_2(t) \\
 \vdots \\
 U_{N-2}(t) \\
 U_{N-1}(t) \\
\end{pmatrix}, \quad \boldsymbol{b}=\frac{\alpha}{h_x^2}\begin{pmatrix}
 u_l(t) \\
 0 \\
 \vdots \\
 0 \\
 u_r(t) \\
\end{pmatrix}+\frac{v}{h_x}\begin{pmatrix}
 u_l(t) \\
 0 \\
 \vdots \\
 0 \\
 0 \\
\end{pmatrix}.
 and this system can be solved using an Euler iteration subject to the initial condition u(x,0)=uinit(x)u(x,0)=u_{init}(x).

11.4 Asymptotic Stability

The method of lines is essentially a hybrid method that makes use of a combination between a finite difference approximation and the Euler method and is very effective at solving partial differential equations, as seen from solving the heat, advection and convection-diffusion equations. The derivation of the method of lines for the different methods builds on the very same principle and the codes can be adapted quite easily. One main issue that arises here is the choice for the stepsizes for both the spatial and temporal discretisations, i.e. the choice of hth_t and hxh_x respectively. When both methods are combined, there needs to be a restriction on both stepsizes.

The first issue that needs to be addressed is the asymptotic stability of the heat equation and the advection equation. For arbitrarily large matrices, it may not be simple to determine if all the eigenvalues are negative since it may be computationally restrictive to do so. However, a result can be used to see if all the eigenvalues are negative without explicitly calculating them.

Theorem 11.1 (Gershgorin Circle Theorem) Let AA be an N×NN \times N given by A=(a11a12a13…a1Na21a22a23…a2Na31a32a33…a3N⋮⋮⋮⋱⋮aN1aN2aN3…aNN).
A=\begin{pmatrix}
 a_{11} & a_{12} & a_{13} & \dots & a_{1N} \\
 a_{21} & a_{22} & a_{23} & \dots & a_{2N} \\
 a_{31} & a_{32} & a_{33} & \dots & a_{3N} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{N1} & a_{N2} & a_{N3} & \dots & a_{NN}
\end{pmatrix}.
 On the complex plane, consider NN closed discs, each centred at the locations aiia_{ii} for i=1,2,…,ni=1,2,\dots,n (the diagonal terms) where the disc centred at aiia_{ii} has a radius RiR_i where Ri=∑j≠i|aij|.R_i=\sum_{j \neq i}{|a_{ij}|}. Then all the eigenvalues of the matrix AA will have to lie in at least one of these discs. In other words, every eigenvalues of AA satisfies |λ−aii|≤Rifor at least one i=1,2,…,n.|\lambda-a_{ii}| \leq R_i \quad \text{for at least one } \quad i=1,2,\dots,n.

Gershgorin Circle Theorem Exapmple

Consider the matrix A=(−1342−4054714−20−306−6−4−6−174797).
A=\begin{pmatrix}
 -1 & 3 & 4 & 2 & -4 \\
 0 & 5 & 4 & 7 & 1 \\
 4 & -2 & 0 & -3 & 0 \\
 6 & -6 & -4 & -6 & -1 \\
 7 & 4 & 7 & 9 & 7
\end{pmatrix}.
 Following the steps of the theorem:

	Indicate the locations of the diagonal terms (namely −1,5,0,−6,7-1, 5, 0, -6, 7) on the complex plane.

	Find the radii RiR_i which are equal to the row sum of the absolute terms without the diagonal terms, in other words, abs(A)=(1342405471420306646174797)→→→→→3+4+2+40+4+7+14+2+3+06+6+4+17+4+7+9=13=12=9=17=27→R1→R2→R3→R4→R5
 \text{abs}(A)=\begin{pmatrix}
 1 & 3 & 4 & 2 & 4 \\
 0 & 5 & 4 & 7 & 1 \\
 4 & 2 & 0 & 3 & 0 \\
 6 & 6 & 4 & 6 & 1 \\
 7 & 4 & 7 & 9 & 7
\end{pmatrix}
\begin{matrix}
 \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow
\end{matrix}
\begin{matrix}
 3+4+2+4 \\ 0+4+7+1 \\ 4+2+3+0 \\ 6+6+4+1 \\ 7+4+7+9
\end{matrix}
\begin{matrix}
 =13 \\ =12 \\ =9 \\ =17 \\ =27
\end{matrix}
\begin{matrix}
 \rightarrow R_1 \\ \rightarrow R_2 \\ \rightarrow R_3 \\ \rightarrow R_4 \\ \rightarrow R_5
\end{matrix}

	Draw a circle around a11=−1a_{11}=-1 with radius R1=13R_1=13, a circle around a22=5a_{22}=5 with radius R2=12R_2=12 and so on.

	All the eigenvalues of the matrix AA must lie in at least one of the circles indicated. Indeed, the following figure shows the diagonal terms each with circles around them with the appropriate radius. The eigenvalues are given in red and the blue circles are those which contain all said eigenvalues. [image:]

11.4.1 Stability of the Euler Method for the Advection Equation

Consider the matrix A2A_2 of size N×NN \times N from the advection equation A2=(−10…001−1…00⋮⋮⋱⋮⋮00…−1000…1−1).
A_2=\begin{pmatrix}
 -1 & 0 & \dots & 0 & 0 \\
 1 & -1 & \dots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \dots & -1 & 0 \\
 0 & 0 & \dots & 1 & -1 \\
\end{pmatrix}.
 Following the steps of the Gershgorin theorem, the centres of all the circles on the complex plane will be located at the diagonal terms, all of which are −1-1. The radii of these circles are the row sums of the matrix A2A_2 without the diagonal terms, which means that all the radii will be 1. The figure below shows the circle that results on the complex plane. Therefore regardless of what the eigenvalues might be, it is known that they will always have negative real parts and therefore the advection matrix forms an asymptotically stable system. [image:]

Since the advection equation is asymptotically stable, a bound for the temporal stepsize needs to be found. Consider the advection equation after the discretisation d𝐔dt=A𝐔+𝐛\frac{\mathrm{d} \boldsymbol{U}}{\mathrm{d} t}=A\boldsymbol{U}+\boldsymbol{b} where A=vhxA2A=\frac{v}{h_x}A_2. The Euler method is numerically stable if the time step hth_t satisfies ∥ℐ+htA∥∞≤1.\left\| \mathcal{I}+h_t A \right\|_{\infty} \leq 1. First calculate ℐ+htA\mathcal{I}+h_t A: ℐ+htA=ℐ+vhthxA2=(1−ṽ00…000ṽ1−ṽ0…0000ṽ1−ṽ…000⋮⋮⋮⋱⋮⋮⋮000…0ṽ1−ṽ).
\mathcal{I}+h_t A=\mathcal{I}+\frac{vh_t}{h_x}A_2=
\begin{pmatrix}
 1-\tilde{v} & 0 & 0 & \dots & 0 & 0 & 0 \\
 \tilde{v} & 1-\tilde{v} & 0 & \dots & 0 & 0 & 0 \\
 0 & \tilde{v} & 1-\tilde{v} & \dots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\
 0 & 0 & 0 & \dots & 0& \tilde{v} & 1-\tilde{v}
\end{pmatrix}.
 where ṽ=vhthx\tilde{v}=\frac{vh_t}{h_x}. Now taking the absolute value of all the terms and taking the row sums gives: abs(ℐ+vhthxA2)=(|1−ṽ|00…000ṽ|1−ṽ|0…0000ṽ|1−ṽ|…000⋮⋮⋮⋱⋮⋮⋮000…0ṽ|1−ṽ|)→→→⋮→|1−ṽ|ṽ+|1−ṽ|ṽ+|1−ṽ|⋮ṽ+|1−ṽ|.
\mathrm{abs}\left(\mathcal{I}+\frac{vh_t}{h_x}A_2 \right)=
\begin{pmatrix}
 |1-\tilde{v}| & 0 & 0 & \dots & 0 & 0 & 0 \\
 \tilde{v} & |1-\tilde{v}| & 0 & \dots & 0 & 0 & 0 \\
 0 & \tilde{v} & |1-\tilde{v}| & \dots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\
 0 & 0 & 0 & \dots & 0& \tilde{v} & |1-\tilde{v}|
\end{pmatrix}\begin{matrix}
\to \\ \to \\ \to \\ \vdots \\ \to
\end{matrix}\begin{matrix}
|1-\tilde{v}| \\ \tilde{v}+|1-\tilde{v}| \\ \tilde{v}+|1-\tilde{v}| \\ \vdots \\ \tilde{v}+|1-\tilde{v}|
\end{matrix}.
 The row sums of the absolute terms of this matrix are a=|1−ṽ|andb=|1−ṽ|+ṽ.a=|1-\tilde{v}| \quad \text{and} \quad b=|1-\tilde{v}|+\tilde{v}. Since it is assumed that v>0v>0, then b>ab>a therefore, ∥ℐ+htA∥∞=b=|1−ṽ|+ṽ\left\| \mathcal{I}+h_tA \right\|_{\infty}=b=|1-\tilde{v}|+\tilde{v}. Consider the two cases when 1−ṽ>01-\tilde{v}>0 and 1−ṽ<0.1-\tilde{v}<0.

	If 1−ṽ>01-\tilde{v}>0, then 0<ṽ<10<\tilde{v}<1: ∥ℐ+htA∥∞=|1−ṽ|+ṽ=1−ṽ+ṽ=1.\left\| \mathcal{I}+h_tA \right\|_{\infty}=|1-\tilde{v}|+\tilde{v}=1-\tilde{v}+\tilde{v}=1. Therefore if 1−ṽ>01-\tilde{v}>0, then ∥ℐ+htA∥∞≤1\left\| \mathcal{I}+h_tA \right\|_{\infty}\leq 1.

	If 1−ṽ<01-\tilde{v}<0, then ṽ>1\tilde{v}>1: ∥ℐ+htA∥∞=|1−ṽ|+ṽ=ṽ−1+ṽ=2ṽ−1,\left\| \mathcal{I}+h_tA \right\|_{\infty}=|1-\tilde{v}|+\tilde{v}=\tilde{v}-1+\tilde{v}=2\tilde{v}-1, therefore in this case, if ∥ℐ+htA∥∞\left\| \mathcal{I}+h_tA \right\|_{\infty} needs to be less than or equal to 11, then ∥ℐ+htA∥∞≤1⟹2ṽ−1≤1⟹ṽ≤1\left\| \mathcal{I}+h_tA \right\|_{\infty}\leq 1 \quad \implies \quad 2\tilde{v}-1\leq 1 \quad \implies \quad\tilde{v} \leq 1 which contradicts with the assumption that ṽ>1\tilde{v}>1.

Therefore, the Euler method will produce a convergent solution if ṽ<1⟹vhthx<1.\tilde{v} < 1 \quad \implies \quad v\frac{h_t}{h_x}<1. In terms of number of spatial and temporal points NxN_x and NtN_t respectively, this restriction would be vtf−t0L−x0NxNt<1v \frac{t_f-t_0}{L-x_0} \frac{N_x}{N_t} < 1 So for a fixed velocity vv, if the time step hth_t is to be halved, then the spatial step would also need to be halved as well.

11.4.2 Stability of the Euler Method for the Heat Equation

Consider the matrix A1A_1 of size N×NN \times N from the heat equation A1=(−21…001−2…00⋮⋮⋱⋮⋮00…−2100…1−2).
A_1=\begin{pmatrix}
 -2 & 1 & \dots & 0 & 0 \\
 1 & -2 & \dots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \dots & -2 & 1 \\
 0 & 0 & \dots & 1 & -2 \\
\end{pmatrix}.
 The steps of the Gershgorin theorem can be followed to produce the following figure on the complex plane. [image:] Once again, this shows that all the eigenvalues will have negative real parts even though their explicit values are not known.

To determine the bound on the stepsize, consider the heat equation after the discretisation, which is d𝐔dt=A𝐔+𝐛\frac{\mathrm{d} \boldsymbol{U}}{\mathrm{d} t}=A\boldsymbol{U}+\boldsymbol{b} where A=αhx2A1A=\frac{\alpha}{h_x^2}A_1. The Euler method is numerically stable if the time step hth_t satisfies ∥ℐ+htA∥∞≤1.\left\| \mathcal{I}+h_t A \right\|_{\infty} \leq 1. First calculate ℐ+htA\mathcal{I}+h_t A: ℐ+htA=ℐ+αhthx2A1=(1−2α̃α̃0…000α̃1−2α̃α̃…0000α̃1−2α̃…000⋮⋮⋮⋱⋮⋮⋮000…0α̃1−2α̃)
\mathcal{I}+h_t A=\mathcal{I}+\frac{\alpha h_t}{h_x^2}A_1=
\begin{pmatrix}
 1-2\tilde{\alpha} & \tilde{\alpha} & 0 & \dots & 0 & 0 & 0 \\
 \tilde{\alpha} & 1-2\tilde{\alpha} & \tilde{\alpha} & \dots & 0 & 0 & 0 \\
 0 & \tilde{\alpha} & 1-2\tilde{\alpha} & \dots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\
 0 & 0 & 0 & \dots & 0& \tilde{\alpha} & 1-2\tilde{\alpha}
\end{pmatrix}
 where α̃=αhthx2\tilde{\alpha}=\frac{\alpha h_t}{h_x^2}. Now taking the absolute value of all the terms and taking the row sums gives: abs(ℐ+αhthx2A1)=(|1−2α̃|α̃0…000α̃|1−2α̃|α̃…0000α̃|1−2α̃|…000⋮⋮⋮⋱⋮⋮⋮000…0α̃|1−2α̃|)→α̃+|1−2α̃|→2α̃+|1−2α̃|→2α̃+|1−2α̃|⋮→α̃+|1−2α̃|.
\mathrm{abs}\left(\mathcal{I}+\frac{\alpha h_t}{h_x^2}A_1 \right)=
\begin{pmatrix}
 |1-2\tilde{\alpha}| & \tilde{\alpha} & 0 & \dots & 0 & 0 & 0 \\
 \tilde{\alpha} & |1-2\tilde{\alpha}| & \tilde{\alpha} & \dots & 0 & 0 & 0 \\
 0 & \tilde{\alpha} & |1-2\tilde{\alpha}| & \dots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\
 0 & 0 & 0 & \dots & 0& \tilde{\alpha} & |1-2\tilde{\alpha}|
\end{pmatrix}\begin{matrix}
 \to \; \; \tilde{\alpha}+|1-2\tilde{\alpha}| \\ \to 2\tilde{\alpha}+|1-2\tilde{\alpha}|\\ \to 2\tilde{\alpha}+|1-2\tilde{\alpha}|\\ \vdots \\ \to \; \; \tilde{\alpha}+|1-2\tilde{\alpha}|.
\end{matrix}
 The row sums of the absolute terms of this matrix are a=α̃+|1−2α̃|andb=2α̃+|1−2α̃|.a=\tilde{\alpha}+|1-2\tilde{\alpha}| \quad \text{and} \quad b=2\tilde{\alpha}+|1-2\tilde{\alpha}|. Since tildeα>0tilde{\alpha}>0, then b>ab>a and therefore, ∥ℐ+htA∥∞=b=2α̃+|1−2α̃|\left\| \mathcal{I}+h_tA \right\|_{\infty}=b=2\tilde{\alpha}+|1-2\tilde{\alpha}|. Consider the two cases 1−2α̃>01-2\tilde{\alpha}>0 and 1−2α̃<01-2\tilde{\alpha}<0.

	If 1−2α̃>01-2\tilde{\alpha}>0, then 0<α̃<120<\tilde{\alpha}<\frac{1}{2}: ∥ℐ+htA∥∞=|1−2α̃|+2α̃=1−2α̃+2α̃=1,\left\| \mathcal{I}+h_tA \right\|_{\infty}=|1-2\tilde{\alpha}|+2\tilde{\alpha}=1-2\tilde{\alpha}+2\tilde{\alpha}=1, therefore ∥ℐ+htA∥∞≤1\left\| \mathcal{I}+h_tA \right\|_{\infty} \leq 1.

	If 1−2α̃<01-2\tilde{\alpha}<0, then α̃>12\tilde{\alpha}>\frac{1}{2}: ∥ℐ+htA∥∞=|1−2α̃|+2α̃=2α̃−1+2α̃=4α̃−1,\left\| \mathcal{I}+h_tA \right\|_{\infty}=|1-2\tilde{\alpha}|+2\tilde{\alpha}=2\tilde{\alpha}-1+2\tilde{\alpha}=4\tilde{\alpha}-1, therefore in this case, if ∥ℐ+htA∥∞\left\| \mathcal{I}+h_tA \right\|_{\infty} needs to be less than or equal to 11, then ∥ℐ+htA∥∞≤1⟹4α̃−1≤1⟹α̃≤12\left\| \mathcal{I}+h_tA \right\|_{\infty}\leq 1 \quad \implies \quad 4\tilde{\alpha}-1\leq 1 \quad \implies \quad\tilde{\alpha} \leq \frac{1}{2} which contradicts with the assumption that α̃>12\tilde{\alpha}>\frac{1}{2}.

This means that the Euler method produces a stable convergent solution if α̃<12⟹αhthx2<12.\tilde{\alpha} < \frac{1}{2} \quad \implies \quad \alpha\frac{h_t}{h_x^2}<\frac{1}{2}. In terms of number of spatial and temporal points NxN_x and NtN_t respectively, this restriction would be 2αtf−t0(L−x0)2Nx2Nt<12 \alpha \frac{t_f-t_0}{(L-x_0)^2} \frac{N_x^2}{N_t} < 1 So for a fixed diffusivity α\alpha, if the time step hth_t is to be halved, then the spatial step would should be quartered.

11.5 Stability of the Convection-Diffusion Equation

Now that it has been established that both the heat and advection equations are asymptotically stable and the stepsize bounds have been found, it is time to combine both cases to tackle the convection-diffusion equation.

When discretised, the convection-diffusion equation can be written as d𝐔dt=A𝐔+𝐛\frac{\mathrm{d} \boldsymbol{U}}{\mathrm{d} t}=A\boldsymbol{U}+\boldsymbol{b} where the matrix AA is given by A=αhx2(−21…001−2…00⋮⋮⋱⋮⋮00…−2100…1−2)+vhx(−10…001−1…00⋮⋮⋱⋮⋮00…−1000…1−1).
A=\frac{\alpha}{h_x^2}\begin{pmatrix}
 -2 & 1 & \dots & 0 & 0 \\
 1 & -2 & \dots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \dots & -2 & 1 \\
 0 & 0 & \dots & 1 & -2 \\
\end{pmatrix}+\frac{v}{h_x}\begin{pmatrix}
 -1 & 0 & \dots & 0 & 0 \\
 1 & -1 & \dots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \dots & -1 & 0 \\
 0 & 0 & \dots & 1 & -1 \\
\end{pmatrix}.

The Gershgorin theorem can be applied to the matrix AA to show that all the eigenvectors have negative real parts. Indeed, A=(−2α̂−v̂α̂0…000α̂+v̂−2α̂−v̂α̂…0000α̂+v̂−2α̂−v̂…000⋮⋮⋮⋱⋮⋮⋮000…0α̂+v̂−2α̂−v̂).
A=
\begin{pmatrix}
 -2\hat{\alpha}-\hat{v} & \hat{\alpha} & 0 & \dots & 0 & 0 & 0 \\
 \hat{\alpha}+\hat{v} & -2\hat{\alpha}-\hat{v} & \hat{\alpha} & \dots & 0 & 0 & 0 \\
 0 & \hat{\alpha}+\hat{v} & -2\hat{\alpha}-\hat{v} & \dots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\
 0 & 0 & 0 & \dots & 0& \hat{\alpha}+\hat{v} & -2\hat{\alpha}-\hat{v}
\end{pmatrix}.
 where α̂=αhx2\hat{\alpha}=\frac{\alpha}{h_x^2} and v̂=vhx\hat{v}=\frac{v}{h_x}. By the Gershgorin theorem, the centres of the circles will be located at the diagonal terms, namely at −2α̂−v̂-2\hat{\alpha}-\hat{v} with the radii α̂\hat{\alpha}, α̂+v̂\hat{\alpha}+\hat{v} and 2α̂+v̂2\hat{\alpha}+\hat{v}. The largest radius is 2α̂+v̂2\hat{\alpha}+\hat{v} which means that all the eigenvalues will be negative as shown below. Therefore the convection-diffusion equation is asymptotically stable.

[image:]

To find the bound for the stepsizes, consider the convection-diffusion equation after the discretisation d𝐔dt=A𝐔+𝐛\frac{\mathrm{d} \boldsymbol{U}}{\mathrm{d} t}=A\boldsymbol{U}+\boldsymbol{b} where A=αhx2A1+vhxA2A=\frac{\alpha}{h_x^2}A_1+\frac{v}{h_x}A_2. The Euler method is numerically stable if the time step hth_t satisfies ∥ℐ+htA∥∞≤1.\left\| \mathcal{I}+h_t A \right\|_{\infty} \leq 1. Calculating ℐ+htA\mathcal{I}+h_t A: ℐ+htA=(1−2α̃−ṽα̃0…000α̃+ṽ1−2α̃−ṽα̃…0000α̃+ṽ1−2α̃−ṽ…000⋮⋮⋮⋱⋮⋮⋮000…1−2α̃−ṽα̃0000…α̃+ṽ1−2α̃−ṽα̃000…0α̃+ṽ1−2α̃−ṽ)
\mathcal{I}+h_t A=
\begin{pmatrix}
 1-2\tilde{\alpha}-\tilde{v} & \tilde{\alpha} & 0 & \dots & 0 & 0 & 0 \\
 \tilde{\alpha}+\tilde{v} & 1-2\tilde{\alpha}-\tilde{v} & \tilde{\alpha} & \dots & 0 & 0 & 0 \\
 0 & \tilde{\alpha}+\tilde{v} & 1-2\tilde{\alpha}-\tilde{v} & \dots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\
 0 & 0 & 0 & \dots & 1-2\tilde{\alpha}-\tilde{v} & \tilde{\alpha} & 0\\
 0 & 0 & 0 & \dots & \tilde{\alpha}+\tilde{v} & 1-2\tilde{\alpha}-\tilde{v} & \tilde{\alpha} \\
 0 & 0 & 0 & \dots & 0& \tilde{\alpha}+\tilde{v} & 1-2\tilde{\alpha}-\tilde{v}
\end{pmatrix}
 where α̃=αhthx2\tilde{\alpha}=\frac{\alpha h_t}{h_x^2} and ṽ=vhthx\tilde{v}=\frac{v h_t}{h_x}. Taking the absolute value of all the terms and adding the rows gives abs(ℐ+htA)=(|1−2α̃−ṽ|α̃0…000α̃+ṽ|1−2α̃−ṽ|α̃…0000α̃+ṽ|1−2α̃−ṽ|…000⋮⋮⋮⋱⋮⋮⋮000…0α̃+ṽ|1−2α̃−ṽ|)→α̃+|1−2α̃−ṽ|→2α̃+ṽ+|1−2α̃−ṽ|→2α̃+ṽ+|1−2α̃−ṽ|⋮→α̃+ṽ+|1−2α̃−ṽ|.\begin{multline*}
\mathrm{abs}\left(\mathcal{I}+h_t A \right)=
\begin{pmatrix}
 |1-2\tilde{\alpha}-\tilde{v}| & \tilde{\alpha} & 0 & \dots & 0 & 0 & 0 \\
 \tilde{\alpha}+\tilde{v} & |1-2\tilde{\alpha}-\tilde{v}| & \tilde{\alpha} & \dots & 0 & 0 & 0 \\
 0 & \tilde{\alpha}+\tilde{v} & |1-2\tilde{\alpha}-\tilde{v}| & \dots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\
 0 & 0 & 0 & \dots & 0& \tilde{\alpha}+\tilde{v} & |1-2\tilde{\alpha}-\tilde{v}|
\end{pmatrix}\\\begin{matrix}
\to \; \; \; \; \; \; \; \; \tilde{\alpha} +|1-2\tilde{\alpha}-\tilde{v}| \\ \to 2\tilde{\alpha}+\tilde{v}+|1-2\tilde{\alpha}-\tilde{v}|\\ \to 2\tilde{\alpha}+\tilde{v}+|1-2\tilde{\alpha}-\tilde{v}|\\ \vdots \\ \to \; \; \tilde{\alpha}+\tilde{v}+|1-2\tilde{\alpha}-\tilde{v}|
\end{matrix}.
\end{multline*}

The row sums of the absolute terms of this matrix are a=α̃+|1−2α̃−ṽ|,b=2α̃+ṽ+|1−2α̃−ṽ|andc=α̃+ṽ+|1−2α̃−ṽ|.a=\tilde{\alpha}+|1-2\tilde{\alpha}-\tilde{v}|, \quad b=2\tilde{\alpha}+\tilde{v}+|1-2\tilde{\alpha}-\tilde{v}| \quad \text{and} \quad c=\tilde{\alpha}+\tilde{v}+|1-2\tilde{\alpha}-\tilde{v}|. Since α̃>0\tilde{\alpha}>0 and ṽ>0\tilde{v}>0, then b>c>ab>c>a, therefore, ∥ℐ+htA∥∞=b=2α̃+ṽ+|1−2α̃−ṽ|\left\| \mathcal{I}+h_tA \right\|_{\infty}=b=2\tilde{\alpha}+\tilde{v}+|1-2\tilde{\alpha}-\tilde{v}|. Consider the two cases 1−2α̃−ṽ>01-2\tilde{\alpha}-\tilde{v}>0 and 1−2α̃−ṽ<01-2\tilde{\alpha}-\tilde{v}<0.

	If 1−2α̃−ṽ>01-2\tilde{\alpha}-\tilde{v}>0, then 2α̃+ṽ<12\tilde{\alpha}+\tilde{v}<1: ∥ℐ+htA∥∞=|1−2α̃−ṽ|+2α̃+ṽ=1−2α̃−ṽ+2α̃+ṽ=1,\left\| \mathcal{I}+h_tA \right\|_{\infty}=|1-2\tilde{\alpha}-\tilde{v}|+2\tilde{\alpha}+\tilde{v}=1-2\tilde{\alpha}-\tilde{v}+2\tilde{\alpha}+\tilde{v}=1, therefore ∥ℐ+htA∥∞≤1\left\| \mathcal{I}+h_tA \right\|_{\infty} \leq 1.

	If 1−2α̃−ṽ<01-2\tilde{\alpha}-\tilde{v}<0, then 2α̃+ṽ>12\tilde{\alpha}+\tilde{v}>1: ∥ℐ+htA∥∞=|1−2α̃−ṽ|+2α̃+ṽ=2α̃+ṽ−1+2α̃+ṽ=4α̃+2ṽ−1,\left\| \mathcal{I}+h_tA \right\|_{\infty}=|1-2\tilde{\alpha}-\tilde{v}|+2\tilde{\alpha}+\tilde{v}=2\tilde{\alpha}+\tilde{v}-1+2\tilde{\alpha}+\tilde{v}=4\tilde{\alpha}+2\tilde{v}-1, therefore in this case, if ∥ℐ+htA∥∞\left\| \mathcal{I}+h_tA \right\|_{\infty} needs to be less than or equal to 11, then ∥ℐ+htA∥∞≤1⟹4α̃+2ṽ−1≤1⟹2α̃+ṽ≤1\left\| \mathcal{I}+h_tA \right\|_{\infty}\leq 1 \quad \implies \quad 4\tilde{\alpha}+2\tilde{v}-1\leq 1 \quad \implies \quad 2\tilde{\alpha}+\tilde{v} \leq 1 which contradicts with the assumption that 2α̃+ṽ>12\tilde{\alpha}+\tilde{v}>1.

This means that the Euler method will produce a stable convergent solution if 2α̃+ṽ<1⟹2αhthx2+vhthx<1.2\tilde{\alpha}+\tilde{v} < 1 \quad \implies \quad 2\alpha\frac{h_t}{h_x^2}+v\frac{h_t}{h_x}<1. This means that a choice can be made with regards to the bounds of the different components, for instance, the values of hxh_x and hth_t can be chosen such that α̃<14andṽ<12orα̃<13andṽ<13\tilde{\alpha}<\frac{1}{4} \quad \text{and} \quad \tilde{v}<\frac{1}{2} \quad \text{or} \quad \tilde{\alpha}<\frac{1}{3} \quad \text{and} \quad \tilde{v}<\frac{1}{3} or any combination thereof provided that the choices satisfy the inequality 2α̃+ṽ<12\tilde{\alpha}+\tilde{v} < 1.

Bound for Convection-Diffusion

Consider the convection-diffusion equation ∂u∂t=0.1∂2u∂x2−0.5∂u∂xt∈[0,10]x∈[−2,2]
\frac{\partial u}{\partial t}=0.1\frac{\partial^{2} u}{\partial x^{2}}-0.5\frac{\partial u}{\partial x} \quad
\begin{matrix}
 t \in [0,10] \\ x \in [-2,2]
\end{matrix}
 u(x,0)=uinit(x)=10,u(−2,t)=ul(t)=1,u(2,t)=ur(t)=0.u(x,0)=u_{init}(x)=10, \quad u(-2,t)=u_l(t)=1, \quad u(2,t)=u_r(t)=0. This can be discretised to give d𝐔dt=A𝐔\frac{\mathrm{d} \boldsymbol{U}}{\mathrm{d} t}=A\boldsymbol{U} where ddt(U1(t)U2(t)⋮UN−1(t)UN(t))⏟𝐔
\frac{\mathrm{d} }{\mathrm{d} t}\underbrace{\begin{pmatrix}
 U_1(t) \\
 U_2(t) \\
 \vdots \\
 U_{N-1}(t) \\
 U_N(t)
\end{pmatrix}}_{\boldsymbol{U}} =[0.1hx2(−21…001−2…00⋮⋮⋱⋮⋮00…−2100…1−2)+0.5hx(−10…001−1…00⋮⋮⋱⋮⋮00…−1000…1−1)]⏟A(U1(t)U2(t)⋮UN−1(t)UN(t))⏟𝐔=
\underbrace{\left[\frac{0.1}{h_x^2}\begin{pmatrix}
 -2 & 1 & \dots & 0 & 0 \\
 1 & -2 & \dots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \dots & -2 & 1 \\
 0 & 0 & \dots & 1 & -2 \\
\end{pmatrix}+\frac{0.5}{h_x}\begin{pmatrix}
 -1 & 0 & \dots & 0 & 0 \\
 1 & -1 & \dots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \dots & -1 & 0 \\
 0 & 0 & \dots & 1 & -1 \\
\end{pmatrix}\right]}_{A}
\underbrace{\begin{pmatrix}
 U_1(t) \\
 U_2(t) \\
 \vdots \\
 U_{N-1}(t) \\
 U_N(t)
\end{pmatrix}}_{\boldsymbol{U}}
 subject to 𝐔(0)=(uinit(x1)uinit(x2)⋮uinit(xN−1)uinit(xN))whereuinit(x)=10.
 \boldsymbol{U}(0)=\begin{pmatrix}
 u_{init}(x_1) \\
 u_{init}(x_2) \\
 \vdots \\
 u_{init}(x_{N-1}) \\
 u_{init}(x_{N}) \\
 \end{pmatrix} \quad \text{where} \quad u_{init}(x)=10.
 As yet, the value of NN has not been put forward since the stepsizes need to be established first. For a stable Euler method, the stepsizes hth_t and hxh_x need to satisfy 2αhthx2+vhthx<1⟹2hthx+5hthx2<10.2\alpha\frac{h_t}{h_x^2}+v\frac{h_t}{h_x} < 1 \quad \implies \quad 2\frac{h_t}{h_x}+5\frac{h_t}{h_x^2}<10. If ht=2.5×10−5h_t=2.5\times 10^{-5} and hx=0.02h_x=0.02 (which corresponds to Nt=40000N_t=40000 and Nx=100N_x=100), then the Euler method will be stable.

1. The thermal diffusivity will always be regarded as a constant and usually takes the form α=kρCp\alpha=\frac{k}{\rho Cp} where kk is the thermal conductivity, ρ\rho is the density of the material and CpCp is the specific heat capacity.

 ch017.xhtml

Appendix A — MATLAB Basics

This Appendix will cover some of the basic procedures in MATLAB.

A.1 Command Window

When MATLAB is opened, you will be faced with a window containing several parts.

[image:]

Figure A.1: Default MATLAB layout.

These different areas serve the following purpose:

	Command Window: This is the main window where the first line starts with >>. This is where commands are executed, note that once a command has been run (i.e. you pressed Enter), then what has been written cannot be edited or undone and therefore, this is a suitable space for running or executing codes only, not for writing extensive codes.

	Directory: This is the destination folder that MATLAB is going to refer to in either opening or saving codes. Note that all MATLAB files are saved as .m files.

	Current Folder: This displays the functions, figures, subfolders, scripts, codes, etc. that are in the current directory.

	Workspace: This displays all the the variables that have been used, along with their types (number, matrix, etc.) and their values.

A.2 Executing Commands in the Command Window

The command window will be where all the codes and functions are executed. It can also be used to perform quick calculations. Some examples of MATLAB syntax and built-in functions are shown below:

	Mathematical Symbol
	MATLAB Syntax

	++
	+

	−-
	-

	×\times
	*

	÷\div
	/

	353^5
	3^5

	π\pi
	pi

	e2\mathrm{e}^2
	exp(2)

	sin(π)\sin(\pi)
	sin(pi)

	sin−1(π)\sin^{-1}(\pi)
	asin(pi)

	⌊3.6⌋\lfloor 3.6 \rfloor
	floor(3.6)

	⌈4.7⌉\lceil 4.7 \rceil
	ceil(4.7)

	|−4|\left| -4 \right|
	abs(-4)

	1+2i1+2\mathrm{i}
	1+2i

	i\mathrm{i}
	0+i

	ℜ(1+2i)\Re(1+2\mathrm{i})
	real(1+2i)

	ℑ(3−4i)\Im(3-4\mathrm{i})
	imag(3-4i)

	2×1072 \times 10^7
	2e7

	147(mod5)147 \; (\mathrm{mod} \; 5)
	mod(147,5)

All trigonometric functions follow the same syntax as sin, but bear in mind that by default, all the angles should be in radians and not in degrees. To use degrees, just put a d at the end of the trigonometric function, i.e. use sind, cosd, asind, etc.

The functions ⌈•⌉\lceil \bullet \rceil and ⌊•⌋\lfloor \bullet \rfloor are the ceiling and floor functions respectively. Their purpose is to round up to the nearest integer (ceiling) or round down to the nearest integer (floor). Standard rounding can be done using round.

Another important function is mod which find the remainder when dividing one number by another. For example, 147(mod5)147 \; (\mathrm{mod} \; 5) is the remainder after dividing 147147 by 55 which is 22.

>> 2+2
ans =
 4
>> sin(0)
ans =
 0
>> sin(pi/2)
ans =
 1
>> sin(30)
ans =
 -0.9880
>> sind(30)
ans =
 0.5000
>> pi
ans =
 3.1416
>> exp(1)
ans =
 2.7813
>> ceil(2.1)
ans =
 3
>> floor(6.9)
ans =
 6
>> round(2.3)
ans =
 2
>> mod(147,5)
ans =
 2

If the outcome of a calculation is an integer, then MATLAB will usually display it as an integer, if not, then by default, it will display the solution as a number to 4 decimal places. The number of decimal places can be increased by using format long and reversed by using format short.

Note

Note that any command executed in the Command Window will be applied globally, so if format long is used, it will apply to everything executed in the Command Window until it is reversed or MATLAB is restarted.

>> pi/2
ans =
 1.5708
>> format long
>>pi/2
ans =
 1.570796326794897
>> format short
>> pi/2
ans =
 1.5708

A.3 Defining Variables

MATLAB is a numerical programming language that relies on a “box” feature. This means that standard algebraic practices cannot be used, for instance, writing 2x=x+12x=x+1 makes perfect sense mathematically and yields a solution of x=1x=1, however writing 2*x=x+1 makes no sense in MATLAB.

Note

A very important note to bear in mind here is that in MATLAB syntax, 2x has no meaning. In order to multiply terms, the multiplication sign * needs to be used.

A “box” with a given name, which is always on the left hand side of the = sign, is assigned a value, which is on the right hand side, and the value can then be manipulated or changed, so there are no variables in MATLAB per se. In the following example, a “box” is given the name x and the number 3 is assigned to it, calculations can then be done by referring to the number that is in said box. The values within the boxes can be redefined by using the = sign again.

>> x=3
x =
 3
>> x+1
ans =
 4
>> x+x
ans =
 6
>> 3*x
ans =
 9
>> y=(2*x)^x
y =
 216
>> y+10
ans =
 226

On the other hand, x=x+2x=x+2 makes no sense mathematically but within MATLAB syntax (as is the case with most other programming languages), this simply means calculate x+2 (which is on the right hand side of the = sign) using the value already in the box labelled x (which is 3), then redefine the value in that same box to take this new value, so the box labelled x is now assigned the value 5.

>> x=3
x =
 3
>> x=x+2
x =
 5
>> x=3*x
x =
 15

A.4 Naming Variables

There are certain rules with regards to what names can be used for the variables:

	Names can be of any length (within the bounds of reason of course to avoid confusion).

	Names are case sensitive, so a and A are two different variable names.

	Names must contain no spaces, underscores can be used instead. For example, Bad Name is not a viable variable name but GoodName and Also_A_Good_Name are both valid.

	Names must contain no operators or symbols, with the exception of the underscore, so do not use ! ? . , ; + - * / & # % $.

	Names can contain numbers as long as they are not the first character. For example 1Forrest1 is not a viable variable name but OneForrest1 or Obi1Kenobi are both viable.

	Names cannot be the same as already existing functions, for instance, a variable cannot be given the name sin since there is already a built-in function with that same name, however, one could use Sin since variable names are case sensitive (although this particular example is not recommended since it may cause confusion).

>> P_1=1
P_1 =
 1
>> P_2=P_1+2
P_2 =
 3
>> PP_3=P_1+p_2
Undefined function or variable 'p_2'.
>> PP_3=P_1+P_2
PP_3 =
 4

Typing whos x in the command window will give the properties of x, namely its size (in a matrix sense), storage allocation, class and attributes, but not its value. Typing whos on its own will give a list of all the variables that have been used along with their properties, alternatively, these can also be found in the Workspace.

A.5 Scripts & Functions

Within the command window, nothing can be edited once it has been executed which is inconvenient if the code is longer than a single line. In that case, it is best to use the Editor. By default, the Editor can be opened by clicking on New Script, this is a window in which any length of code can be written, saved and then executed with the Run button. If any changes need to be made then the editor window will allow that with ease, once changes are made, the code can be run again.

A function is very similar to a script but the difference between them is that a function can take in several inputs and produce several outputs and must always have the format:

function [output1,output2,...]=Function_Name(input1,input2,...)
 Body of the code
end

The function cannot always be executed with the Run button but will often need to be called in the Command Window to allow for the inputs to be placed.

The name of the function follows the same rules as the variable names mentioned before. One of the most important technicalities that has to be addressed is that the functions and scripts that are used must be in the same as folder as is stated in the directory.

When writing functions, or scripts of any kind, there are two important characteristics that need to be considered:

	Commentary: When writing codes, it is important to provide some comments on what is being done to give context and to allow for accessibility and reproducibility. This can be done by using % at the beginning of the line. This makes MATLAB ignore everything that comes after it, allowing for commentary of bits of code that need context. This is generally good practice in writing codes since the user can make comments about inputs, outputs, procedures, etc. without affecting the execution of the code.

	Suppression: On MATLAB, any line of code that is written will produce an output (many other coding languages do not unless prompted to do so). So in functions, performing an action will always produce an output whether it is needed or not. This is where semicolon ; can be used. The semi-colon suppresses the output, this means that if there are several calculations to be made, sometimes the intermediate stages do not need to be seen, only the final answer, in this case the semicolon allows the calculation to be done but not printed out in the command window.

Example of function

Consider a cube with side length LL (in m) and mass MM (in kg), then the object will have density ρ=ML3.\rho=\frac{M}{L^3}. The following code calculates this density with the inputs being the mass MM and length LL with the output being the density rhorho:

function [rho]=Calculate_Density(M,L)

% M: Mass of cube in kg
% L: Side length of cube in m

rho = M/(L^3);

end

This function, which is called Calculate_Density, has two inputs, namely M and L, and one output, namely rho. Notice that the list of inputs must always be in round brackets (...) while the outputs should be in square brackets [...].

To use this function, just type the name of the function in the command window with the inputs and outputs in exactly the same order in which they appear in the function and using the same set of brackets as well, i.e. (...) for inputs and [...] for outputs.

>> [rho] = Calculate_Density(100,20)
rho =
 0.0125

Expanding on this, suppose that a new function is desired where the user will input the mass in pounds and the length in inches but the desired density should still be in kgm−2\mathrm{kg \; m}^{-2}. A few more lines can be added in that case.

function [rho]=Calculate_Density_Imperial(M,L)

% M: Mass of cube in lbs
% L: Side length of cube in inches

M = M/2.20462; % Converts lbs to kg
L = L/39.3701; % Converts inches to m

rho = M/(L^3);

end

Note that here, the same variable name has been used and then redefined. So initially, M will be input in pounds, say M=50, then at line 6, the same variable name is redefined, so the new mass will be M=502.20462=22.6796M=\frac{50}{2.20462}=22.6796, but the same name is used for both. Similarly for L when it is converted from inches to meters.

In this case, the function can be executed with a mass of 50lbs and a side length of 10in to give:

>> [rho] = Calculate_Density_Imperial(50,10)
rho =
 1.3840e+03

One of the major differences in using scripts and functions is the assignment of variables and their declaration. In a script, if a variable CC was given the value 3 (so C=3 was in the script) then this value of CC will be declared globally, meaning that it can be used in the command window and it will still take the same value. However in functions, the variables are declared locally, so if in a function the variable CC was given the value 3, this will only hold within the function itself and no where outside it.

A.6 Exersises

Excersise 1: Metric Cone

Write a MATLAB function that takes inputs hh and rr and outputs the volume of a cone (in cubic meters) with height hh in meters and radius rr in meters.

Test the code on a cone with height 5m, radius 3m (which should give a volume of 47.1238898m3\mathrm{m}^3.

Solution 1

function [V]=Cone_Vol1(h,r)

% This function caculates the volume of a cone in m^3

% Inputs:
% h: Height of the cone in m
% r: Radius of the cone in m

% Output:
% V: Volume of the cone in m^3

V=pi*(r^2)*h/3;

end

Code test with h=5h=5 and r=3r=3:

>> [V]=Cone_Vol1(5,3)
V =
 47.129

Excersise 2: Imperial Cone

Write a MATLAB function that takes inputs hh and rr and outputs the volume of a cone (in cubic meters) with height hh in inches and diameter dd in yards.

Test the code on a cone with height 10in, diameter 1yd (which should give a volume of 0.0556m3\mathrm{m}^3.

Solution 2

function [V]=Cone_Vol2(h,d)

% This function caculates the volume of a cone in m^3

% Inputs:
% h: Height of the cone in inches
% d: Diamater of the cone in yards

% Convert h from inches to metres
h = h*0.0254;

% Convert d from yards to metres
d = d*0.9144;

% Radius of cone base is half the diameter
r = d/2;

% Output:
% V: Volume of the cone in m^3

V=pi*(r^2)*h/3;

end

Code test with h=10h=10 and d=1d=1:

>> [V]=Cone_Vol2(10,1)
V =
 0.0556

 ch018.xhtml

Appendix B — Arrays in MATLAB

MATLAB is one of the most versatile programming languages when it comes to working with vectors and matrices, hence the name MATLAB, particularly MATrix LABoratory. In MATLAB, vectors essentially represent lists and matrices represent tables.

B.1 Vectors

To form a vector, use square brackets and separate the terms using commas to form a row vector or semicolons to form a column vector.

>> v=[1,2,3,4]
v =
 1 2 3 4
>> u=[1;2;3;4]
u =
 1
 2
 3
 4

An algebraic sequence (a sequence where the consecutive terms differ by a fixed value) can be formed into a vector by using colons as v=a:n:b. This forms a vector v where the first term is a, then next term is a+n, then a+2*n, etc. until b is reached. If the sequence goes beyond b, then b is ignored and the last term before b will be the last term of the sequence. Note that v=a:b will produce a row vector from a to b in steps of 1.

>> u=[1:1:10]
u =
 1 2 3 4 5 6 7 8 9 10
>> v=[20:3:30]
v =
 20 23 26 29
>> w=[100:-20:-40]
w =
 100 80 60 40 20 0 -20 -40

Some useful operations that can be applied to vectors are: For a vector v:

	abs(v) takes the absolute value of all the terms of the vector v.

	v' takes the transpose of the vector 𝐯\boldsymbol{v}, namely 𝐯T\boldsymbol{v}^{\mathrm{T}}, so it changes 𝐯\boldsymbol{v} from a row vector to a column vector and vice versa.

	length(v) finds how many terms there are in the vector v.

	max(v) finds the maximum value in the vector v while min(v) finds the minimum value.

	[a,b]=max(v) produces two outputs, a which is the maximum value in the vector v and b which is its location in v, similarly with [a,b]=min(v). (Note that in MATLAB, array positions start from 1, unlike Python which starts from 0.)

	sum(v) takes the sum of all the terms in the vector v.

	mean(v) takes the mean of all the terms in the vector v.

	median(v) takes the median of all the terms in the vector v.

	sort(v) orders the terms of v in ascending order.

	sort(v,'descend') orders the terms of v in descending order.

	norm(v) finds the magnitude of the vector v. Recall that for a vector 𝐯=(v1,v2,…,vN)\boldsymbol{v}=(v_1, v_2, \dots, v_N), the magnitude of the vector 𝐯\boldsymbol{v} is given by: |𝐯|=∑n=1N|vn|2=v12+v22+…+vN2.|\boldsymbol{v}|=\sqrt{\sum_{n=1}^N{|v_n|^2}}=\sqrt{v_1^2+v_2^2+\dots+v_N^2}.

	norm(v,p) finds the pp-norm of the vector v. Recall that for a vector v=(v1,v2,…,vN)v=(v_1, v_2, \dots, v_N) and a positive integer pp, the pp-norm of 𝐯\boldsymbol{v}, denoted ||𝐯||p||\boldsymbol{v}||_p is given by ||𝐯||p=∑n=1N|vn|pp=v1p+v2p+…+vNpp.||\boldsymbol{v}||_{p}=\sqrt[p]{\sum_{n=1}^N{|v_n|^p}}=\sqrt[p]{v_1^p+v_2^p+\dots+v_N^p}. Note that norm(v) is the default 2-norm whereas norm(V,inf) is the sup-norm1 (also known as the Chebyshev norm or infinity norm).

>> v=[2,-8,6,-2,-9,4]
v =
 2 -8 6 -2 -9 4
>> abs(v)
ans =
 2 8 6 2 9 4
>> v'
ans =
 2
 -8
 6
 -2
 -9
 4
>> (v')'
ans =
 2 -8 6 -2 -9 4
>> length(v)
ans =
 6
>> max(v)
ans =
 6
>> [a,b]=max(v)
a =
 6
b =
 3
>> min(v)
ans =
 -9
>> [a,b]=min(v)
a =
 -9
b =
 5
>> sum(v)
ans =
 -7
>> mean(v)
ans =
 -1.1667
>> median(v)
ans =
 0
>> sort(v)
ans =
 -9 -8 -2 2 4 6
>> sort(v,'descend')
ans =
 6 4 2 -2 -8 -9
>> norm(v)
ans =
 14.3175
>> norm(v,1)
ans =
 31
>> norm(v,inf)
ans =
 9

B.2 Matrices

To form matrices, the same theme follows as with vectors where a comma indicates the next term on the same row and semicolons move to the next row. Be careful to ensure that all the rows have the same number of terms, similarly with the columns.

>> M=[1,2,3;4,5,6;7,8,9]
M =
 1 2 3
 4 5 6
 7 8 9
>> N=[1,2,3,4,5;6,7,8,9,10]
N =
 1 2 3 4 5
 6 7 8 9 10
>> P=[1,2,3;4,5,6;7,8]
Error using vertcat
Dimensions of arrays being concatenated are not consistent.

There are some operations that translate from vectors to matrices, for example, for a matrix M:

	abs(M) takes the absolute value of all the terms of the matrix M.

	M' takes the transpose of the matrix M.

Other functions as not as intuitive, for example, length(M) gives only one output which is either the number of rows or the number of columns, whichever is bigger. Whereas size(M) gives two outputs with the first being the number of rows of M and the second is the number of columns of M.

Some matrix functions are done column-wise, for example, max(M) does not give the maximum value that appears in the matrix, instead it produces a row vector of maxima where the first term is maximum value of all the terms in the first column, the second is the maximum of the second column and so on. This same column-wise approach holds for other functions like min(M), sum(M), mean(M) and sort(M); MATLAB works with the matrix as a collection of column vectors and applies these functions to each column separately. To find the maximum/minimum/sum of all th terms in the entire matrix, then the function will need to be used twice, so the maximum element in the whole matrix can be found by using max(max(M)).

Note that [a,b]=max(M) will give two outputs, the first output a is the vector max(M) as described above and the second output b is the vector of their locations. Similarly for [a,b]=min(M).

Matrix norms are slightly more involved, in terms of their mathematical definition, than vector norms. For a matrix MM of size m×nm \times n and a positive integer pp, the matrix pp-norm imposed by the vector pp-norm is given by ||M||p=sup𝐱∈ℂn||M𝐱||p||𝐱||p||M||_p=\sup_{\boldsymbol{x} \in \mathbb{C}^n} \frac{||M\boldsymbol{x}||_p}{||\boldsymbol{x}||_p}

Calculating these explicitly can be very difficult since it requires using all possible vectors 𝐱∈ℂn\boldsymbol{x} \in \mathbb{C}^n, however, the most useful norms have some closed forms:

	||M||1||M||_1 is the maximum absolute column sum;

	||M||∞||M||_{\infty} is the maximum absolute row sum;

	||M||2||M||_2 is the Spectral Radius of MM (more specifically, it is the square root of the largest eigenvalue of the matrix MHM{M}^{\mathrm{H}}M where MH{M}^{\mathrm{H}} is the Hermitian of MM, or the complex conjugate transpose).

There are other norms that are not imposed by vector norms, like the Frobenius Norm which is the square root of the sum of the squares of the absolute valaue of all the terms, i.e. ||M||F=∑i=1m∑j=1n|mij|2.||M||_F=\sqrt{\sum_{i=1}^{m}\sum_{j=1}^{n} |m_{ij}|^2}. All these norms still use the same syntax as vector norms, i.e. using norm(M,1), norm(M,2), norm(M,inf) and norm(M,'Fro') (with norm(M) being the default 2-norm). This is why it is imperative to be mindful of the context since the same operation can have different meanings depending on whether the input was a vector or a matrix.

>> M=[-4,5;2,9;-6,10]
M =
 -4 5
 2 9
 -6 10
>> abs(M)
M =
 4 5
 2 9
 6 10
>> M'
ans =
 -4 2 -6
 5 9 10
>> size(M)
ans =
 3 2
>> length(M)
ans =
 3
>> max(M)
ans =
 2 10
>> max(max(M))
ans =
 10
>> [a,b]=max(M)
a =
 2 10
b =
 2 3
>> min(M)
ans =
 -6 5
>> min(min(M))
ans =
 -6
>> [a,b]=min(M)
a =
 -6 5
b =
 3 1
>> sum(M)
ans =
 -8 24
>> sum(sum(M))
ans =
 16
>> mean(M)
ans =
 -2.6667 8.0000
>> median(M)
ans =
 -4 9
>> sort(M)
ans =
 -6 5
 -4 9
 2 10
>> sort(M,'descend')
ans =
 2 10
 -4 9
 -6 5
>> norm(M)
ans =
 15.1099
>> norm(M,1)
ans =
 24
>> norm(M,inf)
ans =
 16
>> norm(M,'Fro')
ans =
 16.1864

B.3 Referencing Terms in Arrays

Elements of a vector (row or column) can be referred to by putting the index of the desired element in brackets after the vector’s name. For example, v(4) is the 4th{4}^{\mathrm{th}} element in the vector v.

MATLAB Indexing

Note that in MATLAB, indexing starts from 1, not from 0 like Python.

If the last element of a vector is desired where its size may not be known, then the index end can be used.

>> u=[9;7;0;1]
u =
 9
 7
 0
 1
>> u(1)
ans =
 9
>> u(4)
ans =
 1
>> u(end)
ans =
 1
>> u(6)
Index exceeds array bounds.

For matrices, there are two indices, the first denotes the row number and the second the column number: ((1,1)(1,2)(1,3)…(2,1)(2,2)(2,3)…(3,1)(3,2)(3,3)…⋮⋮⋮⋱)\begin{pmatrix}
 (1,1) & (1,2) & (1,3) & \dots \\
 (2,1) & (2,2) & (2,3) & \dots \\
 (3,1) & (3,2) & (3,3) & \dots \\
 \vdots & \vdots & \vdots & \ddots \\
 \end{pmatrix}

So M(2,3) will output the element of M that is in row 2 and column 3. MATLAB also has the ability to refer to terms in matrices by using one index only. For instance, if a matrix MM is of size 3×43 \times 4, then M(10)M(10) would refer to the “10th10^{\text{th}} element”. Under usual circumstances, this is meaningless unless MM is a vector, however, in this case, MATLAB can refer to the 10th10^{\text{th}} element where the elements start from 1 and work their way down columns as such: ((1)(4)(7)(10)(2)(5)(8)(11)(3)(6)(9)(12))\begin{pmatrix}
 (1) & (4) & (7) & (10) \\
 (2) & (5) & (8) & (11) \\
 (3) & (6) & (9) & (12) \\
 \end{pmatrix}

Therefore, the 10th10^{\text{th}} element of MM would be the element in the 1st1^{\text{st}} row and 4th4^{\text{th}} column for the 3×43 \times 4 matrix. Using this referencing system is certainly not recommended since it can cause issues with different sized matrices.

MATLAB can also refer to whole rows or whole columns, this is done by using :, for example M(:,3) will produce the 3rd3^{\mathrm{rd}} column whereas M(1,:) will produce the 1st1^{\mathrm{st}} row.

>> M=[2,3,1,4;1,6,3,1;4,1,2,8]
M =
 2 3 1 4
 1 6 3 1
 4 1 2 8
>> M(2,3)
ans =
 3
>> M(3,1)
ans =
 4
>> M(end,3)
ans =
 2
>> M(end,end)
ans =
 8
>> M(:,2)
ans =
 3
 6
 1
>> M(3,:)
ans =
 4 1 2 8
>> M(:,end)
ans =
 4
 1
 8
>> M(2)
ans =
 1
>> M(4)
ans =
 3
>> M(12)
ans =
 8

B.4 Matrix Operations

Addition and subtraction of matrices (and vectors) follows the usual mathematical rules, namely, both matrices need to be of the same size and all the terms are added elementwise, i.e. the first term is added to the first term, the second to the second, etc.

>> A=[1,3,7;5,2,6;2,3,2]
A =
 1 3 7
 5 2 6
 2 3 2
>> B=[2,3,1;1,6,3;4,1,2]
B =
 2 3 1
 1 6 3
 4 1 2
>> A+B
ans =
 3 6 8
 6 8 9
 6 4 4

Matrices and vectors can be multiplied or divided by a scalar value using the * and / operations.

>> 2*A
ans =
 2 6 14
 10 4 12
 4 6 4
>> B/2
ans =
 1.00 1.50 0.50
 0.50 3.00 1.50
 2.00 0.50 1.00

Matrix multiplication is carried out using the * operator. Recall that for two matrices AA, of size m×nm \times n, and BB, of size p×qp \times q, the matrix product ABAB is only possible if n=pn=p (i.e. the number of columns of AA is equal to the number of rows of BB) and the resulting matrix ABAB will then be of size m×qm \times q.

>> A*B
ans =
 33 28 24
 36 33 23
 15 26 15

Elementwise multiplication and division of matrices (also known as the Hadamard Operations) is also a possibility in MATLAB. So for matrices AA and BB of the same size, the elementwise product (denoted mathematically as A∘BA \circ B) produces a matrix that is of the same size as AA and BB where the first element is the product of the first element of AA and the first element of BB, the second element is the product of the second element of AA and the second element of BB and so on. This is done using a dot . before the operations, in other words, the elementwise product A∘BA \circ B is written as A.*B, similarly for elementwise division using ./ and elementwise exponentiation using .^. Bear in mind this is only possible if the matrices/vectors are of the same size, just as in addition and multiplication.

>> A.*B
ans =
 2 9 7
 5 12 18
 8 3 4
>> A./B
ans =
 0.50 1.00 7.00
 5.00 0.33 2.00
 0.50 3.00 1.00
>> A.^2
ans =
 1 9 49
 25 4 36
 4 9 4
>> A^2
ans =
 30 30 39
 27 37 59
 21 18 36

There are some special matrices and matrix forms built into MATLAB such as:

	[]: empty vector/matrix which contains no terms, therefore has size 0×00 \times 0 and is usually used as a placeholder.

	zeros(a,b): forms a matrix of zeros with size a ×\times b.

	ones(a,b): forms a matrix of ones with size a ×\times b.

	eye(a,b): forms an identity matrix (ones on the main diagonal, zeros otherwise) of size a ×\times b.

	rand(a,b): forms a matrix of size a ×\times b where all the elements are randomly chosen from a normal distribution whose entries lie between 0 and 1.

	randi([M,N],a,b): forms a matrix of size a ×\times b where all the elements are randomly chosen integers from a normal distribution whose entries lie between M and N.

	diag(v): forms a square matrix whose diagonal entries are the elements of the vector v.

There are also some matrix operations that are very useful such as:

	inv(A): find the inverse of the matrix A.

	det(A): find the determinant of the matrix A.

	trace(A): find the trace of the matrix A (which is the sum of the diagonal entries).

B.5 Substitution & Concatenation

Sometimes, vectors and matrices need to be augmented, either by adding, removing or changing some terms.

For both vectors and matrices, individual values can be substituted and redefined by referring to its index. For example, consider the vector 𝐯\boldsymbol{v} and suppose that its second element is to be changed, this can be done by using v(2)= to assign a new value that will overwrite the original value.

>> v=[1,3,7,5]
v =
 1 3 7 5
>> v(2)
ans =
 3
>> v(2)=8
v =
 1 8 7 5
>> v(4)=0
v =
 1 8 7 0

The same syntax can be used to redefine an element in terms of itself or in terms of others, like defining the second element as twice its original value or setting an element to be the sum of some other elements.

>> v(2)=10*v(2)
v =
 1 80 7 0
>> v(1)=v(3)
v =
 7 80 7 0
>> v(4)=v(1)+v(2)+v(3)
v =
 7 80 7 94

The same can be done with matrices as well where this replacement can either be done by elements, rows or columns.

>> M=[2,1;3,6]
M =
 2 1
 3 6
>> M(1,2)
ans =
 1
>> M(1,2)=4
M =
 2 4
 3 6
>> M(2,2)=0
M =
 2 4
 3 0
>> M(1,:)
ans =
 2 4
>> M(1,:)=[9,1]
M =
 9 1
 3 6
>> M(:,2)
ans =
 1
 6
>> M(:,2)=[4;0]
M =
 9 4
 3 0

Matrices and vectors can also be concatenated or cut, that simply means that terms can be added or removed, this is done by using the comma or semi-colon depending on the situation. Not only can terms be added, but whole rows and columns can be added as well but it is critical that the terms are added in a consistent fashion, meaning that if a new row is to be added, then it must be of the same size as all the other rows otherwise it will not make sense. To remove rows or columns, then simply assign an empty vector, namely [], to the desired location.

>> A=[1,7]
A =
 1 7
>> A=[A,4] % Add 4 to the end
A =
 1 7 4
>> A=[8,A] % Add 8 to the start
A =
 8 1 7 4
>> A=[A;[0,5,7,9]] % Add a new row
A =
 8 1 7 4
 0 5 7 9
>> A=[A,[0;1]] % Add a new column
A =
 8 1 7 4 0
 0 5 7 9 1
>> A(:,3)=[] % Remove third column
A =
 8 1 4 0
 0 5 9 1
>> A(1,:)=[] % Remove first row
A =
 0 5 9 1
>> A(end)=[] % Remove last term
A =
 0 5 9

B.6 Finding Terms

Sometimes, finding some terms is desired, say if the user needs to find all the values in a list that are greater than 5, or less than −1-1, or equal to 2. In this case, the comparative operators should be used which are:

	Operation
	MATLAB Syntax

	Less than
	<

	Less than or equal to
	<=

	Equal to
	==

	Greater than
	>

	Greater than or equal to
	>=

	Not equal to
	~=

These operators need to be used in conjunction with the find function. So for a given vector v, if the terms greater than 5 need to be found, then use find(v>5), this will produce a vector of indices that denote the locations of the values that greater than 5. If there are no such values that satisfy the condition, then an empty vector will be produced, namely []. This can be very useful if, say, all the values greater than 5 need to be multiplied by 10, or all the values that are less than −1-1 need to be changed to 0, or all the values that are equal to 2 need to be removed.

>> v=[1,2,-5,12,-3,2]
v =
 1 2 -5 12 -3 2
>> i=find(v>5)
ans =
 4
>> v(i)
ans =
 12
>> v(i)=10*v(i)
v =
 1 2 -5 120 -3 2
>> j=find(v<-1)
ans =
 3 5
>> v(j)
ans =
 -5 -3
>> v(j)=0
v =
 1 2 0 120 0 2
>> k=find(v==2)
ans =
 2 6
>> v(k)=[]
v =
 1 0 120 0

When finding terms in matrices, MATLAB tends to provide the location in the single index form rather than in the dual form. In other words, if a matrix is of size 3×33 \times 3 and MATLAB needs to refer to the (2,3)(2,3) element (second row, third column), it would display the index as the 7th7^{\text{th}} element. This is an important distinction that needs to be made.

>> M=[2,0,5;-1,2,9;-6,1,-8]
M =
 2 0 5
 -1 2 9
 -6 1 -8
>> m=find(M>5)
m =
 8
>> M(m)
and =
 9
>> M(m)=M(m)*10
M =
 2 0 5
 -1 2 90
 -6 1 -8
>> n=find(M<0)
n =
 2
 3
 9
>> M(n)
ans =
 -1
 -6
 -9
>> M(n)=0
M =
 2 0 5
 0 2 90
 0 1 0

An alternative way of finding terms would be to dispense with the find command altogether. This will produce a binary matrix showing the locations of the terms that satisfy the condition (with 1 being true and 0 being false).

>> A=[1,4,6,9,2;7,3,1,6,0]
A =
 1 4 6 9 2
 7 3 1 6 0
>> find(A>5)
ans =
 2
 5
 7
 8
>> A>5
ans =
 2×5 logical array
 0 0 1 1 0
 1 0 0 1 0

B.7 Exercises

Exersise 1: Matrix Calculations

A=(1258);B=(40−4−101213);C=(1042−26)A=\begin{pmatrix} 1 & 2 \\ 5 & 8 \end{pmatrix} \quad ; \quad B=\begin{pmatrix} 4 & 0 & -4 \\ -1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix} \quad ; \quad C=\begin{pmatrix} 1 & 0 & 4 \\ 2 & -2 & 6 \end{pmatrix} 𝐮=(18);𝐯=(034)\boldsymbol{u}=\begin{pmatrix} 1 \\ 8 \end{pmatrix} \quad ; \quad \boldsymbol{v}=\begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix}

Using MATLAB, write a command/script to produce:

	The matrix ACAC.

	Element (2,3) of the matrix CBCB.

	Third element of the matrix 𝐮TC\boldsymbol{u}^{\mathrm{T}}C.

	Element (1,2) of the matrix 𝐮𝐯T\boldsymbol{u}\boldsymbol{v}^{\mathrm{T}}.

	Trace of B2B^2.

	Maximum and minimum terms in B𝐯B\boldsymbol{v}.

	2-norm of 𝐯\boldsymbol{v}.

	Frobenius norm of BB.

	The determinant of BB.

	The inverse of 134(CTC+ℐ)134(C^{\mathrm{T}}C+\mathcal{I}) where ℐ\mathcal{I} is the identity matrix.

	The eigenvalues and eigenvectors of 𝐯𝐮TC\boldsymbol{v}\boldsymbol{u}^{\mathrm{T}}C.

Solution 1

>> A=[1,2;5,8];
>> B=[4,0,-4;-1,0,1;2,1,3];
>> C=[1,0,4;2,-2,6];
>> u=[1;8];
>> v=[0;3;4];
>> A*C
ans =
 5 -4 16
 21 -16 68
>> D=C*B
D =
 12 4 8
 22 6 8
>> D(2,3)
ans =
 8
>> E=u'*C
E =
 17 -16 52
>> E(3)
ans =
 52
>> F=u*v'
F =
 0 3 4
 0 24 32
>> F(1,2)
ans =
 3
>> trace(B*B)
ans =
 11
>> G=B*v
G =
 -16
 4
 15
>> max(G)
ans =
 15
>> min(G)
ans =
 -16
>> norm(v,2)
ans =
 5
>> norm(B,'Fro')
ans =
 6.9282
>> det(B)
ans =
 0
>> H=134*(C'*C+eye(3))
H =
 804 -536 2144
 -536 670 -1608
 2144 -1608 7102
>> inv(H)
ans =
 0.0067 0.0011 -0.0018
 0.0011 0.0035 0.0004
 -0.0018 0.0004 0.0008
>> J=v*u'*C
J =
 0 0 0
 51 -48 156
 68 -64 208
>> [E,V]=eig(J)
E =
 0 0 0.0000
 0.6000 0.9558 -0.9558
 0.8000 0.2941 -0.2941
v =
 160 0 0
 0 0 0
 0 0 0

1. Recall that for a vector 𝐯\boldsymbol{v}, the sup-norm, denoted ||𝐯||∞||\boldsymbol{v}||_{\infty} is the maximum absolute term in the vector, i.e. for a vector v=(v1,v2,…,vN)v=(v_1, v_2, \dots, v_N), ||𝐯||∞=maxn=1,2,…,N|vn|.||\boldsymbol{v}||_{\infty}=\max_{n=1,2,\dots,N} |v_n|.

 ch019.xhtml

Appendix C — Loops

Loops are some of the most important features in any programming language and they fall under three types: if, while and for loops.

C.1 if Loops

An if command executes a loop if a certain condition is satisfied. This requires the use of comparative operators which are:

	Operation
	MATLAB Syntax

	Less than
	<

	Less than or equal to
	<=

	Equal to
	==

	Greater than
	>

	Greater than or equal to
	>=

	Not equal to
	~=

An if loops must have the following structure:

if compare <=> compare with

 do something

elseif compare <=> compare with

 do something else

else

 do something if none of the above conditions have been met

end

if Loop Example

Suppose a function is to be written which takes a number NN as an input then in the command window, displays “The Good” if it is positive, “The Bad” if it is negative and “The Ugly” if it is zero1.

function Good_Bad_Ugly(N)

if N>0 % First check if the input N is positive

 disp('The Good') % If N is positive, display 'The Good'

elseif N<0 % If N is not positive, check if it is negative

 disp('The Bad') % If N is negative, display 'The Bad'

elseif N==0 % If N is neither positive nor negative, check
 % if it zero

 disp('The Ugly') % If N is zero, display 'The Ugly'

end

end

The disp command outputs the variables stated within the brackets, if the argument is single quotation marks, namely '...', then it will be displayed verbatim. Note that here, the line will not start with ans = since it is was only asked to display and not specify variables. This function can be run within the command window as follows:

>> Good_Bad_Ugly(3)
The Good
>> Good_Bad_Ugly(-5)
The Bad
>> Good_Bad_Ugly(0)
The Ugly

In if loops, it is always a good idea to have a few elseif commands in order to have all the cases covered, this is because sometimes, MATLAB can misunderstand some inputs. For instance, suppose that the input is the complex number 1−2i1-2\mathrm{i}:

>> Good_Bad_Ugly(1-2i)
The Good

This does not make sense since the number 1−2i1-2\mathrm{i} is neither positive nor negative, nor zero for that matter. In this case, MATLAB takes the real part only without being prompted to do so, and prints the output and since the real part is 11, the output will be The Good. In order to accommodate for this, an extra condition can be added in the form of another if loop that considers this and displays “The Complex” if the number is complex.

function Good_Bad_Ugly(N)

if imag(N)~=0 % First, check if N has a non-zero imaginary
 % part

 disp('The Complex') % If N does have a non-zero imaginary part,
 % display 'The Complex'

else % Otherwise, run the code as before

 if N>0

 disp('The Good')

 elseif N<0

 disp('The Bad')

 elseif N==0

 disp('The Ugly')

 end

end

end

In this case, if the input as 1−2i1-2\mathrm{i}, then the output will be The Imaginary.

It is important to note that in if loops, the code will quit the loop after the first time the if condition is satisfied and will not check the other conditions.

if Loop Ordering

Suppose a function is to be written which takes an input NN and displays “Multiple of 2” if it is a multiple of 2, “Multiple of 3” if it is a multiple of 3 and “Too high to count” otherwise. This function will require the use of the mod syntax; for numbers N and b, mod(N,b) will produce 0 if N is a multiple of b.

function Mult(N)

if mod(N,2)==0 % Check if N is a multiple of 2

 disp('Multiple of 2')

elseif mod(N,3)==0 % Check if N is a multiple of 3

 disp('Multiple of 3')

else

 disp('Too high to count')

end

end

Run this code with the inputs 10,15,1910, 15, 19 and 2424:

>> Mult(10)
Multiple of 2
>> Mult(15)
Multiple of 3
>> Mult(19)
Too high to count
>> Mult(24)
Multiple of 2

For the inputs 10,1510, 15 and 1919, the results are as expected however with 2424, only one output is produced, suggesting that 2424 is a multiple of 2 only. The reason this is produced is because the if loop checked the first condition and since it was satisfied, it executed the code block underneath and quit the whole loop, not running through the others. That is why it is very important to be aware of the ordering of the if and elseif commands.

C.2 while Loops

The while loop is somewhat similar to the if loop in the sense that values of two terms are being compared but here, the loop will keep repeating until the condition is no longer satisfied.

while Loop Example

Suppose a function is to be written that takes two inputs, NN and dd and keeps subtracting dd from NN until it can no longer do so without becoming negative, the function should then output the last positive integer after this repeating operation. This code is the equivalent of finding the remainder of dividing a number NN by dd (or taking N(modd)N \; (\mathrm{mod} \; d)). For example, if N=9N=9 and d=4d=4, then N−d=5N-d=5, N−2d=1N-2d=1, N−3d=−3N-3d=-3, then the function would take the inputs (N,d)=(9,4)(N,d)=(9,4) and outputs 1.

function [r]=Remainder(N,d)

M=N; % Start with the number M being equal to N

while M-d>=0 % As long as M-d is non-negative, run the loop

 M=M-d; % Since M-d is non-negative, find M-d
 % and let M be equal to this new value,
 % this keeps repeating until M-d<0

end

r=M; % Set the remainder r to be this final value M

end

This can be used in the command window as follows (note that here, because there is only one output, then it does not need to be explicitly stated in square brackets):

>> [r]=Remainder(9,4)
r =
 1
>> [r]=Remainder(10,2)
r =
 0
>> Remainder(14515,135)
ans =
 70
>> Remainder(1e12,42578)
ans =
 20554

Suppose now that this code is to be modified so that it can also output the number of times dd can be subtracted from NN. For example, as before, if (N,d)=(9,4)(N,d)=(9,4), the remainder is 1 and the number of times dd must be subtracted from NN to obtain this remainder is 2, this is the equivalent of finding the number of times the while loop actually ran. This is a very common procedure and the way to tackle this is by use of a “counter”. This is a variable that starts with the value 0 and every time the while loop is run, 1 is added to it. This modification can be done as follows.

function [r,counter]=Remainder(N,d)

M=N; % Start with the number M being equal to N

counter=0; % Start with the counter being 0

while M-d>=0 % As long as M-d is non-negative, run the loop

 M=M-d; % Since M-d is non-negative, find M-d
 % and let M be equal to this new value

 counter=counter+1; % Add 1 to the counter every time
 % the while loop is run
end

r=M; % Set the remainder r to be this final value M

end

This can be used in the command window as follows (in this case, since there are two outputs, they both have to be stated, but they don’t need to be of the same name, only the same order):

>> [r,counter]=Remainder(9,4)
r =
 1
counter =
 2
>> [r,c]=Remainder(10,2)
r =
 0
c =
 5
>> [R,C]=Remainder(14515,135)
R =
 70
C =
 107
>> [r,c]=Remainder(1e12,42578)
r =
 20554
c =
 23486307

Collatz Conjecture

In mathematics, there is a famous algorithm known as the Collatz Conjecture, the steps of the algorithm are as follows:

	Pick any positive integer.

	
	If the number is even, divide by 2.

	If the number is odd, multiply by 3 and add 1.

	Repeat Step 2.

For instance, if the input is the number 10, the sequence of numbers will be as follows: 10→÷25→×3+116→÷28→÷24→÷22→÷2110 \; \xrightarrow[\div 2]{} \; 5 \; \xrightarrow[\times 3+1]{} \; 16 \; \xrightarrow[\div 2]{} \; 8 \; \xrightarrow[\div 2]{} \; 4 \; \xrightarrow[\div 2]{} \; 2 \; \xrightarrow[\div 2]{} \; 1

Similarly, if the input is 21: 21→×3+164→÷232→÷216→÷28→÷24→÷22→÷2121 \; \xrightarrow[\times 3 + 1]{} \; 64 \; \xrightarrow[\div 2]{} \; 32 \; \xrightarrow[\div 2]{} \; 16 \; \xrightarrow[\div 2]{} \; 8 \; \xrightarrow[\div 2]{} \; 4 \; \xrightarrow[\div 2]{} \; 2 \; \xrightarrow[\div 2]{} \; 1

Both number sequences end up at 1 from two different starting numbers of 10 and 21. (The algorithm is stopped at 1 since if the algorithm is carried on after reaching 1, then a loop will be formed going 4, 2, 1, 4, 2, 1, … .) The Collatz Conjecture states that regardless of the starting value, this sequence will always reach a 4-2-1 loop. This statement has been put forward in 1937 and has not yet been proven or disproven but has been computed for numbers larger than 101710^{17}, all the numbers end at the 4-2-1 loop.

The while loop can be used in conjunction with the if loop in order to make a function that outputs the number of steps it takes to get to 1. This code can be checked by having an input of 10 and the output should be 6 since the algorithm required 6 steps before reaching 1, similarly, if the input is 21, then the output should be 7 and these can be used as test cases.

In writing codes, it is helpful to start with a pseudocode:

	Read the input number.

	As long as the number is greater than 1, do the following:

	If the number is even, divide by 2.

	If the number is odd, multiply by 3 and add 1.

	Repeat Step 2 until 1 is reached.

From this pseudocode, it is clear that Step 2 can be represented by an if loop. Steps 2 and 3 require the number to be greater than 1, since it is unknown when that will happen, the while loop can be used. Now, the pseudocode can be translated into MATLAB syntax with an input value of a and an output value N which is the number of staeps it takes to get to 1.

function [N]=Collatz(a)

N=0; % Start with N=0

while a>1 % Perform the code block as long as the number
 % is bigger than 1

 if mod(a,2)==0 % Check if the number is even

 a=a/2; % If it is, redefine a as a/2

 else % Otherwise, if a is odd

 a=3*a+1; % Redefine a as 3a+1

 end

 N=N+1; % Every time the code block is run, add 1 to N

end

end

This code can be checked using the test cases:

>> Collatz(10)
ans =
 6
>> Collatz(21)
ans =
 7
>> Collatz(1000)
ans =
 111

The function Collatz should only be able to take integer inputs. A custom error message can be made to ensure that; the following can be added in Line 2:

if mod(a,1)~=0
 error('a must be an integer')
end

C.3 Multiple Conditions for if & while Loops

Occasionally, multiple conditions may need to be satisfied when running if or while loops, this can be done with the && for conjunctive conditions (equivalent to and) and || for disjunctive conditions (equivalent to or).

Collatz Isolation

For the function Collatz in Caution C.1, the code should only be able to take any positive integer. An exclusion was introduced to produce an error message if the input was not an integer. Suppose that another condition is to be added that would produce the same error message if the input value is non-positive or not real. This can be done using the or syntax, which is ||.

if imag(a)~=0 || mod(a,1)~=0 || a<=0 || imag(a)~=0
 error('a must be an integer')
end

C.4 for Loops

A for loop is different compared to the while and if loops since it does not require comparison, instead, it runs through a series of terms that have been predefined.

for Loop Example 1

Suppose a simple for loop is needed that takes an input value NN and adds all the positive integers from 11 to NN. So if N=10N=10, then the function would output the sum of the numbers from 11 to 1010, namely 5555. This can be written as follows:

function [Sum]=Summation(N)

Sum=0;

for i=1:1:N

 Sum=Sum+i;

end

end

This simple code starts with a Sum=0, then the variable i runs from 11 to NN and adds itself onto Sum, the final result would be the sum of all the positive integers form 1 to NN2.

for Loop Example 2

Suppose a for loop is desired that takes a vector 𝐯\boldsymbol{v} as an input and outputs the vector 𝐮\boldsymbol{u} whose elements are the squares of 𝐯\boldsymbol{v}3.

The vector 𝐯\boldsymbol{v} will be a part of the input but the vector 𝐮\boldsymbol{u} needs to be initialised, meaning that 𝐮\boldsymbol{u} has to be predefined in some way. Since the size of 𝐮\boldsymbol{u} will be the same as 𝐯\boldsymbol{v}, then the vector 𝐮\boldsymbol{u} can be initialised as a vector of zeros that is the same size as 𝐯\boldsymbol{v}, this can be done using u=zeros(size(v)). The code can then be written by replacing the appropriate term in the list.

function [u]=Square(v)

u=zeros(size(v));

for i=1:1:N

 u(i)=v(i)^2;

end

end

Alternatively, if the size of 𝐮\boldsymbol{u} is not known, then it can be initialised as an empty array [] and terms can be concatenated to it.

function [u]=Square2(v)

u=[];

for i=1:1:N

 u=[u,v(i)^2];

end

end

C.5 Exercises

Excersise 1

Write a MATLAB function called Fib that takes an input NN and produces a value FF that is the NthN^{\mathrm{th}} term of the Fibonacci sequence starting from 1,3 (recall that a Fibonacci sequence is a sequence where any term is the sum of the previous two terms). For example, if N=5N=5, then the first 5 terms of this Fibonacci sequence are (1,3,4,7,11)(1,3,4,7,11), meaning that the output should be F=11F=11. Use the following test cases to verify that the code produces the correct results:

	N=10N=10: F=123F=123;

	N=20N=20: F=15127F=15127;

	N=50N=50: F=28143753123F=28143753123.

Solution 1

function [F]=Fib(N)

S=zeros(1,N); % Initialise the sequence S as a list of N zeros

S(1)=1; % Redefine the first term of S to be equal to 1

S(2)=3; % Redefine the second term of S to be equal to 3

for n=3:1:N % Starting from the third term onwards

 S(n)=S(n-1)+S(n-2); % Let the nth term of S be the sum of the
 % previous two terms

end

F=S(end); % Let F be the last term in the sequence S,
 % alteratively, F=S(N) can be used since it is known that
 % N is the last term

end

Exersise 2

Write a MATLAB function called Fib2 that takes an input MM and produces values cc and GG where GG is the largest term of the Fibonacci sequence starting from 2,5 such that G<MG<M and the number of terms in the sequence up to that point is cc. For example, if M=60M=60, start a Fibonacci sequence with the 2,5 until a number above MM is reached and count the number terms. So if M=60M=60, then the sequence is (2,5,7,12,19,31,50,81)(2,5,7,12,19,31,50,81), meaning that G=50G=50 (since it is the largest term in the sequence that is less than MM) and c=6c=6 (since it takes 6 steps to get to 50). Use the following test cases to verify that the code produces the correct results:

	M=100M=100: G=81G=81, c=9c=9;

	M=1000M=1000: G=898G=898, c=14c=14;

	M=109M=10^9: G=638162747G=638162747, c=42c=42.

Solution 2

function [c,G]=Fib2(M)

S=[2,5]; % Since, in principle, the number of terms is not known,
 % then define S as the seuqnece starting with 2 and 5

while S(end)<M % Run the while loop as long as the last term of the
 % sequence is less than M

 S=[S S(end)+S(end-1)]; % Redefine S in terms of itself; start
 % with the sequnce S and append an extra
 % term at the end that is the sum of the
 % last term and the one before it

end

G=S(end-1); % G will be the second to last term (since the last one
 % is bigger than M)

c=length(S); % c is simply the length of S

end

1. In reference to the 1966 film “The Good, the Bad and the Ugly.”

2. Bear in mind that this is a contrived example for the sake of demonstration. This exact procedure can be done in one single command sum(1:1:10).

3. Just as before, this is intended to be a contrived example to show the working of a for loop. This procedure can be done in a single command as u=v.^2 for elementwise exponentiation.

 ch020.xhtml

Appendix D — Plotting in MATLAB

D.1 Forming Lists for Plotting

Suppose the function x3x^3 is to be plotted. First of all, a range of xx values is needed, so if the function needs to be plotted in the interval [−2,2][-2,2], then a vector needs to be formed that spans this particular domain, the more points there are, the smoother the function will be. This can be in done by using, say, x=-2:1:2 which produces a vector x with 5 points, namely x=[-2 -1 0 1 2].

Secondly, the values on the yy-axis need to be formed. For every xx value, the value on the yy axis will be at x3x^3, this can be done using elementwise exponentiation as y=x.^3. In this case, the x and y vectors will be x=[-2 -1 0 1 2] and y=[-8 -1 0 1 8].

Now the plotting can commence. The plot function takes two arguments, the first is the set of coordinates on the horizontal axis and the second is the corresponding set of coordinates on the vertical axis. The plot function then plots the first against the second to form a set of points and connects them with lines. In other words, plot(x,y) draws points at the coordinates (x(1),y(1))=(−2,−8)(x(1),y(1))=(-2,-8), (x(2),y(2))=(−1,−1)(x(2),y(2))=(-1,-1), (x(3),y(3))=(0,0)(x(3),y(3))=(0,0), etc. and draws a line that connects all these points in the order they appear in.

>> x=-2:1:2;
>> y=x.^3;
>> plot(x,y)

[image:]

Clearly, 5 points is not enough to plot a function accurately, so the domain vector xx must be made finer by choosing smaller increments by saying something like x=-2:0.1:2 (in this case, x=[-5 -4.9 -4.8 -4.7 ... 4.7 4.8 4.9 5]). A very convenient way of achieving this is by using the linspace function where linspace(a,b) forms a vector between a and b with 100 equally spaced points. If a different mesh is required, then add an extra argument n as linspace(a,b,n), this forms a vector between a and b consisting of n equally spaced points. Therefore, the range of xx values can be refined as x=linspace(-2,2).

>> x=linspace(-2,2);
>> y=x.^3;
>> plot(x,y)

[image:]

Notice that the semicolons are placed since the output does not need to be seen and it is therefore suppressed, otherwise MATLAB will output all 100 terms of x and y which not necessary.

D.2 Line Properties

The plot function has many additional options that can change the plotting colour, shape, style, line widths and many more (these can be referred to by simply typing help plot into the command window). Some of these options can be incorporated into a plot by adding them into the plot function itself as additional inputs as plot(x,y,'Color','r','LineStyle','-','LineWidth',2).

Some of the available colours are:

	Colour
	'Color' Syntax

	red
	'r'

	blue
	'b'

	green
	'g'

	cyan
	'c'

	magenta
	'm'

	yellow
	'y'

	black
	'k'

	white
	'w'

Some of the available line styles are:

	Line Style
	'LineStyle' Syntax

	Solid
	'-'

	Dashed
	'--'

	Dotted
	':'

	Chain
	'-.'

The colours and line styles can be combined into one, so if a blue solid line is needed, then it can simply be done by using '-b' and the plotting command will be plot(x,y,'-b').

D.3 Multiple Plots

It would stand to reason that if two different functions are to be plotted on the same figure space, say y=x2y=x^2 as a red solid line and z=x3z=x^3 as a blue dashed line for x∈[−5,5]x \in [-5,5], then the following commands can be executed:

>> x=linspace(-5,5);
>> y=x.^2;
>> z=x.^3;
>> plot(x,y,'-r')
>> plot(x,z,'--b')

Unfortunately, MATLAB has a habit of overwriting plots every time the plot command is used, so in this case MATLAB would plot the graph of y then remove it and plot the graph of z. In order to avoid that, typing hold on before any plot command allows plotting more than one plot in the same figure space as well allowing some augmentation. This can be reverted by hold off.

>> hold on
>> x=linspace(-5,5);
>> y=x.^2;
>> z=x.^3;
>> plot(x,y,'-r')
>> plot(x,z,'--b')
>> hold off

[image:]

D.3.1 Legends

When there is more than one line plotted in the same figure space, it is useful to have a legend to distinguish between the different plots. So if the functions yy and zz are plotted as above, then a legend can be added that labels them by simply using legend('Function y','Function z'). This labels the first plot with Function y and the second with Function z. Remember, quotation marks need to be inserted so they are displayed verbatim, otherwise MATLAB will produce an error since there are no variable with the names Function y or Function z.

[image:]

D.4 Figure Properties

Some useful figure functions are:

	clf: Clears the figure space.

	figure: Opens a new figure window.

	figure(n): Goes to figure window number nn (and creates one if it is not open to begin with) and plots within that window.

The figures themselves can be augmented by introducing titles, grid lines and labelling the xx- and yy-axes, all these can be achieved as long as the hold on command is active:

	Title: title('Put title here'), the title must be in quotation marks.

	Grid: grid on and grid off.

	xx-axis: xlabel('Label for x axis').

	yy-axis: ylabel('Label for y axis').

MATLAB usually adjusts the axes so that the graphs fit but sometimes, the axes need to be readjusted according the user’s preference, this can be done by using axis([left right down up] where left is the leftmost point, right is the rightmost point, etc.

D.5 Subplots

Plotting multiple functions is very useful only if the axes can be maintained but if they are different, then the information can be quite distorted when interpreted graphically. In this case, subplots can be used to display more than one plot on the same figure space but on different sections. The command subplot(a,b,n) generates a grid of size a×ba \times b (aa rows and bb columns) and starts plotting in the nthn^{\text{th}} location where the top left is 1 and continues across the rows.

Suppose that for x∈[0,10]x \in [0,10], four functions are to be plotted: y=x2y=x^2 on the top left, z=x3z=x^3 on the top right, w=sin(x)w=\sin(x) on the bottom left and u=exu=\mathrm{e}^{x} on the bottom right. This means that a 2×22 \times 2 grid is needed so the first two terms in subplot are 2. The function yy has to be plotted after subplot(2,2,1) while zz is to be plotted after subplot(2,2,2) and so on.

>> x=linspace(0,10);
>> y=x.^2;
>> z=x.^3;
>> w=sin(x);
>> u=exp(x);
>> subplot(2,2,1)
>> plot(x,y)
>> subplot(2,2,2)
>> plot(x,z)
>> subplot(2,2,3)
>> plot(x,w)
>> subplot(2,2,4)
>> plot(x,u)

[image:]

One issue in this case is that all the subplots will behave independently, so turning on the grid in one subplot will not do the same for all the rest. Therefore, operations such as grid on and hold on need to be done for each of the subplots individually.

D.6 Aesthetics

Fonts in figures can usually be an issue since the default setting may not be to the user’s liking. As seen in the figures above, the font on the axes is quite small which could make it difficult to read especially if the plots are to be in a report or dissertation. In that case, a special command needs to be run after hold on and before any plotting can commence. The command set(gca,'FontSize',20,'FontName','Times') sets the fontsize to 20 and the font to Times New Roman globally on all axes, legends and titles.

On MATLAB, the mathematical symbols will be displayed as regular text instead of mathematical symbols (like “x” instead of “xx”). This can be adjusted by using LaTeX syntax by using dollar signs around the mathematical symbols. For example, the xx- and yy-axes can be labelled with “xx” and “yy” by using xlabel('x','Interpreter','Latex') and ylabel('y','Interpreter','Latex'). The same can be done in the title as title('Plot of x Against y','Interpreter','Latex').

The legend entries need slightly more work; if two functions yy and zz are plotted, then they can be labelled in maths typesetting by first defining legend in terms of a placeholder variable as Leg=legend('Function y','Function z') then prescribing the interpreter as set(Legend,'Interpreter'). MATLAB usually places the legend on the top right corner by default but this can be modified by the 'Location' argument and change it to East, West, NorthEast, SouthWest and so on, meaning that the new prescription for the legend would be set(Legend,'Interpreter','Location','SouthWest').

Remember, this modification of font shapes, sizes and the different styles is only for aesthetic reasons and serves no purpose otherwise.

Lots of Plots

Suppose that the following need to be plotted:

	The function x(t)=cos(t)x(t)=\cos(t) for t∈[0,10]t \in [0,10] as a blue solid line of thickness 1.

	The function y(t)=e0.2ty(t)=\mathrm{e}^{0.2t} for t∈[0,10]t \in [0,10] as a red chain of thickness 2.

	The function z(t)=esin(t)z(t)=\mathrm{e}^{\sin(t)} for t∈[0,10]t \in [0,10] as a black dashed line of thickness 3.

	The legend appears in the bottom right corner and labels x(t)x(t) as “cos(t)\cos(t)”, y(t)y(t) as “Function y(t)y(t)” and z(t)z(t) as “Last”.

	The title of the figure should be “Some Random Functions”.

	The horizontal axis labelled as “tt”.

	The vertical axis labelled as “Functions”.

	The horizontal axis ranges from 00 to 1010 and the vertical axis ranges from −2-2 to 88.

	Axis lines are drawn to represent the horizontal and vertical axes.

Each of these can be executed separately by the following commands:

	t=linspace(0,10);

	x=cos(t); plot(t,x,'-b','LineWidth',1)

	y=exp(0.2*t); plot(t,y,'-.r','LineWidth',2)

	z=exp(sin(t)); plot(t,z,'--k','LineWidth',3)

	Leg=legend('$\cos(t)$','Function $y(t)$','Last'); set(Leg,'Interpreter','Latex','Location','SouthEast')

	title('Some Random Functions','Interpreter','Latex')

	xlabel(t,'Interpreter','Latex')

	ylabel('Functions','Interpreter','Latex')

	axis([0 10 -2 8])

	plot([0 10],[0 0],'-k'); plot([0 0],[-2 8],'-k')

A MATLAB script can be written to execute all these in order:

clf % Clears the figure before plotting

hold on % Allows more than one plot in the same figure

grid on % Produces a grid

set(gca,'FontSize',20,'FontName','Times') % Sets the font golobally

t=linspace(0,10); % Horizontal axis values

x=cos(t); % Vector of values for the x function
y=exp(0.2*t); % Vector of values for the y function
z=exp(sin(t)); % Vector of values for the z function

plot(t,x,'-b','LineWidth',1) % Plots t against x
plot(t,y,'-.r','LineWidth',2) % Plots t against y
plot(t,z,'--k','LineWidth',3) % Plots t against z

title('Some Random Functions','Interpreter','Latex') % Title

xlabel('t','Interpreter','Latex') % Horizontal axis label
ylabel('Functions','Interpreter','Latex') % Vertical axis label

axis([0 10 -2 8]) % Sets the axes
plot([0 10],[0 0],'-k') % Plots the horizontal axis
plot([0 0],[-2 8],'-k') % Plots the vertical axis

Leg=legend('$\cos(t)$','Function $y(t)$','Last'); % Sets the legend

set(Leg,'Interpreter','Latex','Location','SouthEast'); % Sets the font, interpreter and location of the legend

[image:]

All these commands can be executed in the command window rather than writing them in a script but if a mistake is made, then it cannot be undone and the entire stream of commands needs to be redone once again. Using a script on the other hand will allow for easy alteration.

D.7 Discrete Plots

The plot function does not just plot functions, all it needs are two vectors of the same length and it can plot them against one another. So if the graph is to be plotted as a series of points (discrete plot) rather than coordinates connected with a line, then the change in the plot function is quite straight forward, simply replace 'LineStyle' with 'MarkerStyle' and 'LineWidth' with 'MarkerSize'. This will use discrete points rather than connecting them with lines. The different marker styles are:

	Marker Style
	'MarkerStyle' Syntax

	Dot ⋅\cdot
	'.'

	Cross ×\times
	'x'

	Asterisk *\ast
	'*'

	Circle ∘\circ
	'o'

	Crosshair ++
	'+'

	Square ▫\square
	's'

	Diamond ⋄\diamond
	'd'

	Pentagram ⋆\star
	'p'

	Upward Triangle △\triangle
	'^'

	Downward Triangle ▿\triangledown
	'v'

	Rightward Triangle ⊳\triangleright
	'>'

	Leftward Triangle ⊲\triangleleft
	'<'

The colours work in the same way. These discrete plots can be combined with the line plot all in one command, for example, to plot a function with a red dashed line connecting circles, the plot command will be plot(x,y,'--or').

Collatz Conjecture Plot

Consider to the Collatz conjecture from Section C.2, suppose that the number of steps it takes to reach 1 is to be plotted against the starting values, say from 1 to NN where NN will be the input. This will require the use of many of the tools developed so far.

First of all, a function that takes in a starting value and outputs the number of steps is needed, which that has already been done in the code Collatz. Since the inputs will be all the numbers from 1 to NN, a for loop will be suitable for the job. Finally, the plot function with markers will be employed since connecting the points with lines will not make sense in this particular context.

In order for the plot function to work, it needs two vectors of the same length. For this particular example, the first vector is the list of numbers from 1 to NN, which will be labelled X and will be on the xx-axis, and the second is the vector of the number of steps for a starting value to decrease to 1 and this is labelled Y. The terms in the vector Y will have to be calculated individually by using the Collatz function. Of course, since the size of Y is the same size a X, it can be initialised by using Y=zeros(size(X)), the terms can then be substituted after they have been calculated. The code to execute this plotting procedure is as follows:

function Plot_Collatz(N)

X=1:1:N; % List of starting values from 1 to N

Y=zeros(size(X)); % Initialise the vector Y

for i=X

 [y]=Collatz(i); % Run the Collatz algorithm for the starting
 % value i

 Y(i)=y; % Record the the number of steps in the i-th
 % element of the vector Y

end

clf
hold on
grid on
set(gca,'FontSize',20,'FontName','Times')

plot(X,Y,'.b','MarkerSize',10)

title(strcat('Steps of the Collatz Conjecture for Starting Points 1 to',' ',num2str(N)),'Interpreter','Latex')

xlabel('Starting Value','Interpreter','Latex')
ylabel('Number of Steps','Interpreter','Latex')

end

The code can now be run in the command window using Plot_Collatz(1000) will give the following plot:

[image:]

There are a few things that need to be observed in the above code:

	In Line 4, the for loop starts with i=X, this means that the values of i would run through all the values of the vector X in order. So the for loop does not need to take terms from a uniform set but it can be from any set of values and those will be taken in the order they appear.

	Line 6 runs the Collatz function for the input value i to produce a value y and this is then recorded in the vector Y in the ithi^{\text{th}} location in Line 8, hence Y(i)=y. Of course there will be no issues there since the size of Y is known and has already been initialised in Line 3 as a vector of zeros of the same size as X, the values are then replaced by the desired terms.

	Notice that here, the main function Plot_Collatz (also known as the top level function) refers to another function, namely Collatz. This code should be saved as a separate .m file and has to be in the same directory as Plot_Collatz, otherwise the code will not work. An alternative would be to put the Collatz function after the end of Plot_collatz.

function Plot_Collatz(N)

 Body of Plot_Collatz

end

function [n]=Collatz(a)

 Body of Collatz

end

	The Collatz function requires a single input, but in some cases, there could be many inputs and many outputs, in that case when calling the function, the sequence of inputs and outputs must be in exactly the same order as it appears in the function itself.

D.8 Plot Cheat Sheet

	MATLAB Command
	Purpose

	clf
	Clear figure space

	figure
	Opens a new figure space

	figure(n)
	Plots in figure space n

	hold on
	Allows more than one plot to be drawn on the same figure

	hold off
	Cancels hold on

	grid on
	Turns on the plot grid

	grid off
	Turns off the plot grid

	plot([a,b],[c,d])
	Plots a straight line from point (a,c) to (b,d)

	set(gca,'FontSize',20)
	Sets the global font size to 20

	set(gca,'FontName','Times')
	Sets the global font to Times

	axis([left right down up])
	Sets the axes where the xx-axis goes from left to right and the yy-axis from down to up

	title('Plot')
	Adds the title “Plot” to the figure

	xlabel('x')
	Labels the xx-axis with “x”

	xlabel('x','Interpreter','Latex')
	Labels the xx-axis with “xx”

	Leg=legend('Plot 1','Plot 2',...)
	Gives the legend a handle “Leg” for further modification and labels the first plotted line as “Plot 1”, the second as “Plot 2”, etc.

	set(Leg,'Interpreter','Latex')
	Renders the legend in LaTeX, just like the labels

	x=linspace(a,b)
	Generates a vector x with 100 points from a to b

	x=linspace(a,b,n)
	Generates a vector x with n points from a to b

	plot(x,y)
	Plots the vector x against the vector y as long as they are of the same size

	plot(x,y,'-b')
	Plots x against y with a blue line (continuous)

	plot(x,y,'-b','LineWidth',2)
	Plots x against y with a blue line of thickness 2

	plot(x,y,'xk')
	Plots x against y with black crosses (discrete)

	plot(x,y,'xk','MarkerSize',10)
	Plots x against y with black crosses of size 10

 ch021.xhtml

Appendix E — Reading & Writing Data

Reading and writing data files can be important for importing data for analysis on MATLAB and exporting data for further processing elsewhere.

E.1 Writing Into Data Files

Data can be exported from MATLAB into a .dat or .txt file, both of which can be opened with Notepad.

Writing Data

Suppose that a list of values of xx from 00 to 100100 need to be exported along with a corresponding list of x2x^2, sin(x)\sin(x) and e−x\mathrm{e}^{-x} as seen here: xx2sin(x)ex110.841470.36788240.909300.13534⋮⋮⋮⋮999801−0.99921.0112×10−4310010000−0.50633.7200×10−44\begin{equation*}
\begin{matrix}
 x & x^2 & \sin(x) & \mathrm{e}^{x} \\
 1 & 1 & 0.84147 & 0.36788 \\
 2 & 4 & 0.90930 & 0.13534 \\
 \vdots & \vdots & \vdots & \vdots \\
 99 & 9801 & -0.9992 & 1.0112\times 10^{-43} \\
 100 & 10000 & -0.5063 & 3.7200\times 10^{-44}
\end{matrix}
\end{equation*}

First, define each of these columns.

>> x=[1:1:100]'; % Column vector of values from 1 to 100

>> c1=x.^2; % Column of x^2 terms

>> c2=sin(x); % Column of sin(x) terms

>> c3=exp(x); % Column of e^x terms

>> M=[x,c1,c2,c3]; % Form a matrix out of the columns

Now that the matrix is ready to be exported, a file needs to be opened with the desired name, say “Data_Write.dat” (.txt would also work). First, the file itself needs to be created in order to write the data into, this can be done by using file_name=fopen('Data_Write.dat','w'). The 'w' indicates that MATLAB needs to write the data into this file. The data can then be written into the the file using the fprintf command as fprintf(file_name,'%f %f %f %f \r\n',M')

The % sign determines the specification of the output and here, %f indicates that the output should be in the form of a floating point number. There are four columns so four specifiers need to be declared (hence %f appearing four times). The \r\n syntax indicates that MATLAB needs to move to the next line, otherwise, all the values will be printed on a single line (\r\\n needs to be used when opening using Microsoft Notepad, otherwise \n would suffice). The matrix is printed as M' instead of M since Notepad works on the reverse dimensions, so the rows on MATLAB are columns on Notepad and vice versa (for some obscure reason).

After writing all the data, the file needs to be closed so the data is not removed or overwritten using fclose(file_name).

Without context, this data is meaningless so an additional row can be added before writing the data as a title for every column as fprintf(file_name,'x x^2 sin(x) exp(x) \r\n'). All these can be combined into the following executable section:

x=[1:1:100]'; % Column vector of values from 1 to 100

c1=x.^2; % Column of x^2 terms
c2=sin(x); % Column of sin(x) terms
c3=exp(x); % Column of e^x terms

M=[x,c1,c2,c3]; % Form a matrix out of the columns

my_file=fopen('Data_Write.dat','w'); % Open the file 'Data_Write.dat',
 % also works with 'Data_Write.txt'

fprintf(my_file,'x x^2 sin(x) e^x \r\n');
fprintf(my_file,'%f %f %f %f \r\n',M');

fclose(my_file);

[image:]

E.1.1 Output Formats

When writing data, it is often times important to present the data in a certain form or with certain spacings. For example, sin(x)\sin(x) is better presented as a floating point and ex\mathrm{e}^{x} is better presented in scientific notation. These can be done by changing the format after the % sign as follows:

	Syntax
	Display
	Example

	%f
	Floating point
	0.5 →\rightarrow 0.50000

	%e
	Scientific notation
	pi →\rightarrow 3.1415e+00

	%g
	Floating Point with no trailing 0’s
	0.5000 →\rightarrow 0.5

	%i
	Integer
	pi →\rightarrow 3

Note

There are many others that print numbers as strings (%s) or in hexadecimal notation (%x).

E.1.2 Alignment

The way in which the data is spaced out is important since it allows the data to be read more easily. By default, using %f will print the data as a floating point with six decimal places, one space will be added before the next item is printed. This can be changed to %15.10f which will print the data as a floating point but will dedicate 15 spaces to write the value to 10 decimal places.

Writing Better Data

The same code can be used as before with the alignment and decimal modifications.

>> x=[1:1:100]';

>> c1=x.^2;
>> c2=sin(x);
>> c3=exp(x);

>> M=[x,c1,c2,c3];

>> my_file=fopen('Data_Write.dat','w');

>> fprintf(my_file,'%5s %5s %15s %15s \r\n','x','x^2','sin(x)','exp(x)');

>> fprintf(my_file,'%5i %5i %15.10f %15.10e \r\n',M');

>> fclose(my_file);

[image:]

E.2 Reading From Data Files

Reading data from a .dat or .txt files is similar to writing.

Reading Data

Suppose that there is a data file called “Data_Read.dat” (or .txt) that has three columns of unlabelled data.

[image:]

First, the file needs to be opened with fopen but in order to prepare it for reading, use the augmentation 'r' (instead of 'w' for writing). The format has to be specified, in this case, it would be '%f %f %f' since there are three terms that need to be read which are all placed into a row and separated by a space. The size of the data itself also needs to be specified as well, and since there are three columns, that could be defined as [3 Inf] if the number of rows is unknown. The commands to read the data can be written as follows:

my_file=fopen('Data_Read.dat','r');

formatSpec = '%f %f %f';

Size_Data= [3 Inf];

M=fscanf(my_file,formatSpec,Size_Data);

M=M';

fclose(my_file);

This will produce an array M that contains all the data.

E.3 Reading & Writing Data with Excel

Writing data into Microsoft Excel is much simpler than .dat or .txt since spacing and formatting are built into excel. The difference is using writematrix and readmatrix instead of fprintf and fscanf and the file extension should be .xlsx and does not have to be opened and closed.

Reading & Writing with Excel

Suppose the data as before needs to be written into Excel, this can be done as follows:

x=[1:1:100]';

c1=x.^2;

c2=sin(x);

c3=exp(x);

M=[x,c1,c2,c3];

writematrix(M,'Data_Excel.xlsx');

[image:]

The same data can be read using Data=readmatrix('Data_Excel.xlsx').

 ch022.xhtml

Appendix F — Gaussian Elimination Method

The Gaussian Elimination Method is an algorithm that transforms the linear system A𝐱=𝐛A\boldsymbol{x}=\boldsymbol{b} where A∈ℂN×NA \in \mathbb{C}^{N \times N} and 𝐛∈ℂN\boldsymbol{b} \in \mathbb{C}^{N} into an equivalent upper triangular system U𝐱=𝐠U\boldsymbol{x}=\boldsymbol{g} after N−1N-1 steps, where U∈ℂN×NU \in \mathbb{C}^{N \times N} is an upper triangular matrix and 𝐠∈ℂN\boldsymbol{g} \in \mathbb{C}^{N}. This uses Elementary Row Operations (swapping rows, multiplying a row by a constant, adding two rows), after which point, the system U𝐱=𝐠U\boldsymbol{x}=\boldsymbol{g} can solved by the backward substitution. Note that this method is possible when the elementary row operations are performed on both AA and 𝐛\boldsymbol{b} simultaneously, so if rows ii and jj are swapped in AA, the rows ii and jj must also be swapped in 𝐛\boldsymbol{b}, simialry for the other operations.

The Gaussian elimination method can be performed as follows (the superscripts in brackets will be the step number):

Parallel Example

The algorithm will be explained and an example will be done in parallel to explain the steps with the matrix system A𝐱=𝐛A\boldsymbol{x}=\boldsymbol{b} where A=(2−11−11212−1)and𝐛=(112).A=\begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & 2 \\ 1 & 2 & -1 \end{pmatrix} \quad \text{and} \quad \boldsymbol{b}=\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.

	Establish the starting matrix: If a11≠0a_{11} \neq 0, then set A(1)=AA^{(1)}=A and 𝐛(1)=𝐛\boldsymbol{b}^{(1)}=\boldsymbol{b} as A(1)=(a11(1)a12(1)…a1j(1)…a1N(1)a21(1)a22(1)…a2j(1)…a2N(1)⋮⋮⋱⋮⋱⋮aj1(1)aj2(1)…ajj(1)…ajN(1)⋮⋮⋱⋮⋱⋮aN1(1)aN2(1)…aNj(1)…aNN(1))∈ℝN×Nwherea11(1)≠0A^{(1)}=\begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & a_{1j}^{(1)} & \dots & a_{1N}^{(1)} \\ a_{21}^{(1)} & a_{22}^{(1)} & \dots & a_{2j}^{(1)} & \dots & a_{2N}^{(1)} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{j1}^{(1)} & a_{j2}^{(1)} & \dots & a_{jj}^{(1)} & \dots & a_{jN}^{(1)} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{N1}^{(1)} & a_{N2}^{(1)} & \dots & a_{Nj}^{(1)} & \dots & a_{NN}^{(1)} \end{pmatrix} \in \mathbb{R}^{N \times N} \quad \text{where} \quad a_{11}^{(1)} \neq 0 and𝐛(1)=(b1(1)b2(1)⋮bj(1)⋮bN(1)).\text{and} \quad \boldsymbol{b}^{(1)}=\begin{pmatrix} b_1^{(1)} \\ b_2^{(1)} \\ \vdots \\ b_j^{(1)} \\ \vdots \\ b_N^{(1)} \end{pmatrix}. If a11=0a_{11} = 0, then swap the first row with any other row whose first term is not zero and the result will be the starting matrix A(1)A^{(1)}.

A(1)A^{(1)}

A(1)=A=(2−11−11212−1)and𝐛(1)=𝐛=(112).A^{(1)}=A=\begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & 2 \\ 1 & 2 & -1 \end{pmatrix} \quad \text{and} \quad \boldsymbol{b}^{(1)}=\boldsymbol{b}=\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.

	Form the multiplier vector: The desired outcome is to have the matrix AA be upper triangular, i.e. all the terms below the diagonal should be 0. To achieve this, introduce a vector 𝐦1\boldsymbol{m}_1 of multipliers, whose ith{i}^{\mathrm{th}} entry is given by mi1=ai1(1)a11(1)for alli=1,2,…,N, m_{i1}=\frac{a_{i1}^{(1)}}{a_{11}^{(1)}} \quad \text{for all} \quad i=1,2,\dots,N, hence the reason why the assumption a11(1)≠0a_{11}^{(1)} \neq 0 must be imposed. Essentially, the vector 𝐦1\boldsymbol{m}_1 is the first column of AA divided the the first element of AA.

𝐦1\boldsymbol{m}_1

𝐦1=1a11(1)(a11(1)a21(1)a31(1))=(1−1212)\boldsymbol{m}_1=\frac{1}{a_{11}^{(1)}}\begin{pmatrix} a_{11}^{(1)} \\ a_{21}^{(1)} \\ a_{31}^{(1)} \end{pmatrix}=\begin{pmatrix} 1 \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}

	Elimination terms in the first column: For j=2,3,…,Nj=2,3,\dots,N, multiply row 1 by −mj1-m_{j1} and add it to row jj to give the new row jj: (a11(1)a12(1)…a1j(1)…a1N(1)a21(1)−m21a11(1)a22(1)−m21a12(1)…a2j(1)−m21a1j(1)…a2N(1)−m21a1N(1)⋮⋮⋱⋮⋱⋮aj1(1)−mj1a11(1)aj2(1)−mj1a12(1)…ajj(1)−mj1a1j(1)…ajN(1)−mj1a1N(1)⋮⋮⋱⋮⋱⋮aN1(1)−mN1a11(1)aN2(1)−mN1a12(1)…aNj(1)−mN1a1j(1)…aNN(1)−mN1a1N(1)).\begin{pmatrix}
a_{11}^{(1)} & a_{12}^{(1)} & \dots & a_{1j}^{(1)} & \dots & a_{1N}^{(1)} \\
a_{21}^{(1)}-m_{21}a_{11}^{(1)} & a_{22}^{(1)}-m_{21}a_{12}^{(1)} & \dots & a_{2j}^{(1)}-m_{21}a_{1j}^{(1)} & \dots & a_{2N}^{(1)}-m_{21}a_{1N}^{(1)} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{j1}^{(1)}-m_{j1}a_{11}^{(1)} & a_{j2}^{(1)}-m_{j1}a_{12}^{(1)} & \dots & a_{jj}^{(1)}-m_{j1}a_{1j}^{(1)} & \dots & a_{jN}^{(1)}-m_{j1}a_{1N}^{(1)} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{N1}^{(1)}-m_{N1}a_{11}^{(1)} & a_{N2}^{(1)}-m_{N1}a_{12}^{(1)} & \dots & a_{Nj}^{(1)}-m_{N1}a_{1j}^{(1)} & \dots & a_{NN}^{(1)}-m_{N1}a_{1N}^{(1)} \end{pmatrix}.

Row 𝐣\boldsymbol{j} Operations

(2−11−11212−1)\begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & 2 \\ 1 & 2 & -1 \end{pmatrix} →r2→−(−12)r1+r2(2−11−(−12)(2)−1−(−12)(−1)+1−(−12)(1)+212−1)\xrightarrow[r_2 \to -\left(-\frac{1}{2} \right)r_1+r_2]{} \begin{pmatrix} 2 & -1 & 1 \\ -\left(-\frac{1}{2} \right)(2)-1 & -\left(-\frac{1}{2} \right)(-1)+1 & -\left(-\frac{1}{2} \right)(1)+2 \\ 1 & 2 & -1 \end{pmatrix} =(2−110125212−1)=\begin{pmatrix} 2 & -1 & 1 \\ 0 & \frac{1}{2} & \frac{5}{2} \\ 1 & 2 & -1 \end{pmatrix} →r3→−(12)r1+r3(2−1101252−(12)(2)+1−(12)(−1)+2−(12)(1)−1)\xrightarrow[r_3 \to -\left(\frac{1}{2} \right)r_1+r_3]{} \begin{pmatrix} 2 & -1 & 1 \\ 0 & \frac{1}{2} & \frac{5}{2} \\ -\left(\frac{1}{2} \right)(2)+1 & -\left(\frac{1}{2} \right)(-1)+2 & -\left(\frac{1}{2} \right)(1)-1 \end{pmatrix} =(2−1101252052−32)=\begin{pmatrix} 2 & -1 & 1 \\ 0 & \frac{1}{2} & \frac{5}{2} \\ 0 & \frac{5}{2} & -\frac{3}{2} \end{pmatrix}

Notice that by the definition of mj1m_{j1}, the first element in every row must be equal to 0, therefore, this set of operation makes all the terms in the first column equal to 0 except the first. Define this new matrix as the second term in the iteration: (a11(1)a12(1)…a1j(1)…a1n(1)0a22(1)−m21a12(1)…a2j(1)−m21a1j(1)…a2n(1)−m21a1n(1)⋮⋮⋱⋮⋱⋮0aj2(1)−mj1a12(1)…ajj(1)−mj1a1j(1)…ajn(1)−mj1a1n(1)⋮⋮⋱⋮⋱⋮0an2(1)−mn1a12(1)…anj(1)−mn1a1j(1)…ann(1)−mn1a1n(1))⟹(a11(2)a12(2)…a1j(2)…a1n(2)a21(2)a22(2)…a2j(2)…a2n(2)⋮⋮⋱⋮⋱⋮aj1(2)aj2(2)…ajj(2)…ajn(2)⋮⋮⋱⋮⋱⋮an1(2)an2(2)…anj(2)…ann(2))=A(2)\begin{multline*}
\begin{pmatrix}
a_{11}^{(1)} & a_{12}^{(1)} & \dots & a_{1j}^{(1)} & \dots & a_{1n}^{(1)} \\
0 & a_{22}^{(1)}-m_{21}a_{12}^{(1)} & \dots & a_{2j}^{(1)}-m_{21}a_{1j}^{(1)} & \dots & a_{2n}^{(1)}-m_{21}a_{1n}^{(1)} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & a_{j2}^{(1)}-m_{j1}a_{12}^{(1)} & \dots & a_{jj}^{(1)}-m_{j1}a_{1j}^{(1)} & \dots & a_{jn}^{(1)}-m_{j1}a_{1n}^{(1)} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & a_{n2}^{(1)}-m_{n1}a_{12}^{(1)} & \dots & a_{nj}^{(1)}-m_{n1}a_{1j}^{(1)} & \dots & a_{nn}^{(1)}-m_{n1}a_{1n}^{(1)} \end{pmatrix} \\ \implies \quad \begin{pmatrix} a_{11}^{(2)} & a_{12}^{(2)} & \dots & a_{1j}^{(2)} & \dots & a_{1n}^{(2)} \\ a_{21}^{(2)} & a_{22}^{(2)} & \dots & a_{2j}^{(2)} & \dots & a_{2n}^{(2)} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{j1}^{(2)} & a_{j2}^{(2)} & \dots & a_{jj}^{(2)} & \dots & a_{jn}^{(2)} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1}^{(2)} & a_{n2}^{(2)} & \dots & a_{nj}^{(2)} & \dots & a_{nn}^{(2)} \end{pmatrix}=A^{(2)}
\end{multline*} where for all i,j=2,3,…,Ni,j=2,3,\dots,N a11(2)=a11(1);a1i(2)=a1i(1);ai1(2)=0;aij(2)=aij(1)−mi1a1j(1)a_{11}^{(2)}=a_{11}^{(1)} \quad \text{;} \quad a_{1i}^{(2)}=a_{1i}^{(1)} \quad \text{;} \quad a_{i1}^{(2)}=0 \quad \text{;} \quad a_{ij}^{(2)}=a_{ij}^{(1)}-m_{i1}a_{1j}^{(1)}

A(2)A^{(2)}

A(2)=(2−1101252052−32)A^{(2)}=\begin{pmatrix} 2 & -1 & 1 \\ 0 & \frac{1}{2} & \frac{5}{2} \\ 0 & \frac{5}{2} & -\frac{3}{2} \end{pmatrix}

	Modification of the right hand side: The vector 𝐛\boldsymbol{b} has to also undergo the same operations as AA, i.e. for j=2,…,Nj=2,\dots,N, let row jj of 𝐛(1)\boldsymbol{b}^{(1)} be row 1 multiplied by −mj1-m_{j1} plus row jj and the final vector is the vector 𝐛(2)\boldsymbol{b}^{(2)}.

𝐛(1)\boldsymbol{b}^{(1)}

𝐛(1)=(112)→r2→−(−12)r1+r2r3→−(12)r1+r3(1−(−12)(1)+1−(12)(1)+2)=(13232)=𝐛(2).\boldsymbol{b}^{(1)}=\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \xrightarrow[\begin{matrix} r_2 \to -\left(-\frac{1}{2} \right)r_1+r_2 \\ r_3 \to -\left(\frac{1}{2} \right)r_1+r_3 \end{matrix}]{} \begin{pmatrix} 1 \\ -\left(-\frac{1}{2} \right)(1)+1 \\ -\left(\frac{1}{2} \right)(1)+2 \end{pmatrix}=\begin{pmatrix} 1 \\ \frac{3}{2} \\ \frac{3}{2} \end{pmatrix}=\boldsymbol{b}^{(2)}.

	Matrix representation of elimination: This whole procedure can be written as A(2)=M(1)A(1)A^{(2)}=M^{(1)} A^{(1)} and 𝐛(2)=M(1)𝐛(1)\boldsymbol{b}^{(2)}=M^{(1)}\boldsymbol{b}^{(1)} where M(1)=(100…0−m2110…0−m3101…0⋮⋮⋮⋱⋮−mn100…1).M^{(1)}=\begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -m_{21} & 1 & 0 & \dots & 0 \\ -m_{31} & 0 & 1 & \dots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -m_{n1} & 0 & 0 & \dots & 1 \end{pmatrix}.

M(1)M^{(1)}

M(1)=(1001210−1201)M^{(1)}=\begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{pmatrix} To check: M(1)A(1)=(1001210−1201)(2−11−11212−1)=(2−1101252052−32)=A(2)M^{(1)}A^{(1)}=\begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{pmatrix}\begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & 2 \\ 1 & 2 & -1 \end{pmatrix}=\begin{pmatrix} 2 & -1 & 1 \\ 0 & \frac{1}{2} & \frac{5}{2} \\ 0 & \frac{5}{2} & -\frac{3}{2} \end{pmatrix}=A^{(2)} M(1)𝐛(1)=(1001210−1201)(112)=(13232)=𝐛(2)M^{(1)}\boldsymbol{b}^{(1)}=\begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}=\begin{pmatrix} 1 \\ \frac{3}{2} \\ \frac{3}{2} \end{pmatrix}=\boldsymbol{b}^{(2)}

	Repeat for other columns: The process must now be repeated for the rest of the rows, specifically, those that have non-zero pivot points, i.e. the first point in a row that is non-zero. This process can be done more simply by generating the MM matrices in the same way as before without going through the starting steps. This process should be reapeated until the last row is reached.

Multiplier Matrices

The matrix M(2)M^{(2)} can be generated in the same way as M(1)M^{(1)}, so M(2)=(1000100−51).M^{(2)}=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 1 \end{pmatrix}. To check: M(2)A(2)=(1000100−51)(2−1101252052−32)=(2−110125200−14)=A(3)M^{(2)}A^{(2)}=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 1 \end{pmatrix}\begin{pmatrix} 2 & -1 & 1 \\ 0 & \frac{1}{2} & \frac{5}{2} \\ 0 & \frac{5}{2} & -\frac{3}{2} \end{pmatrix}=\begin{pmatrix} 2 & -1 & 1 \\ 0 & \frac{1}{2} & \frac{5}{2} \\ 0 & 0 & -14 \end{pmatrix}=A^{(3)} M(2)𝐛(2)=(1000100−51)(13232)=(132−6)=𝐛(3)M^{(2)}\boldsymbol{b}^{(2)}=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ \frac{3}{2} \\ \frac{3}{2} \end{pmatrix}=\begin{pmatrix} 1 \\ \frac{3}{2} \\ -6 \end{pmatrix}=\boldsymbol{b}^{(3)}

	Solve using backwards substitution: After repeating for all other columns (a total of N−1N-1 times), the final matrix A(N)A^{(N)} will be an upper triangular matrix with non-zero terms on the diagonal and the system can then be solved by backwards substitution.

Backwards Substitution

A(1)𝐱=𝐛(1)⟹A(2)𝐱=𝐛(2)⟹A(3)𝐱=𝐛(3)A^{(1)}\boldsymbol{x}=\boldsymbol{b}^{(1)} \quad \implies \quad A^{(2)}\boldsymbol{x}=\boldsymbol{b}^{(2)} \quad \implies \quad A^{(3)}\boldsymbol{x}=\boldsymbol{b}^{(3)} ⟹(2−110125200−14)(x1x2x3)=(132−6)⟹2x1−x2+x3=112x2+52x3=32−14x3=−6\implies \quad\begin{pmatrix} 2 & -1 & 1 \\ 0 & \frac{1}{2} & \frac{5}{2} \\ 0 & 0 & -14 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}=\begin{pmatrix} 1 \\ \frac{3}{2} \\ -6 \end{pmatrix} \quad \implies \quad\begin{matrix} 2x_1-x_2+x_3=1 \\ \frac{1}{2}x_2+\frac{5}{2}x_3=\frac{3}{2} \\ -14x_3=-6 \end{matrix} ⟹𝐱=17(563).\implies \quad\boldsymbol{x}=\frac{1}{7}\begin{pmatrix} 5 \\ 6 \\ 3 \end{pmatrix}.

The total number of operations in every step is given in the table below (the “steps” here refer to the matrix manipulation step and not exactly to the step numbers of the algorithm):

	Step
	Multiplications
	Additions
	Divisions

	1
	(N−1)2(N-1)^2
	(N−1)2(N-1)^2
	N−1N-1

	2
	(N−2)2(N-2)^2
	(N−2)2(N-2)^2
	N−2N-2

	3
	(N−3)2(N-3)^2
	(N−3)2(N-3)^2
	N−3N-3

	⋮\vdots
	⋮\vdots
	⋮\vdots
	⋮\vdots

	N−2N-2
	44
	44
	22

	N−1N-1
	11
	11
	11

This means that the total number of multiplications is 1+4+…+(N−3)2+(N−2)2+(N−1)2=∑n=1N−1n2=N(N−1)(2N−1)6,1+4+\dots+(N-3)^2+(N-2)^2+(N-1)^2=\sum_{n=1}^{N-1}{n^2}=\frac{N(N-1)(2N-1)}{6}, similarly for the additions. Whereas the total number of divisions is 1+2+…+(N−3)+(N−2)+(N−1)=∑n=1N−1n=N(N−1)2.1+2+\dots+(N-3)+(N-2)+(N-1)=\sum_{n=1}^{N-1}{n}=\frac{N(N-1)}{2}. Therefore the total number of operations is N(N−1)(2N−1)6+N(N−1)(2N−1)6+N(N−1)2=23N3−12N2−16N.\frac{N(N-1)(2N-1)}{6}+\frac{N(N-1)(2N-1)}{6}+\frac{N(N-1)}{2}=\frac{2}{3}N^3-\frac{1}{2}N^2-\frac{1}{6}N. This means that for large NN, the Gaussian elimination algorithm requires 𝒪(23N3)\mathcal{O}\left(\frac{2}{3}N^3\right) operations when AA is a non-sparse matrix. This procedure is computationally expensive even for moderate sized matrices, this also assumes that the pivot points are non-zero, or more specifically, that the matrix has non-zero determinant. As an illustration of this computational complexity, if N=106N=10^6 (which not atypical), then for a computer with the computing power of 1 Gigaflops per second, an N×NN \times N system will need 21 years to find a solution. A lot of more modern computational techniques are based on attempting to reduce this computational complexity, either by eliminating terms in some suitable way or chnaging the matrix in a more pallatable form.

Overall, every step of this process can be represented by a matrix transformation M(n)M^{(n)}. This means that in order to convert the matrix AA into an upper triangular matrix UU, the matrix transformations M(1),M(2),…,M(N−1)M^{(1)}, M^{(2)}, \dots, M^{(N-1)} have to be applied reverse order as U=M(N−1)M(N−2)…M(1)A.U=M^{(N-1)} M^{(N-2)} \dots M^{(1)} A. This can be written as U=MAwhereM=M(N−1)M(N−2)…M(1).(F.1)U=MA \quad \text{where} \quad M=M^{(N-1)} M^{(N-2)} \dots M^{(1)}. \qquad(F.1)

Notice that every matrix M(n)M^{(n)} is lower triangular and this fact will be used later on in ?@sec-LU.

 ch023.xhtml

Appendix G — Matrix Decompositions

G.1 Orthogonality & QR Factorisation

Intuitively, the concept of orthogonality is crucial for defining the “amount of information” in a set of vectors; although this is also associated with the concept of linear independence, the “most informative” linearly independent vectors are those that are also orthogonal.

Recall that for a set of vectors 𝐪1,𝐪2,…,𝐪M∈ℝN\boldsymbol{q}_1, \boldsymbol{q}_2, \dots, \boldsymbol{q}_M \in \mathbb{R}^N where M≤NM \leq N, the vectors are Orthogonal if ⟨𝐪m,𝐪n⟩=0\langle \boldsymbol{q}_m,\boldsymbol{q}_n \rangle=0 for all m≠nm \neq n. The set of vectors is called Orthonormal if ⟨𝐪m,𝐪n⟩=δmn={0ifm≠n1ifm=n.\langle \boldsymbol{q}_m,\boldsymbol{q}_n \rangle=\delta_{mn}=\begin{cases}
0 & \text{if} \quad m \neq n \\ 1 & \text{if} \quad m=n.
\end{cases} If N=MN=M, then the vectors form a linearly independent basis of ℝN\mathbb{R}^N.

A square matrix QQ is called Orthogonal if all its columns are orthonormal to one another. Some of the properties of orthogonal matrices are:

	An orthogonal matrix QQ satisfies Q−1=QTQ^{-1}={Q}^{\mathrm{T}}, therefore QTQ=QQT=ℐ{Q}^{\mathrm{T}}Q=Q{Q}^{\mathrm{T}}=\mathcal{I};

	The determinant of an orthogonal matrix is 11 or −1-1;

	The product of two orthogonal matrices is orthogonal.

	Given a matrix Q1∈ℝM×KQ_1\in\mathbb{R}^{M\times K} with K<MK < M and with orthonormal columns, there exists a matrix Q2∈ℝM×(M−K)Q_2\in\mathbb{R}^{M\times (M-K)} such that Q=[Q1,Q2]Q = [Q_1, Q_2] is orthogonal. In other words, for a “tall” rectangular matrix with orthonormal columns, there exist a set of vectors that can be concatenated with the matrix to form an orthogonal square matrix.

	Orthogonal matrices preserve the 2-norm of vectors and matrices. In other words, if Q∈ℝN×NQ\in\mathbb{R}^{N\times N} is an orthogonal matrix, then for every 𝐱∈ℝN\boldsymbol{x}\in\mathbb{R}^{N} and A∈ℝN×MA\in\mathbb{R}^{N\times M}: ∥Q𝐱∥2=∥𝐱∥2;∥QA∥2=∥A∥2.\|Q\boldsymbol{x}\|_2 = \|\boldsymbol{x}\|_2 \quad ; \quad \|QA\|_2 = \|A\|_2.

There are two particularly relevant classes of orthogonal matrices:

	The Householder Reflection Matrix (named after Alston Scott Householder) is a reflection matrix on a plane that contains the origin. The reflection matrix is given by P=ℐ−2𝐯𝐯TP = \mathcal{I}- 2\boldsymbol{v}{\boldsymbol{v}}^{\mathrm{T}} where 𝐯\boldsymbol{v} is the unit vector that is normal to the hyperplane in which the reflection has been performed. The matrix PP is in fact symmetric and orthogonal (i.e. P−1=PT=PP^{-1}={P}^{\mathrm{T}}=P). Reflection transformations appear in many numerical linear algebra algorithms and their main use is to transform a vector 𝐱∈ℝN\boldsymbol{x} \in \mathbb{R}^N to another vector 𝐲∈ℝN\boldsymbol{y} \in \mathbb{R}^N with the same magnitude (meaning that for given vectors 𝐱,𝐲∈ℝN\boldsymbol{x},\boldsymbol{y} \in \mathbb{R}^N with ∥𝐱∥2=∥𝐲∥2\| \boldsymbol{x} \|_2=\| \boldsymbol{y} \|_2, there exists a reflection matrix PP such that P𝐱=𝐲P\boldsymbol{x}=\boldsymbol{y}).

	The Givens Rotation Matrix (named after James Wallace Givens) represents a rotation in the plane that can be spanned by two vectors. The matrix of transformation is denoted G(i,j;θ)G(i,j;\theta) where the vector G(i,j;θ)𝐱G(i,j;\theta)\boldsymbol{x} is simply the vector 𝐱\boldsymbol{x} rotated θ\theta radians anti-clockwise on a plane that is parallel to the (i,j)(i,j)-plane. The matrix G(i,j;θ)G(i,j;\theta) is essentially an identity matrix with the (i,i)(i,i) and (j,j)(j,j) terms replaced by cos(θ)\cos(\theta), the (i,j)(i,j) term replaced by sin(θ)\sin(\theta) and the (j,i)(j,i) term replaced by −sin(θ)-\sin(\theta). For example, in ℝ5\mathbb{R}^5, the matrix G(2,4;θ)G(2,4;\theta) is [image:]

[image:]

Photo of (from the left): Jim Wilkinson, Wallace Givens, George Forsythe, Alston Householder, Peter Henrici, Fritz Bauer

Since both reflection and rotation matrices are orthogonal matrix transformations, a sequence of reflections and rotations can be represented by the matrix QT{Q}^{\mathrm{T}} (which would also be orthogonal). To this end, any matrix A∈ℝM×NA \in \mathbb{R}^{M\times N} with M≥NM \geq N can be transformed by QT∈ℝM×M{Q}^{\mathrm{T}} \in \mathbb{R}^{M \times M} to give a block matrix with an upper triangular matrix occupying the first NN rows with M−NM-N zero rows below it, i.e. QTA=[R10]{Q}^{\mathrm{T}}A= \left[\begin{matrix} R_1 \\ 0 \end{matrix} \right] where R1∈ℝN×NR_1 \in \mathbb{R}^{N\times N} is an upper triangular square matrix. Equivalently, AA can be written as A=QRA=QR where QQ is the orthogonal transformation matrix and RR is a block rectangular matrix consisting of a square lower triangular matrix and a block zero matrix. This type of decomposition is called the QR Factorisation. The full QR factorisation can be visually represented as follows:

[image:]

There is a much more concise form of the QR factorisation where only the first several columns of QQ are considered since the rest will be multiplied by 0 anyway, this gives an “economy version” of the QR factorisation written as A=Q1R1A=Q_1R_1 which be visually represented as follows:

[image:]

The QR decomposition of a matrix can be performed on any matrix (square or rectangular). The following sections will show how this can be done using reflections and rotations.

G.1.1 QR Decomposition Using Reflections

The following will explain how the QR decomposition can be performed using reflection matrices on a square matrix A∈ℝN×NA \in \mathbb{R}^{N \times N}. Denote the nth{n}^{\mathrm{th}} column of the matrix AA by 𝐚n\boldsymbol{a}_n, this means AA can be written as A=(⋮⋮⋮𝐚1𝐚2…𝐚N⋮⋮⋮).A=\begin{pmatrix} \vdots & \vdots & & \vdots \\ \boldsymbol{a}_1 & \boldsymbol{a}_2 & \dots & \boldsymbol{a}_N \\ \vdots & \vdots & & \vdots \end{pmatrix}. The vector en\boldsymbol{\mathrm{e}}_n will denote the nth{n}^{\mathrm{th}} canonical basis vector, i.e. the vector with all its entries being equal to 0 except the element in location nn which is equal to 1.

Paralell Example

This process will also be applied in parallel to the following matrix A=(−11111−1111).A=\begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}. In this case, 𝐚1=(−111),𝐚2=(111)and𝐚3=(1−11).\boldsymbol{a}_1=\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \quad \boldsymbol{a}_2=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \text{and} \quad \boldsymbol{a}_3=\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.

First, find a reflection matrix that transforms the first column of AA into (α,0,…,0)T{(\alpha, 0, \dots, 0)}^{\mathrm{T}} where α=∥𝐚1∥2\alpha=\|\boldsymbol{a}_1\|_2. Let 𝐮=𝐚1−αe1\boldsymbol{u}=\boldsymbol{a}_1-\alpha \boldsymbol{\mathrm{e}}_1 and 𝐯=𝐮∥𝐮∥2\boldsymbol{v}=\frac{\boldsymbol{u}}{\| \boldsymbol{u} \|_2}, then the first reflection matrix is P1=ℐ−2𝐯𝐯T.P_1=\mathcal{I}-2\boldsymbol{v} {\boldsymbol{v}}^{\mathrm{T}}. This can be verified by checking that all the terms in the first column of the matrix A2=P1AA_2=P_1 A are zero except for the first term.

First Reflection Matrix

The 2-norm of the first column of AA is α=3\alpha=\sqrt{3}, then 𝐮=𝐚1−αe1=(−111)−3(100)=(−1−311)\boldsymbol{u}=\boldsymbol{a}_1-\alpha \boldsymbol{\mathrm{e}}_1=\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}-\sqrt{3}\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}=\begin{pmatrix} -1-\sqrt{3} \\ 1 \\ 1 \end{pmatrix} 𝐯=𝐮∥𝐮∥=16+23(−1−311).\boldsymbol{v}=\frac{\boldsymbol{u}}{\| \boldsymbol{u} \|}=\frac{1}{\sqrt{6+2\sqrt{3}}}\begin{pmatrix} -1-\sqrt{3} \\ 1 \\ 1 \end{pmatrix}. P1=ℐ−2𝐯𝐯T=(100010001)−26+23(−1−311)(−1−311)P_1=\mathcal{I}-2\boldsymbol{v} {\boldsymbol{v}}^{\mathrm{T}}=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}-\frac{2}{6+2\sqrt{3}}\begin{pmatrix} -1-\sqrt{3} \\ 1 \\ 1 \end{pmatrix}\begin{pmatrix} -1-\sqrt{3} & 1 & 1 \end{pmatrix} =(100010001)−13+3(4+23−1−3−1−3−1−311−1−311)=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}-\frac{1}{3+\sqrt{3}}\begin{pmatrix} 4+2\sqrt{3} & -1-\sqrt{3} & -1-\sqrt{3} \\ -1-\sqrt{3} & 1 & 1 \\ -1-\sqrt{3} & 1 & 1 \end{pmatrix} =13+3(−1−31+31+31+32+3−11+3−12+3)=\frac{1}{3+\sqrt{3}}\begin{pmatrix} -1-\sqrt{3} & 1+\sqrt{3} & 1+\sqrt{3} \\ 1+\sqrt{3} & 2+\sqrt{3} & -1 \\ 1+\sqrt{3} & -1 & 2+\sqrt{3} \end{pmatrix}

The matrix P1P_1 can be simplified to give P1=16(−232323233+3−3+323−3+33+3)P_1=\frac{1}{6}\begin{pmatrix} -2\sqrt{3} & 2\sqrt{3} & 2\sqrt{3} \\ 2\sqrt{3} & 3+\sqrt{3} & -3+\sqrt{3} \\ 2\sqrt{3} & -3+\sqrt{3} & 3+\sqrt{3} \end{pmatrix}

To verify that this matrix is valid, consider the product A2=P1AA_2=P_1 A: A2=P1A=16(−232323233+3−3+323−3+33+3)=(−11111−1111)A_2=P_1 A=\frac{1}{6}\begin{pmatrix} -2\sqrt{3} & 2\sqrt{3} & 2\sqrt{3} \\ 2\sqrt{3} & 3+\sqrt{3} & -3+\sqrt{3} \\ 2\sqrt{3} & -3+\sqrt{3} & 3+\sqrt{3} \end{pmatrix}=\begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} =13(333−3023−3+30233+3),=\frac{1}{3}\begin{pmatrix} 3\sqrt{3} & \sqrt{3} & -\sqrt{3} \\ 0 & 2\sqrt{3} & -3+\sqrt{3} \\ 0 & 2\sqrt{3} & 3+\sqrt{3} \end{pmatrix}, indeed, all the terms in the first column are 0 except for the first.

Repeat the same process for the (N−1)×(N−1)(N-1) \times (N-1) bottom right submatrix of A2A_2 then once the new matrix P2P_2 is obtained (of size (N−1)×(N−1)(N-1)\times(N-1)), place it at the bottom right of the N×NN \times N identity. When this process is repeated a total of N−1N-1 times, the result will be an upper triangular matrix.

Second Reflection Matrix

Consider the matrix A2=13(333−3023−3+30233+3).A_2=\frac{1}{3}\begin{pmatrix} 3\sqrt{3} & \sqrt{3} & -\sqrt{3} \\ 0 & 2\sqrt{3} & -3+\sqrt{3} \\ 0 & 2\sqrt{3} & 3+\sqrt{3} \end{pmatrix}. Let BB be the bottom right 2×22 \times 2 submatrix of A2A_2,

[image:]

Repeat the same process as before with the matrix BB: The 2-norm of the first column of BB is β=263\beta=\frac{2\sqrt{6}}{3}. Then 𝐮=𝐛1−βe1=(233233)−263(10)=233(1−21)\boldsymbol{u}=\boldsymbol{b}_1-\beta \boldsymbol{\mathrm{e}}_1=\begin{pmatrix} \frac{2\sqrt{3}}{3} \\ \frac{2\sqrt{3}}{3} \end{pmatrix}-\frac{2\sqrt{6}}{3}\begin{pmatrix} 1 \\ 0 \end{pmatrix}=\frac{2\sqrt{3}}{3}\begin{pmatrix} 1-\sqrt{2} \\ 1 \end{pmatrix} 𝐯=𝐮∥𝐮∥=14−22(1−21)\boldsymbol{v}=\frac{\boldsymbol{u}}{\| \boldsymbol{u} \|}=\frac{1}{\sqrt{4-2\sqrt{2}}}\begin{pmatrix} 1-\sqrt{2} \\ 1 \end{pmatrix} P̃2=ℐ−2𝐯𝐯T=(1001)−24−22(1−21)(1−21)\tilde{P}_2=\mathcal{I}-2\boldsymbol{v}{\boldsymbol{v}}^{\mathrm{T}}=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}-\frac{2}{4-2\sqrt{2}}\begin{pmatrix} 1-\sqrt{2} \\ 1 \end{pmatrix} \begin{pmatrix} 1-\sqrt{2} & 1 \end{pmatrix} =(1001)−12−2(3−221−21−21)=(222222−22).=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}-\frac{1}{2-\sqrt{2}}\begin{pmatrix} 3-2\sqrt{2} & 1-\sqrt{2} \\ 1-\sqrt{2} & 1 \end{pmatrix}=\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}.

Consider the product P̃2B\tilde{P}_2 B: P̃2B=(222222−22)(233−3+332333+33)=(2636301)\tilde{P}_2 B=\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}\begin{pmatrix} \frac{2\sqrt{3}}{3} & \frac{-3+\sqrt{3}}{3} \\ \frac{2\sqrt{3}}{3} & \frac{3+\sqrt{3}}{3} \end{pmatrix}=\begin{pmatrix} \frac{2\sqrt{6}}{3} & \frac{\sqrt{6}}{3} \\ 0 & 1 \end{pmatrix} which does change the matrix BB into upper triangular form.

Let the matrix P2P_2 be the identity matrix with the bottom 2×22 \times 2 submatrix replaced with P̃2\tilde{P}_2, i.e. P2=(10002222022−22)=12(20002202−2).P_2=\begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}=\frac{1}{2}\begin{pmatrix} 2 & 0 & 0 \\ 0 & \sqrt{2} & \sqrt{2} \\ 0 & \sqrt{2} & -\sqrt{2} \end{pmatrix}.

The product P2A2P_2 A_2 should be lower triangular, indeed P2A2=16(20002202−2)(333−3023−3+30233+3)=16(6323−230462600−62).P_2 A_2=\frac{1}{6}\begin{pmatrix} 2 & 0 & 0 \\ 0 & \sqrt{2} & \sqrt{2} \\ 0 & \sqrt{2} & -\sqrt{2} \end{pmatrix}\begin{pmatrix} 3\sqrt{3} & \sqrt{3} & -\sqrt{3} \\ 0 & 2\sqrt{3} & -3+\sqrt{3} \\ 0 & 2\sqrt{3} & 3+\sqrt{3} \end{pmatrix}=\frac{1}{6}\begin{pmatrix} 6\sqrt{3} & 2\sqrt{3} & -2\sqrt{3} \\ 0 & 4\sqrt{6} & 2\sqrt{6} \\ 0 & 0 & -6\sqrt{2} \end{pmatrix}.

This sequence of steps will generate N−1N-1 reflection matrices denoted P1,P2,…PN−1P_1, P_2, \dots P_{N-1} which when applied to AA in reverse order (i.e. the product is PN−1…P2P1AP_{N-1} \dots P_2 P_1 A), must give an upper triangular matrix RR. Since PnP_n are orthogonal for all n=1,2,…,N−1n=1,2,\dots,N-1, then their product will also be orthogonal.

Let P=PN−1…P2P1P=P_{N-1} \dots P_2 P_1, then R=PAR=PA meaning that A=P−1RA=P^{-1}R. Since PP is orthogonal, then P−1=PTP^{-1}={P}^{\mathrm{T}} which will be equal to QQ in the QR factorisation.

Final QR Decomposition

The matrices in question are P1=16(−232323233+3−3+323−3+33+3),P2=12(20002202−2)P_1=\frac{1}{6}\begin{pmatrix} -2\sqrt{3} & 2\sqrt{3} & 2\sqrt{3} \\ 2\sqrt{3} & 3+\sqrt{3} & -3+\sqrt{3} \\ 2\sqrt{3} & -3+\sqrt{3} & 3+\sqrt{3} \end{pmatrix}, \quad P_2=\frac{1}{2}\begin{pmatrix} 2 & 0 & 0 \\ 0 & \sqrt{2} & \sqrt{2} \\ 0 & \sqrt{2} & -\sqrt{2} \end{pmatrix} The matrix product P2P1AP_2 P_1 A should give the matrix RR which is upper triangular, indeed R=P2P1A=16(6323−230462600−62).R=P_2 P_1 A=\frac{1}{6}\begin{pmatrix} 6\sqrt{3} & 2\sqrt{3} & -2\sqrt{3} \\ 0 & 4\sqrt{6} & 2\sqrt{6} \\ 0 & 0 & -6\sqrt{2} \end{pmatrix}.

Let P=P2P1=112(20002202−2)(−232323233+3−3+323−3+33+3)P=P_2 P_1=\frac{1}{12}\begin{pmatrix} 2 & 0 & 0 \\ 0 & \sqrt{2} & \sqrt{2} \\ 0 & \sqrt{2} & -\sqrt{2} \end{pmatrix}\begin{pmatrix} -2\sqrt{3} & 2\sqrt{3} & 2\sqrt{3} \\ 2\sqrt{3} & 3+\sqrt{3} & -3+\sqrt{3} \\ 2\sqrt{3} & -3+\sqrt{3} & 3+\sqrt{3} \end{pmatrix} =(−333333636666022−22).=\begin{pmatrix} -\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}. Therefore Q=P−1=PT=(−336303366223366−22),Q=P^{-1}={P}^{\mathrm{T}}=\begin{pmatrix} -\frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{3} & 0 \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} \end{pmatrix}, hence giving the QR decomposition of AA as (−11111−1111)⏟A=(−336303366223366−22)⏟Q(333−3302636300−2)⏟R\underbrace{\begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}}_{A}=\underbrace{\begin{pmatrix} -\frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{3} & 0 \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} \end{pmatrix}}_{Q} \underbrace{\begin{pmatrix} \sqrt{3} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} \\ 0 & \frac{2\sqrt{6}}{3} & \frac{\sqrt{6}}{3} \\ 0 & 0 & -\sqrt{2} \end{pmatrix}}_{R}

G.1.2 QR Decomposition Using Rotations

The following will explain how the QR decomposition can be performed using rotation matrices on a square matrix A∈ℝN×NA \in \mathbb{R}^{N \times N}.

Parallel Example

This process will also be applied in parallel to the following matrix A=(−11111−1111).A=\begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}.

The rotation matrices should make all the terms in the lower triangular part of the matrix equal to zero. Starting with the lower left most element aN1a_{N1}, this element can be eliminated by using the rotation matrix G(1,N;θ)G(1,N;\theta) where θ=arctan(−aN1a11)\theta= \arctan \left(-\frac{a_{N1}}{a_{11}} \right). When applied to AA, this should eliminate the term aN1a_{N1}.

First Rotation Matrix

For the matrix A=(−11111−1111).A=\begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}. The angle θ\theta will be θ=arctan(−a31a11)=arctan(1)=π4\theta=\arctan \left(-\frac{a_{31}}{a_{11}} \right)=\arctan \left(1 \right)=\frac{\pi}{4}. Therefore the rotation matrix will be G1=G(1,3;π4)=(cos(π4)0−sin(π4)010sin(π4)0cos(π4))=(220−2201022022).G_1=G \left(1,3;\frac{\pi}{4} \right)=\begin{pmatrix} \cos \left(\frac{\pi}{4} \right) & 0 & -\sin \left(\frac{\pi}{4} \right) \\ 0 & 1 & 0 \\ \sin \left(\frac{\pi}{4} \right) & 0 & \cos \left(\frac{\pi}{4} \right) \end{pmatrix}=\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{pmatrix}.

This can be verified by considering the product A2=G1AA_2=G_1A: A2=G1A=(22022010−22022)(−11111−1111)=(−20011−1022)A_2=G_1 A=\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{pmatrix}\begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}=\begin{pmatrix} -\sqrt{2} & 0 & 0 \\ 1 & 1 & -1 \\ 0 & \sqrt{2} & \sqrt{2} \end{pmatrix} which does eliminate a31a_{31}.

This process can be repeated for all other terms in the lower triangular section to reduce AA into an upper triangular matrix. In these cases, to eliminate the element in position (m,n)(m,n), the angle θ=arctan(−amnann)\theta=\arctan\left(-\frac{a_{mn}}{a_{nn}} \right) and the rotation matrix is G(n,m;θ)G(n,m;\theta).

Second & Third Rotation Matrices

Repeat the same process as above to the matrix A2A_2 to eliminate the term in position (2,1): θ2=arctan(−a21a11)=arctan(12)\theta_2=\arctan\left(-\frac{a_{21}}{a_{11}} \right)=\arctan \left(\frac{1}{\sqrt{2}} \right) and G2=G(1,2;θ2)G_2=G(1,2;\theta_2) is G2=G(1,2;θ2)=(cos(θ2)−sin(θ2)0sin(θ2)cos(θ2)0001)=(63−33033630001).G_2=G(1,2;\theta_2)=\begin{pmatrix} \cos(\theta_2) & -\sin(\theta_2) & 0 \\ \sin(\theta_2) & \cos(\theta_2) & 0 \\ 0 & 0 & 1 \end{pmatrix}=\begin{pmatrix} \frac{\sqrt{6}}{3} & -\frac{\sqrt{3}}{3} & 0 \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix}. Applying G2G_2 to A2A_2 should eliminate the (2,1) element, indeed A3=G2A2=(−3−3333063−63022).A_3=G_2 A_2=\begin{pmatrix} -\sqrt{3} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\ 0 & \frac{\sqrt{6}}{3} & -\frac{\sqrt{6}}{3} \\ 0 & \sqrt{2} & \sqrt{2} \end{pmatrix}.

Finally, the term in position (2,3) needs to be eliminated: θ3=arctan(−a32a22)=arctan(3)\theta_3=\arctan\left(-\frac{a_{32}}{a_{22}} \right)=\arctan\left(\sqrt{3} \right) and G3=G(2,3;θ3)G_3=G(2,3;\theta_3) is G3=G(2,3;θ3)=(1000cos(θ3)−sin(θ3)0sin(θ3)cos(θ3))=12(1000130−31).G_3=G(2,3;\theta_3)=\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_3) & -\sin(\theta_3) \\ 0 & \sin(\theta_3) & \cos(\theta_3) \end{pmatrix}=\frac{1}{2}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \sqrt{3} \\ 0 & -\sqrt{3} & 1 \end{pmatrix}.

Applying G3G_3 to A3A_3 should eliminate the (3,2) element, indeed G3A3=12(1000130−31)(−3−3333063−63022)=13(−33−3302660032).G_3 A_3=\frac{1}{2}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \sqrt{3} \\ 0 & -\sqrt{3} & 1 \end{pmatrix}\begin{pmatrix} -\sqrt{3} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\ 0 & \frac{\sqrt{6}}{3} & -\frac{\sqrt{6}}{3} \\ 0 & \sqrt{2} & \sqrt{2} \end{pmatrix}=\frac{1}{3}\begin{pmatrix} -3\sqrt{3} & -\sqrt{3} & \sqrt{3} \\ 0 & 2\sqrt{6} & \sqrt{6} \\ 0 & 0 & 3\sqrt{2} \end{pmatrix}.

This process will generate a sequence of at most 12N(N−1)\frac{1}{2}N(N-1) rotation matrices (since this is the number of terms that need to be eliminated). Suppose that MM rotation matrices are needed where M∈{1,2,…,12N(N−1)}M \in \left\{ 1,2,\dots,\frac{1}{2}N(N-1) \right\}, then when these are applied to AA in reverse order (the product GMGM−1…G2G1AG_M G_{M-1} \dots G_2 G_1 A), then the result should be the upper triangular matrix RR. Let G=GMGM−1…G2G1G=G_M G_{M-1} \dots G_2 G_1, then R=GAR=GA. Since all the rotation matrices are orthogonal, then their product must also be orthogonal, therefore if Q=G−1=GTQ=G^{-1}={G}^{\mathrm{T}}, then A=QRA=QR, hence giving the QR decomposition of AA.

Final QR Decomposition

The matrices in question are G1=(22022010−22022),G2=(63−33033630001)andG3=(100012320−3212).G_1=\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{pmatrix}, \quad G_2=\begin{pmatrix} \frac{\sqrt{6}}{3} & -\frac{\sqrt{3}}{3} & 0 \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad G_3=\begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}. The product of the rotation matrices is G=G3G2G1=(33−33−33636666022−22).G=G_3 G_2 G_1 = \begin{pmatrix} \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}. Therefore Q=G−1=GT=(33630−336622−3366−22)Q=G^{-1}={G}^{\mathrm{T}}=\begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{3} & 0 \\ -\frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \\ \frac{-\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} \end{pmatrix} hence giving the QR decomposition of AA as (−11111−1111)⏟A=(33630−336622−3366−22)⏟Q(−3−3333026363002)⏟R.\underbrace{\begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}}_{A}=\underbrace{\begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{3} & 0 \\ -\frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} \end{pmatrix}}_{Q} \underbrace{\begin{pmatrix} -\sqrt{3} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\ 0 & \frac{2\sqrt{6}}{3} & \frac{\sqrt{6}}{3} \\ 0 & 0 & \sqrt{2} \end{pmatrix}}_{R}.

Generally, the QR decomposition of a matrix is unique up to sign differences (as seen from the examples above where some of the rows and columns have different signs but in the end, the result will be the same).

G.1.3 QR Decomposition in MATLAB

In MATLAB, the QR decomposition can be done with the qr function.

>> A=[4,6,1;0,1,-1;0,1,2]
A =
 4 6 1
 0 1 -1
 0 1 2
>> [Q,R]=qr(A)
Q =
 1.0000 0 0
 0 -0.7071 -0.7071
 0 -0.7071 0.7071
R =
 4.0000 6.0000 1.0000
 0 -1.4142 -0.7071
 0 0 2.1213

If the matrix is rectangular, then the economy version of the QR decomposition can be found using qr(A,"econ").

G.2 Eigenvalue Decomposition

For a matrix A∈ℂN×NA \in \mathbb{C}^{N \times N}, the value λ∈ℂ\lambda \in \mathbb{C} and non-zero vector 𝐯∈ℂN\boldsymbol{v} \in \mathbb{C}^N are known as the Eigenvalue and Eigenvector, respectively, if they satisfy the relationship A𝐯=λ𝐯A\boldsymbol{v}=\lambda \boldsymbol{v}. These can be written in eigenpair notation as {λ;𝐯}\left\{ \lambda; \boldsymbol{v} \right\}.

In MATLAB, to find the eigenvalues and eigenvectors of a matrix A, use [V,E]=eig(A). This will produce a matrix V whose columns are the eigenvectors of A and a diagonal matrix E whose entries are the corresponding eigenvalues where the (n,n)(n,n) element of E is the eigenvalue that corresponds to the eigenvector in column nn of V. However, if only eig(A) is run without specifying the outputs, MATLAB will produce a column vector of eigenvalues only.

>> A=[-2,-4,2;-2,1,2;4,2,5]
A =
 -2 -4 2
 -2 1 2
 4 2 5
>> eig(A)
ans =
 -5
 3
 6
>> [V,E]=eig(A)
v =
 0.8165 0.5345 0.0584
 0.4082 -0.8018 0.3505
 -0.4082 -0.2672 0.9347

E =
 -5 0 0
 0 3 0
 0 0 6

Therefore, the matrix AA has the following eigenpairs {−5;(0.81650.4082−0.4082)},{3;(0.5345−0.8018−0.2672)},{6;(0.05840.35050.9347)}.\left\{ -5 \; ; \; \begin{pmatrix} 0.8165 \\ 0.4082 \\ -0.4082 \end{pmatrix} \right\} \quad \text{,} \quad \left\{ 3 \; ; \; \begin{pmatrix} 0.5345 \\ -0.8018 \\ -0.2672 \end{pmatrix} \right\} \quad \text{,} \quad \left\{ 6 \; ; \; \begin{pmatrix} 0.0584 \\ 0.3505 \\ 0.9347 \end{pmatrix} \right\}.

Notice that the eigenvectors are not represented in the most pleasant form, the reason is that MATLAB normalises eigenvectors by default, meaning that the magnitude of every eigenvector is 1. In order to convert this to a more palatable form, the columns should be individually multiplied or divided by any scalar value1. The easiest way to do this is to, first of all, divide every individual column by its minimum value, then any other manipulations can be carried out afterwards.

>> v1=V(:,1)/min(V(:,1))
ans =
 -2
 -1
 1
>> v2=V(:,2)/min(V(:,2))
ans =
 -0.6667
 1.0000
 0.3333
>> v2=3*v2
ans =
 -2
 3
 1
>> v3=V(:,3)/min(V(:,3))
ans =
 1
 6
 16

This produces a far more appealing set of eigenpairs: {−5;(−2−11)},{3;(−231)},{6;(1616)}.\left\{ -5 \; ; \; \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix} \right\} \quad \text{,} \quad \left\{ 3 \; ; \; \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} \right\} \quad \text{,} \quad \left\{ 6 \; ; \; \begin{pmatrix} 1 \\ 6 \\ 16 \end{pmatrix} \right\}.

G.2.1 Eigendecomposition

Suppose that the matrix A∈ℂN×NA \in \mathbb{C}^{N \times N} has NN linearly independent eigenvectors 𝐯1,𝐯2,…,𝐯N\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_N with their associated eigenvalues λ1,λ2,…,λN\lambda_1, \lambda_2, \dots, \lambda_N. Let VV be the matrix whose columns are the eigenvectors of AA and let Λ\Lambda be the diagonal matrix whose entries are the corresponding eigenvalues (in the same way that MATLAB produces the matrices E and V). In other words, if the matrix AA has the eigenpairs {λ1;𝐯1},{λ2;𝐯2},…{λN;𝐯N},\left\{ \lambda_1; \boldsymbol{v}_1 \right\}, \quad \left\{ \lambda_2; \boldsymbol{v}_2 \right\}, \quad \dots \left\{ \lambda_N; \boldsymbol{v}_N \right\}, then the matrices VV and Λ\Lambda are V=(⋮⋮⋮𝐯1𝐯2…𝐯N⋮⋮⋮)andΛ=(λ1λ2⋱λN).V=\begin{pmatrix} \vdots & \vdots & & \vdots \\ \boldsymbol{v}_1 & \boldsymbol{v}_2 & \dots & \boldsymbol{v}_N \\ \vdots & \vdots && \vdots \end{pmatrix} \quad \text{and} \quad \Lambda=\begin{pmatrix} \lambda_1 \\ & \lambda_2 \\ && \ddots \\ &&& \lambda_N \end{pmatrix}. The matrix AA can then be written as A=VΛV−1A=V \Lambda V^{-1} and this is called the Eigendecomposition of AA. If VV is an orthogonal matrix (as MATLAB produces it), then the eigendecomposition of AA is A=VΛVTA=V \Lambda {V}^{\mathrm{T}}.

This particular decomposition of matrices is useful when the matrix AA acts as a repeated transformation in a vector space. For example, suppose that the vector 𝐲\boldsymbol{y} can be found by applying the matrix transformation AA on the vector 𝐱\boldsymbol{x} 100 times, this means that 𝐲=A100𝐱\boldsymbol{y}=A^{100}\boldsymbol{x}. Under usual circumstances, calculating A100A^{100} is incredibly cumbersome but if the eigendecomposition of AA is used, then the problem can be reduced into taking the power of a diagonal matrix instead. Indeed, 𝐲=A100𝐱\boldsymbol{y}=A^{100}\boldsymbol{x} 𝐲=AA…A⏟100 times𝐱\boldsymbol{y}=\underbrace{AA \dots A}_{\text{100 times}} \boldsymbol{x} 𝐲=(VΛV−1)(VΛV−1)…(VΛV−1)⏟100 times𝐱\boldsymbol{y}=\underbrace{\left(V \Lambda V^{-1} \right) \left(V \Lambda V^{-1} \right) \dots \left(V \Lambda V^{-1} \right)}_{\text{100 times}} \boldsymbol{x} 𝐲=VΛV−1VΛV−1VΛV−1𝐱\boldsymbol{y}=V \Lambda V^{-1}V \Lambda V^{-1}V \Lambda V^{-1}\boldsymbol{x} 𝐲=VΛ100V−1𝐱.\boldsymbol{y}=V \Lambda^{100} V^{-1} \boldsymbol{x}.

Therefore, instead of calculating A100A^{100}, the matrix Λ100\Lambda^{100} can be calculated instead which will be much easier since Λ\Lambda is a diagonal matrix (remember that the power of a diagonal matrix is just the power of its individual terms). If VV is orthogonal, then the calculation will be simpler since the matrix VV does not need to be inverted, only its transpose taken.

Luckily, MATLAB can perform this decomposition as seen with the eig command.

G.3 Singular Value Decomposition (SVD)

What happens if a square matrix AA does not have a full system of eigenvectors? What happens if AA is a rectangular matrix? In cases like this, some of the previous decompositions can fail, however there is one more way in which these issues can be resolved and it is by using the Singular Value Decomposition.

For A∈ℝM×NA \in \mathbb{R}^{M \times N}, orthogonal matrices U∈ℝM×MU \in \mathbb{R}^{M \times M} and V∈ℝN×NV \in \mathbb{R}^{N \times N} can always be found such that AV=UΣAV=U\Sigma where Σ∈ℝM×N\Sigma \in \mathbb{R}^{M \times N} is a diagonal matrix that can be written as Σ=diag(σ1,σ2,…,σp)\Sigma=\mathrm{diag}(\sigma_1, \sigma_2, \dots, \sigma_p) where p=min{M,N}p=\min \left\{ M,N \right\} whose entries are positive and arranged in descending order, i.e. σ1≥σ2≥…≥σp≥0.\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_p \geq 0. Since VV is an orthogonal matrix, then AA can be written as A=UΣVTA = U\Sigma {V}^{\mathrm{T}}, this form is called the Singular Value Decomposition (SVD) of AA. If M>NM>N, this can be illustrated as follows:

[image:]

The scalar values σi\sigma_i are called the Singular Values of 𝐀\boldsymbol{A}, the columns of UU are called Left Singular Vectors and the columns of VV are called Right Singular Vectors. In a vector sense, the SVD of AA given by A=UΣVTA=U \Sigma {V}^{\mathrm{T}} can be written as A𝐯i=σi𝐮iA\boldsymbol{v}_i = \sigma_i\boldsymbol{u}_i for all i=1,2,…,pi=1,2,\dots,p (where 𝐮i\boldsymbol{u}_i and 𝐯i\boldsymbol{v}_i are the columns of UU and VV respectively).

Properties of the SVD

	The SVD of a matrix A∈ℂM×NA \in \mathbb{C}^{M \times N} requires 𝒪(MNp)\mathcal{O}\left(MNp\right) computations (where p=min{M,N}p=\min \left\{ M,N \right\}).

	The singular values are also useful when calculating the 2-norm of a matrix. Recall that for a matrix A∈ℂM×NA \in \mathbb{C}^{M \times N}, the 2-norm of AA can be written in terms of the spectral radius of AHA{A}^{\mathrm{H}}A as ∥A∥2=ρ(AHA)\|A\|_2=\sqrt{\rho({A}^{\mathrm{H}}A)} where the spectral radius is the largest eigenvalue in absolute value. This can also be written in terms of the singular values as ∥A∥2=σmax(A)\|A\|_2=\sqrt{\sigma_{max}(A)} where σmax(A)\sigma_{max}(A) represents the largest singular value of matrix AA, which (as per the the way in which the singular values have been arranged) is going to be σ1\sigma_1.

	If A∈ℝN×NA \in \mathbb{R}^{N \times N}, then the eigenvalues of AATA {A}^{\mathrm{T}} and ATA{A}^{\mathrm{T}}A are equal to the squares of the singular values of AA, indeed, if A=UΣVTA=U \Sigma {V}^{\mathrm{T}}, then AAT=(UΣVT)(UΣVT)T=UΣVTVΣTUT=UΣ2UTA {A}^{\mathrm{T}}=\left(U \Sigma {V}^{\mathrm{T}} \right) {\left(U \Sigma {V}^{\mathrm{T}} \right)}^{\mathrm{T}}=U \Sigma {V}^{\mathrm{T}} V {\Sigma}^{\mathrm{T}} {U}^{\mathrm{T}}=U \Sigma^2 {U}^{\mathrm{T}} ATA=(UΣVT)T(UΣVT)=VΣTUTUΣVT=VΣ2VT{A}^{\mathrm{T}}A={\left(U \Sigma {V}^{\mathrm{T}} \right)}^{\mathrm{T}} \left(U \Sigma {V}^{\mathrm{T}} \right)=V {\Sigma}^{\mathrm{T}} {U}^{\mathrm{T}} U \Sigma {V}^{\mathrm{T}}=V \Sigma^2 {V}^{\mathrm{T}} since Σ\Sigma is a diagonal square matrix.

	Let r,s∈ℕr,s \in \mathbb{N} and τ∈ℝ\tau \in \mathbb{R}, suppose that the singular values σ1,σ2,…,σp\sigma_1, \sigma_2, \dots, \sigma_p of AA satisfy σ1≥σ2≥…≥σs>τ≥σs+1≥…≥σr>σr+1=σr+2=…=σp=0.\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_s > \tau \geq \sigma_{s+1} \geq \dots \geq \sigma_r > \sigma_{r+1} = \sigma_{r+2} = \dots = \sigma_p = 0. Then rr is the Rank of AA and ss is the 𝛕\boldsymbol{\tau}-rank of AA. In fact, if τ=εM\tau=\varepsilon_M (the machine precision), then ss is called the Numerical Rank of AA.

	Specific singular vectors span specific subspaces defined in connection to AA. For instance, if the rank of AA is rr, then A𝐯i=𝟎A\boldsymbol{v}_i=\boldsymbol{0} for all i=r+1,…,Ni=r+1, \dots, N. As a consequence, the vectors 𝐯r+1,𝐯r+2,…,𝐯N\boldsymbol{v}_{r+1}, \boldsymbol{v}_{r+2}, \dots, \boldsymbol{v}_N span the null-space of AA, denoted by null(A)={𝐱∈ℝN:A𝐱=𝟎}.\text{null}(A)=\left\{ \boldsymbol{x}\in\mathbb{R}^N : A\boldsymbol{x}=\boldsymbol{0} \right\}.

	If A=UΣVTA=U \Sigma {V}^{\mathrm{T}}, then AA can be rewritten as A=∑i=1rEiA=\sum_{i=1}^{r}{E_i} where Ei=σi𝐮i𝐯iTE_i=\sigma_i \boldsymbol{u}_i {\boldsymbol{v}_i}^{\mathrm{T}} is a rank-1 matrix. It can be seen that ∥Ei∥=∥σi𝐮i𝐯iT∥2=σi.\| E_i \|=\|\sigma_i\boldsymbol{u}_i\boldsymbol{v}_i^T\|_2=\sigma_i. Since the norm of a matrix is a measure of the “magnitude” of a matrix, it can be said that AA is made up of very specific elementary rank-1 matrices, in such a way that E1E_1 is the most “influential” one.

The singular value decomposition of the matrix A∈ℝM×NA \in \mathbb{R}^{M \times N} can be done by following these steps:

Parallel Example

These steps will be applied in parallel to the matrix A=(32223−2).A=\begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}.

	Calculate the eigenpairs of AATA{A}^{\mathrm{T}} and ATA{A}^{\mathrm{T}}A.

Eigenpairs

The eigenpairs of AATA {A}^{\mathrm{T}} are {25;(11)}and{9;(−11)}.\left\{ 25 ; \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \quad \text{and} \quad \left\{ 9 ; \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}. Similarly, the eigenpairs of ATA{A}^{\mathrm{T}}A are {25;(110)},{9;(1−14)}and{0;(−221)}.\left\{ 25 ; \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}, \quad \left\{ 9 ; \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \right\} \quad \text{and} \quad \left\{ 0 ; \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix} \right\}.

	Normalise the eigenvectors by dividing by their 2-norm (this will in fact be the default output from MATLAB’s eig function).

Normalise Eigenvectors

The normalised eigenpairs of AATA{A}^{\mathrm{T}} are {25;12(11)}and{9;12(−11)}.\left\{ 25 ; \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \quad \text{and} \quad \left\{ 9 ; \frac{1}{\sqrt{2}}\begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}. Similarly, the normalised eigenpairs of ATA{A}^{\mathrm{T}}A are {25;12(110)},{9;118(1−14)}and{0;13(−221)}.\left\{ 25 ; \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}, \quad \left\{ 9 ; \frac{1}{\sqrt{18}}\begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \right\} \quad \text{and} \quad \left\{ 0 ; \frac{1}{3}\begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix} \right\}.

	The matrix of singular values Σ\Sigma must be of the same size as AA, i.e. Σ∈ℝM×N\Sigma \in \mathbb{R}^{M \times N}, where the diagonal terms are the square roots of the eigenvalues of AATA{A}^{\mathrm{T}} and ATA{A}^{\mathrm{T}}A (only the ones that are shared by the two matrix products) arranged in descending order. There will only be pp diagonal terms where p=min{M,N}p=\min \left\{ M ,N \right\}.

Terms of Σ\Sigma

The matrix Σ\Sigma must be of size 2×32 \times 3. The eigenvalues of AATA {A}^{\mathrm{T}} and ATA{A}^{\mathrm{T}}A are 2525 and 99. Therefore the matrix Σ\Sigma and is given by Σ=(2500090)=(500030).\Sigma=\begin{pmatrix} \sqrt{25} & 0 & 0 \\ 0 & \sqrt{9} & 0 \end{pmatrix}=\begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}.

	The matrix U∈ℝM×MU \in \mathbb{R}^{M \times M} will be the matrix whose columns are the normalised eigenvectors of ATA{A}^{\mathrm{T}}A arranged in the same order as the values appear in Σ\Sigma. Note that if 𝐯\boldsymbol{v} is a normalised eigenvector, then −𝐯-\boldsymbol{v} will also be a normalised eigenvector, therefore this will give rise to 2M2^M possible cases for UU (which will be narrowed down later).

Matrix UU

The normalised eigenpairs of ATA{A}^{\mathrm{T}}A are {25;12(11)}and{9;12(−11)}.\left\{ 25 ; \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \quad \text{and} \quad \left\{ 9 ; \frac{1}{\sqrt{2}}\begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}. If 𝐮1\boldsymbol{u}_1 is the first normalised eigenvector and 𝐮2\boldsymbol{u}_2 is the second normalised eigenvector (i.e. 𝐮1=(1,1)T\boldsymbol{u}_1={\left(1 \; , \;1 \right)}^{\mathrm{T}} and 𝐮2=(−1,1)T\boldsymbol{u}_2={\left(-1 \; , \; 1 \right)}^{\mathrm{T}}), then the matrix U∈ℝ2×2U \in \mathbb{R}^{2 \times 2} can take one of four possible forms U1=(𝐮1𝐮2)=12(1−111),U2=(𝐮1−𝐮2)=12(111−1)U3=(−𝐮1𝐮2)=12(−1−1−11),U4=(−𝐮1−𝐮2)=12(−11−1−1).\begin{align*}
&U_1=\begin{pmatrix} & \\ \boldsymbol{u}_1 & \boldsymbol{u}_2 \\ & \end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, && U_2=\begin{pmatrix} & \\ \boldsymbol{u}_1 & -\boldsymbol{u}_2 \\ & \end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\
&U_3=\begin{pmatrix} & \\ -\boldsymbol{u}_1 & \boldsymbol{u}_2 \\ & \end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}, && U_4=\begin{pmatrix} & \\ -\boldsymbol{u}_1 & -\boldsymbol{u}_2 \\ & \end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix}.
\end{align*}

	The matrix V∈ℝN×NV \in \mathbb{R}^{N \times N} will be the matrix whose columns are the normalised eigenvectors of AATA{A}^{\mathrm{T}} arranged in the same order as the values appear in Σ\Sigma. Just as before, there will technically be 2N2^N choices of VV. In this case, one choice of UU or VV should be fixed.

Matrix VV

The normalised eigenpairs of ATA{A}^{\mathrm{T}}A are {25;12(110)},{9;118(1−14)}and{0;13(−221)}.\left\{ 25 ; \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}, \quad \left\{ 9 ; \frac{1}{\sqrt{18}}\begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \right\} \quad \text{and} \quad \left\{ 0 ; \frac{1}{3}\begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix} \right\}. Since VV has a larger size than UU, fix VV as the matrix whose columns are the normalised eigenvectors of AATA {A}^{\mathrm{T}} with no sign changes. This can be accommodated for later on by picking an appropriate choice for UU. Then V=(12118−2312−11823041813).V=\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & -\frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{18}} & \frac{2}{3} \\ 0 & \frac{4}{\sqrt{18}} & \frac{1}{3} \end{pmatrix}.

	The correct choice for the matrix UU can be found in one of two ways:

	Trial & Error: Perform the multiplication UΣVTU \Sigma {V}^{\mathrm{T}} for the different choices of UU until the correct one is found that gives AA. Alternatively, UU can be fixed and the different choices for VV can be investigated.

Trial & Error

Consider the product UΣVTU \Sigma {V}^{\mathrm{T}} for the different choices of UU and see which one gives the matrix AA: U1ΣVT=(23−2322)≠AU2ΣVT=(32223−2)=AU3ΣVT=(−3−2−2−2−32)≠AU4ΣVT=(−2−32−3−2−2)≠A\begin{align*}
& U_1 \Sigma {V}^{\mathrm{T}}=\begin{pmatrix} 2 & 3 & -2 \\ 3 & 2 & 2 \end{pmatrix} \neq A \\
& U_2 \Sigma {V}^{\mathrm{T}}=\begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix} = A \\
& U_3 \Sigma {V}^{\mathrm{T}}=\begin{pmatrix} -3 & -2 & -2 \\ -2 & -3 & 2 \end{pmatrix} \neq A \\
& U_4 \Sigma {V}^{\mathrm{T}}=\begin{pmatrix} -2 & -3 & 2 \\ -3 & -2 & -2 \end{pmatrix} \neq A
\end{align*} Therefore the correct choice for UU is U2U_2.

	Pseudo-Inversion: First, consider the expression A=UΣVTA=U \Sigma {V}^{\mathrm{T}}, multiplying both sides by VV on the right gives AV=UΣA V=U \Sigma (since VV is orthogonal meaning that VTV=ℐ{V}^{\mathrm{T}}V=\mathcal{I}). Since Σ\Sigma is rectangular in general, it does not have an inverse but it does have a Pseudo-Inverse2. Since Σ\Sigma is a diagonal matrix, then the pseudo-inverse will also be a diagonal matrix with the diagonal entries being the reciprocals of the singular values. For example, if Σ=(σ10000σ20000σ30),\Sigma=\begin{pmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 \end{pmatrix}, then the pseudo-inverse of Σ\Sigma is Σ+=(1σ10001σ20001σ3000).\Sigma^+=\begin{pmatrix} \frac{1}{\sigma_1} & 0 & 0 \\ 0 & \frac{1}{\sigma_2} & 0 \\ 0 & 0 & \frac{1}{\sigma_3} \\ 0 & 0 & 0 \end{pmatrix}. Similarly if Σ=(σ1000σ2000σ3000),\Sigma=\begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \\ 0 & 0 & 0 \end{pmatrix}, then the pseudo-inverse of Σ\Sigma is Σ−=(1σ100001σ200001σ30).\Sigma^-=\begin{pmatrix} \frac{1}{\sigma_1} & 0 & 0 & 0 \\ 0 & \frac{1}{\sigma_2} & 0 & 0 \\ 0 & 0 & \frac{1}{\sigma_3} & 0 \end{pmatrix}. Therefore multiplying both sides of AV=UΣA V=U \Sigma by Σ+\Sigma^+ on the right will give the desired expression for UU which is U=AVΣ+U=AV\Sigma^+.

Pseudo-Inverse

The pseudo-inverse of Σ∈ℝ2×3\Sigma \in \mathbb{R}^{2 \times 3} is Σ+∈ℝ3×2\Sigma^+ \in \mathbb{R}^{3 \times 2} where its diagonal terms are the reciprocals of those in Σ\Sigma, i.e. Σ=(500030)⟹Σ+=(15001300).\Sigma=\begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix} \quad \implies \quad\Sigma^+=\begin{pmatrix} \frac{1}{5} & 0 \\ 0 & \frac{1}{3} \\ 0 & 0 \end{pmatrix}. This can be verified by showing that ΣΣ+=ℐ\Sigma \Sigma^+ = \mathcal{I}. To find UU, calculate U=AVΣ+=(32223−2)(12118−2312−11823041813)(15001300)=12(111−1).U=AV\Sigma^+=\begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & -\frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{18}} & \frac{2}{3} \\ 0 & \frac{4}{\sqrt{18}} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{5} & 0 \\ 0 & \frac{1}{3} \\ 0 & 0 \end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.

	This finally gives all the matrices required for the SVD of AA.

SVD of AA

(32223−2)⏟A=(121212−12)⏟U(500030)⏟Σ(12120118−118418−232313)⏟VT.\underbrace{\begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}}_A=\underbrace{\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}}_{U} \underbrace{\begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}}_{\Sigma} \underbrace{\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{18}} & -\frac{1}{\sqrt{18}} & \frac{4}{\sqrt{18}} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{pmatrix}}_{{V}^{\mathrm{T}}}.

Note that if the SVD of a matrix AA is known, it can also be useful in finding pseudo inverse of AA: A=UΣVT⇒×VAV=UΣVTV⇒V−1=VTAV=UΣ⇒×Σ+AVΣ+=UΣΣ+⇒ΣΣ+=ℐAVΣ+=U⇒×UTAVΣ+UT=UT⇒UUT=ℐAVΣ+UT=ℐ.\begin{align*}
 & A=U \Sigma {V}^{\mathrm{T}} \\
 \quad \underset{\times V}{\Rightarrow} \quad & A V = U \Sigma {V}^{\mathrm{T}} V \\
 \quad \underset{V^{-1}={V}^{\mathrm{T}}}{\Rightarrow} \quad & A V = U \Sigma \\
 \quad \underset{ \times \Sigma^+}{\Rightarrow} \quad & A V \Sigma^+ = U \Sigma \Sigma^+ \\
 \quad \underset{ \Sigma \Sigma^+=\mathcal{I}}{\Rightarrow} \quad & A V \Sigma^+ = U \\
 \quad \underset{ \times {U}^{\mathrm{T}}}{\Rightarrow} \quad & A V \Sigma^+ {U}^{\mathrm{T}} = {U}^{\mathrm{T}} \\
 \quad \underset{ U {U}^{\mathrm{T}} = \mathcal{I}}{\Rightarrow} \quad & A V \Sigma^+ {U}^{\mathrm{T}} = \mathcal{I}. \\
\end{align*} Therefore, the matrix A+=VΣ+UTA^+=V \Sigma^+ {U}^{\mathrm{T}} is the pseudo-inverse of AA.

Pseudo-Inverse of AA

Find the pseudo-inverse of AA where A=(32223−2).A=\begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}. The SVD of AA is A=(121212−12)⏟U(500030)⏟Σ(12120118−118418−232313)⏟VT.A=\underbrace{\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}}_{U} \underbrace{\begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}}_{\Sigma} \underbrace{\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{18}} & -\frac{1}{\sqrt{18}} & \frac{4}{\sqrt{18}} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{pmatrix}}_{{V}^{\mathrm{T}}}.

The pseudo-inverse of AA is A+=VΣ+UT=(12118−2312−11823041813)(15001300)(121212−12)=145(722710−10).A^+= V \Sigma^+ {U}^{\mathrm{T}} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & -\frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{18}} & \frac{2}{3} \\ 0 & \frac{4}{\sqrt{18}} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{5} & 0 \\ 0 & \frac{1}{3} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}=\frac{1}{45} \begin{pmatrix} 7 & 2 \\ 2 & 7 \\ 10 & -10 \end{pmatrix}.

G.3.0.1 SVD in MATLAB

In MATLAB, the SVD of a matrix can be found with the SVD command.

>> A=[3, 2, 2; 2, 3, -2]
A =
 3 2 2
 2 3 -2
>> [U,S,V]=svd(A)
U =
 -0.7071 0.7071
 -0.7071 -0.7071
S =
 5.0000 0 0
 0 3.0000 0
V =
 -0.7071 0.2357 -0.6667
 -0.7071 -0.2357 0.6667
 -0.0000 0.9428 0.3333
>> U*S*V'-A % Check is A=USV'
ans =
 1.0e-14 *
 0 0 -0.0222
 -0.0222 -0.1332 0.0666

Notice that sometimes, due to round-off error, U*S*V'-A may not exactly be equal to the zero matrix, but it is still close enough to it.

1. Remember that any scalar multiple of an eigenvector is still an eigenvector.

2. For a matrix B∈ℂM×NB \in \mathbb{C}^{M \times N} with M<NM<N, then the pseudo-inverse is the matrix B+∈ℂN×MB^+ \in \mathbb{C}^{N \times M} such that BB+=ℐ∈ℝM×MB B^+=\mathcal{I}\in \mathbb{R}^{M \times M}. Similarly, if B∈ℂM×NB \in \mathbb{C}^{M \times N} with M>NM>N, the pseudo-inverse is the matrix B−∈ℂN×MB^- \in \mathbb{C}^{N \times M} such that B−B=ℐ∈ℝN×NB^- B =\mathcal{I}\in \mathbb{R}^{N \times N}. Note that if a matrix is square and invertible, then the pseudo-inverse is the inverse.

 ch024.xhtml

Appendix H — Data Fitting

H.1 Linear Regression

Linear Regression, or Linear Least Squares (LS), problems originally arose from the need to fit a mathematical model to given observations; typically, to reduce the influence of errors in the observations. It is desirable to use a greater number of measurements than the number of unknown parameters in the model (more equations than unknowns), hence leading to an overdetermined system of equations. In other words, given 𝐛∈ℝM\boldsymbol{b} \in \mathbb{R}^M and A∈ℝM×NA \in \mathbb{R}^{M\times N} with M>NM>N, a solution 𝐱∈ℝN\boldsymbol{x} \in \mathbb{R}^N needs to be found such that A𝐱A \boldsymbol{x} is the ``best’’ approximation to 𝐛\boldsymbol{b}.

For instance, consider a set of MM data points (or measurements) (ti,yi)(t_i,y_i) for i=1,2,…,Mi=1,2,\dots,M. The idea behind linear regression is to find a parameter vector 𝐱∈ℝN\boldsymbol{x} \in \mathbb{R}^N such that the linear function yy given by y(t)=f(x,t)=∑j=1Nxjφj(t)y(t)=f(x,t)=\sum_{j=1}^N{x_j\varphi_j(t)} can approximate the data in the best possible way, by reducing the error between the measurement (ti,yi)(t_i,y_i) and the approximation (ti,y(ti))(t_i,y(t_i)).

There are MM equations represented by the MM measurements and NN unknowns, which are the terms of 𝐱\boldsymbol{x}. Replacing the measurements into the equation for yy gives an overdetermined system yi=∑j=1Nxjφj(ti)fori=1,…,M.y_i=\sum_{j=1}^N x_j\varphi_j(t_i) \quad \text{for} \quad i=1,\dots,M. This system can be written in matrix form as A𝐱=𝐛A\boldsymbol{x}=\boldsymbol{b} where the elements of AA are aij=φj(ti)a_{ij}=\varphi_j(t_i) and the elements of 𝐛\boldsymbol{b} are bi=yib_i=y_i. The ``best’’ way to fit the data can be different depending upon the discipline, but the one of the simplest and most statistically motivated choice is to find a vector 𝐱\boldsymbol{x} where the square of the distance between the points is reduced as much as possible, i.e. reduce the value of (y(ti)−yi)2(y(t_i)-y_i)^2. More formally, this can be written as a minimisation problem to find min𝐱∥𝐫∥2where𝐫=𝐛−A𝐱is the residual\min_{\boldsymbol{x}}\| \boldsymbol{r} \|_2 \quad \text{where} \quad \boldsymbol{r}=\boldsymbol{b}-A\boldsymbol{x} \quad \text{is the residual} and the linear least squares solution is x̃=argmin𝐱∥A𝐱−𝐛∥2.\tilde{x}=\underset{\boldsymbol{x}}{\mathrm{argmin}}\|A\boldsymbol{x}-\boldsymbol{b}\|_2. Sometimes the solution 𝐱\boldsymbol{x} may not be unique (if the rank of AA is less than NN), in that case, the solution will be the one with the smallest 2-norm.

Hooke’s Law

Hooke’s law states that the length ll of an extension of a spring is directly proportional to the force FF applied, specifically the extension can be written in terms of the force as l=e+kFl=e + k F where ee is the equilibrium position and kk is the spring stiffness, both of which are constants to be determined. Assume that an experiment was conducted and the following data was obtained

	FF
	1
	2
	3
	4
	5

	ll
	7.97
	10.2
	14.2
	16.0
	21.2

Therefore, a system of 5 equations in 2 unknowns is 7.97=e+k10.2=e+2k14.2=e+3k16.0=e+4k21.2=e+5k.\begin{align*}
7.97 & = e + k \\
10.2 & = e + 2k \\
14.2 & = e + 3k \\
16.0 & = e + 4k \\
21.2 & = e + 5k. \\
\end{align*} This system can be written in matrix form as (1112131415)(ek)=(7.9710.214.216.021.2).\begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ 1 & 5 \end{pmatrix}\begin{pmatrix} e \\ k \end{pmatrix}=\begin{pmatrix} 7.97 \\ 10.2 \\ 14.2 \\ 16.0 \\ 21.2 \end{pmatrix}.

This is an example of ***Inverse Problem} in which the parameters need to be found from the given data.

This minimisation problem can also be solved using the QR decomposition of the matrix AA. Suppose that the matrix AA can be written as A=QRA=QR where QQ is an orthogonal matrix and RR is upper triangular, then A𝐱−𝐛=QR𝐱−𝐛since A=QR=Q(R𝐱−QT𝐛)since Q−1=QT.\begin{align*}
A\boldsymbol{x}-\boldsymbol{b} &= QR\boldsymbol{x} -\boldsymbol{b} \qquad \text{since $A=QR$}
& = Q(R\boldsymbol{x}-{Q}^{\mathrm{T}}\boldsymbol{b}) \qquad \text{since $Q^{-1}={Q}^{\mathrm{T}}$}.
\end{align*} Thus the 2-norm of the residual 𝐫=A𝐱−𝐛\boldsymbol{r}=A\boldsymbol{x}-\boldsymbol{b} is ∥𝐫∥2=∥A𝐱−𝐛∥2=∥Q(R𝐱−QT𝐛)∥2=∥R𝐱−QT𝐛∥2since Q is orthogonal, then ∥Q𝐯∥2=∥𝐯∥2.\begin{align*}
\| \boldsymbol{r} \|_2 &= \| A\boldsymbol{x} - \boldsymbol{b} \|_2 \\
&= \| Q(R\boldsymbol{x}- {Q}^{\mathrm{T}}\boldsymbol{b}) \|_2 \\
&= \| R\boldsymbol{x} - {Q}^{\mathrm{T}}\boldsymbol{b} \|_2 \qquad \text{since Q is orthogonal, then $\| Q\boldsymbol{v} \|_2=\| \boldsymbol{v} \|_2.$}
\end{align*} As already noted, in many problems of estimating NN parameters in a process with MM experimental data points, the number of observations is usually larger than the number of parameters, i.e. M≥NM \geq N. The problem of minimising ∥R𝐱−QT𝐛∥2\| R \boldsymbol{x} - {Q}^{\mathrm{T}} \boldsymbol{b} \|_2 may be solved directly as follows: let 𝐜=QT𝐛\boldsymbol{c}={Q}^{\mathrm{T}}\boldsymbol{b}, so that R𝐱−QT𝐛=R𝐱−𝐜=(r11r12…r1N0r22…r2N⋮⋮⋱⋮00…rNN00…0⋮⋮⋱⋮00…0)(x1x2⋮xN)−(c1c2⋮cNcN+1⋮cM)=(r11x1+r12x2+…+r1NxN−c1r22x2+…+r2NxN−c2⋮rNNxN−cN−cN+1⋮−cM). R\boldsymbol{x} - {Q}^{\mathrm{T}}\boldsymbol{b} = R\boldsymbol{x}-\boldsymbol{c} = \begin{pmatrix} r_{11} & r_{12} & \dots & r_{1N} \\ 0 & r_{22} & \dots & r_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & r_{NN} \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix}-\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \\ c_{N+1}\\ \vdots \\ c_M \end{pmatrix}=\begin{pmatrix} r_{11}x_1+r_{12}x_2+\dots+r_{1N}x_N-c_1 \\ r_{22}x_2+\dots+r_{2N}x_N-c_2 \\ \vdots \\ r_{NN}x_N-c_N \\ -c_{N+1} \\ \vdots \\ -c_M \end{pmatrix}. This vector can be written as 𝐝+𝐟\boldsymbol{d}+\boldsymbol{f} where 𝐝=(d1d2⋮dN0⋮0)withdi=−ci+∑j=iNrijxjand𝐟=−(00⋮0cN+1⋮cM).\boldsymbol{d}=\begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \text{with} \quad d_i=-c_i+\sum_{j=i}^{N}{r_{ij}x_j} \quad \text{and} \quad \boldsymbol{f}=-\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ c_{N+1} \\ \vdots \\ c_M \end{pmatrix}. Also note that the vector 𝐝\boldsymbol{d} can be written as R𝐱−𝐜̃R\boldsymbol{x}-\tilde{\boldsymbol{c}} where 𝐜̃\tilde{\boldsymbol{c}} is the first NN rows of 𝐜\boldsymbol{c}.

It can be seen that the vectors 𝐝\boldsymbol{d} and 𝐟\boldsymbol{f} are orthogonal (since 𝐝⋅𝐟=0\boldsymbol{d}\cdot\boldsymbol{f}=0), therefore ∥𝐫∥2=∥𝐝∥2+∥𝐟∥2.\| \boldsymbol{r} \|_2 = \| \boldsymbol{d} \|_2+ \| \boldsymbol{f} \|_2.

Note

Recall that for two vectors 𝐱\boldsymbol{x} and 𝐲\boldsymbol{y}, the Triangle Inequality states that ∥𝐱+𝐲∥≤∥𝐱∥+∥𝐲∥\| \boldsymbol{x} + \boldsymbol{y} \| \leq \| \boldsymbol{x} \| + \| \boldsymbol{y} \| and the equality holds when 𝐱\boldsymbol{x} and 𝐲\boldsymbol{y} are orthogonal.

Since only the vector 𝐝\boldsymbol{d} depends on 𝐱\boldsymbol{x}, then in order to minimise ∥𝐫∥2\| \boldsymbol{r} \|_2, a choice for 𝐱\boldsymbol{x} is needed such that ∥𝐝∥2=0\| \boldsymbol{d} \|_2=0, meaning that 𝐝\boldsymbol{d} must be the zero vector (by the rules of norms). Therefore, if 𝐝=𝟎\boldsymbol{d}=\boldsymbol{0}, then R𝐱=𝐜̃⟹𝐱=R−1𝐜̃=(r11r12…r1N0r22…r2N⋮⋮⋱⋮00…rNN)−1(c1c2⋮cN)R\boldsymbol{x}=\tilde{\boldsymbol{c}} \quad \implies \quad \boldsymbol{x}=R^{-1}\tilde{\boldsymbol{c}}=\begin{pmatrix} r_{11} & r_{12} & \dots & r_{1N} \\ 0 & r_{22} & \dots & r_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & r_{NN} \end{pmatrix}^{-1}\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix} which will be the best least squares fit. The residual ∥𝐫∥2\| \boldsymbol{r} \|_2 will then be equal to ∥𝐟∥2\| \boldsymbol{f} \|_2 which will be an estimate for how good the best is.

H.2 Lines of Best Fit Using polyfit

Sometimes when experimental data is given, a lines of best fit is needed to see which lines would best fit the data.

Suppose there is data stored in an Excel file called Data.xlsx consisting of two columns that will be labelled x and y and the line of best fit needs to be found. The polyfit function can fit a polynomial function to this data, so if a linear function y=ax+by=ax+b needs to be fitted, then p=polyfit(x,y,1) will produce two outputs which are the coefficients aa and bb respectively. The fitted data can then be plotted using the polyval command. All in all, the function below will read data, plot the raw data and the line of best fit:

function Line_Best_Fit

Data = xlsread('Data.xlsx');

x = Data(:,1);
y = Data(:,2);

clf
hold on
grid on
plot(x,y,'.k')

p = polyfit(x,y,1);

X = linspace(min(x),max(x));

Y = polyval(p,X);

plot(X,Y,'-r')

end

The degree of the polynomial can be changed until the appropriate fitting is found. For this data, it seems that a degree three polynomial would be most appropriate

[image:]

polyfit(x,y,1) gives y=7.2484x+17.7404y=7.2484x+17.7404

[image:]

polyfit(x,y,3) gives y=0.1100x3+0.3920x2+0.5854x+4.5430y=0.1100x^3+0.3920x^2+0.5854x+4.5430

 ch025.xhtml

Appendix I — Eigenvalue Problems

Given a square matrix A∈ℂN×NA \in \mathbb{C}^{N \times N}, the Eigenvalue Problem consists of finding a scalar λ∈ℂ\lambda \in \mathbb{C} and a vector 𝐯≠𝟎\boldsymbol{v} \neq \boldsymbol{0} such that A𝐯=λ𝐯A\boldsymbol{v}=\lambda\boldsymbol{v}. Any such λ\lambda is called an Eigenvalue of AA, while 𝐯\boldsymbol{v} is the associated Eigenvector. For any matrix AA and its eigenvalue λ\lambda, the associated eigenvector is not unique; in fact, any multiple of an eigenvector is still an eigenvector. The eigenvalue/eigenvector pair will be written in Eigenpair notation as {λ;𝐯}.\left\{ \lambda ; \boldsymbol{v} \right\}.

In order to calculate the eigenvalues of a matrix A∈ℂN×NA \in \mathbb{C}^{N \times N}, consider the polynomial p(λ)=det(A−λℐ).p(\lambda)=\det(A-\lambda \mathcal{I}). This will be a polynomial of degree NN, in fact, any root of the polynomial p(λ)p(\lambda) is an eigenvalue of AA and vice versa. Note that if the highest order coefficient of pp is equal to 1, then the polynomial is known as the Characteristic Polynomial of 𝐀\boldsymbol{A}. More generally, for any matrix A∈ℂN×NA \in \mathbb{C}^{N \times N}, the characteristic polynomial is given by P(λ)=(−1)Ndet(A−λℐ)P(\lambda)=(-1)^N \det(A-\lambda \mathcal{I}). This means that the matrix AA of size N×NN \times N must have NN eigenvalues (not necessarily unique). Also, if AA is a real matrix, the polynomial p(λ)p(\lambda) will have real coefficients and therefore (by the Fundamental Theorem of Algebra), any complex eigenvalues will appear in complex conjugate pairs. If AA is a diagonal or triangular matrix, then the eigenvalues are simply the diagonal terms. After the eigenvalues have been found, the eigenvectors can be calculated by finding a general form of the vector 𝐯\boldsymbol{v} that satisfies (A−λI)𝐯=𝟎(A-\lambda I)\boldsymbol{v}=\boldsymbol{0}.

If the eigenvector 𝐯\boldsymbol{v} is known, the eigenvalue λ\lambda can be recovered by using the Rayleigh Quotient λ=𝐯HA𝐯∥𝐯∥22\lambda=\frac{{\boldsymbol{v}}^{\mathrm{H}}A\boldsymbol{v}}{\|\boldsymbol{v}\|_2^2} where 𝐯H=𝐯T{\boldsymbol{v}}^{\mathrm{H}}={\boldsymbol{v}}^{\mathrm{T}} is the Hermitian of 𝐯\boldsymbol{v} (the complex conjugate transpose).

Caution

Let A=(0−110). A = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}. To find the eigenvalues, first consider the polynomial p(λ)=det(A−λI)=det((0−110)−λ(1001))=det(−λ−11−λ)=λ2+1.p(\lambda)=\det(A-\lambda I)=\det \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}-\lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)=\det \begin{pmatrix} -\lambda & -1 \\ 1 & -\lambda \end{pmatrix}=\lambda^2+1. This polynomial has two roots, λ1=i\lambda_1=\mathrm{i} and λ2=−i\lambda_2=-\mathrm{i}, hence giving the two eigenvalues of AA.

To calculate the eigenvectors, consider the eigenvalues separately, then for each eigenvalue, find the vector 𝐯=(V1V2)T\boldsymbol{v}={(V_1 \; \; V_2)}^{\mathrm{T}} that satisfies (A−λI)𝐯=𝟎(A-\lambda I)\boldsymbol{v}=\boldsymbol{0}:

	λ1=i\lambda_1=\mathrm{i}: (A−λ1I)𝐯=𝟎⟹(−i−11−i)(V1V2)=(00)⟹−iV1−V2=0V1−iV2=0(A-\lambda_1 I)\boldsymbol{v}=\boldsymbol{0} \quad \implies \quad\begin{pmatrix} -\mathrm{i}& -1 \\ 1 & -\mathrm{i} \end{pmatrix}\begin{pmatrix} V_1 \\ V_2 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \implies \quad\begin{matrix} -\mathrm{i}V_1 - V_2=0 \\ V_1-\mathrm{i}V_2=0 \end{matrix} which gives two equations in two unknowns. However, notice that if the first equation is multiplied by i\mathrm{i}, the second equation will be obtained and therefore, the problem is underdetermined (i.e. one equation in two unknowns). This must always be the case, finding an eigenvector must always result in an underdetermined system. In this case, solving one equation would suffice. Solving the second equation will give V1V_1 in terms of V2V_2 as V1=iV2V_1=\mathrm{i}V_2. Therefore the eigenvector 𝐯\boldsymbol{v} will be 𝐯=(V1V2)=(iV2V2)=(i1)V2.\boldsymbol{v}=\begin{pmatrix} V_1 \\ V_2 \end{pmatrix}=\begin{pmatrix} \mathrm{i}V_2 \\ V_2 \end{pmatrix}=\begin{pmatrix} \mathrm{i}\\ 1 \end{pmatrix}V_2. Now any value of V2V_2 can be chosen (except 0), and the result will be the eigenvector (this also shows why any multiple of an eigenvector is also an eigenvector), in this case, choose V2=1V_2=1. This gives the first eigenpair {i;(i1)}.\left\{ \mathrm{i} \; ; \; \begin{pmatrix} \mathrm{i}\\ 1 \end{pmatrix} \right\}.

	λ2=−i\lambda_2=-\mathrm{i}: (A−λ2I)𝐯=𝟎⟹(i−11i)(V1V2)=(00)⟹iV1−V2=0V1+iV2=0(A-\lambda_2 I)\boldsymbol{v}=\boldsymbol{0} \quad \implies \quad\begin{pmatrix} \mathrm{i}& -1 \\ 1 & \mathrm{i} \end{pmatrix}\begin{pmatrix} V_1 \\ V_2 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \implies \quad\begin{matrix} \mathrm{i}V_1 - V_2=0 \\ V_1+\mathrm{i}V_2=0 \end{matrix} which gives one equations in two unknowns (since the first equation multiplied by −i-\mathrm{i} gives the second). Solving the second equation will give V1V_1 in terms of V2V_2 as V1=−iV2V_1=-\mathrm{i}V_2. Therefore the eigenvector 𝐯\boldsymbol{v} will be 𝐯=(V1V2)=(−iV2V2)=(−i1)V2.\boldsymbol{v}=\begin{pmatrix} V_1 \\ V_2 \end{pmatrix}=\begin{pmatrix} -\mathrm{i}V_2 \\ V_2 \end{pmatrix}=\begin{pmatrix} -\mathrm{i}\\ 1 \end{pmatrix}V_2. For the sake of simplicity, choose V2=iV_2=\mathrm{i} (once again, any non-zero value of V2V_2 can be chosen). This gives the second eigenpair {−i;(1i)}.\left\{ -\mathrm{i} \; ; \; \begin{pmatrix} 1 \\ \mathrm{i} \end{pmatrix} \right\}.

Therefore, the matrix has the eigenpairs {i;(i1)},{−i;(1i)}.\left\{ \mathrm{i} \; ; \; \begin{pmatrix} \mathrm{i}\\ 1 \end{pmatrix} \right\}, \quad \left\{ -\mathrm{i} \; ; \; \begin{pmatrix} 1 \\ \mathrm{i} \end{pmatrix} \right\}. This can be verified by showing that A𝐯=λ𝐯A\boldsymbol{v}=\lambda \boldsymbol{v} for each eigenpair: A𝐯1=(0−110)(i1)=(−1i)=i(i1)=λ1𝐯1A \boldsymbol{v}_1=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} \mathrm{i}\\ 1 \end{pmatrix}=\begin{pmatrix} -1 \\ \mathrm{i} \end{pmatrix} = \mathrm{i}\begin{pmatrix} \mathrm{i}\\ 1 \end{pmatrix}=\lambda_1 \boldsymbol{v}_1 A𝐯2=(0−110)(1i)=(−i1)=−i(1i)=λ2𝐯2.A \boldsymbol{v}_2=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} 1 \\ \mathrm{i} \end{pmatrix}=\begin{pmatrix} -\mathrm{i}\\ 1 \end{pmatrix} = -\mathrm{i}\begin{pmatrix} 1 \\ \mathrm{i} \end{pmatrix}=\lambda_2 \boldsymbol{v}_2.

For a matrix A∈ℂN×NA \in \mathbb{C}^{N \times N}, there will always be NN eigenvalues (not necessarily distinct). If an eigenvalue is repeated, then the same eigenvalue will have multiple eigenvectors however, it is possible that there might not necessarily be a total of NN eigenvectors.

If the matrix AA has a complete set of eigenvectors (meaning it has NN distinct eigenvectors), then AA is said to be Diagonalisable, i.e. there exists a non-singular matrix V∈ℂN×NV \in \mathbb{C}^{N\times N} whose columns are the eigenvectors of AA and a diagonal matrix Λ∈ℂN×N\Lambda \in \mathbb{C}^{N \times N} whose entries are the eigenvalues of AA, such that A=VΛV−1A=V\Lambda V^{-1}. Note that the order in which the eigenvalues and eigenvectors are placed in columns should be the same in both matrices, in other words, if the matrix AA has NN eigenpairs given by {λ1;𝐯1},{λ2;𝐯2},…,{λN;𝐯N}\left\{ \lambda_1;\boldsymbol{v}_1 \right\}, \left\{ \lambda_2;\boldsymbol{v}_2 \right\}, \dots, \left\{ \lambda_N;\boldsymbol{v}_N \right\}, then Λ=(λ1λ2⋱λN),V=(⋮⋮⋮𝐯1𝐯2⋯𝐯N⋮⋮⋮).\Lambda=\begin{pmatrix} \lambda_1 \\ & \lambda_2 \\ && \ddots \\ &&& \lambda_N \end{pmatrix}, \quad V=\begin{pmatrix} \vdots & \vdots && \vdots \\ \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_N \\ \vdots & \vdots & & \vdots \end{pmatrix}.

Caution

From the example above, the matrices Λ\Lambda and VV are Λ=(i00−i),V=(i11i).\Lambda=\begin{pmatrix} \mathrm{i}& 0 \\ 0 & -\mathrm{i} \end{pmatrix}, \quad V=\begin{pmatrix} \mathrm{i}& 1\\ 1 & \mathrm{i} \end{pmatrix}. The matrix AA is diagonalisable since the product VΛV−1VV \Lambda V^{-1} V should give AA, indeed VΛV−1=(i11i)(i00−i)(i11i)−1=1i2−1(i11i)(i00−i)(i−1−1i)V \Lambda V^{-1}=\begin{pmatrix} \mathrm{i}& 1\\ 1 & \mathrm{i} \end{pmatrix}\begin{pmatrix} \mathrm{i}& 0 \\ 0 & -\mathrm{i} \end{pmatrix}\begin{pmatrix} \mathrm{i}& 1\\ 1 & \mathrm{i} \end{pmatrix}^{-1}=\frac{1}{\mathrm{i}^2-1}\begin{pmatrix} \mathrm{i}& 1\\ 1 & \mathrm{i} \end{pmatrix}\begin{pmatrix} \mathrm{i}& 0 \\ 0 & -\mathrm{i} \end{pmatrix}\begin{pmatrix} \mathrm{i}& -1 \\ -1 & \mathrm{i} \end{pmatrix} =−12(i11i)(−1−ii1)=12(02−20)=(0−110)=A.=-\frac{1}{2}\begin{pmatrix} \mathrm{i}& 1\\ 1 & \mathrm{i} \end{pmatrix}\begin{pmatrix} -1 & -\mathrm{i}\\ \mathrm{i}& 1 \end{pmatrix}=\frac{1}{2}\begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}=A.

Note that the existence of a complete system of eigenvectors is helpful in representing a linear transformation (or equivalently a square matrix) of a Euclidean space, such as ℝN\mathbb{R}^N, as a simple dilation or scaling (i.e. a multiplication by a suitable factor along each coordinate axis) in a suitable system of coordinates, obtained from the original one by a volume-preserving linear map.

If the matrix AA is Hermitian, meaning that AH=A{A}^{\mathrm{H}}=A, (this happens to be the case in many important applications, then the eigenvalue problem is much simpler since the following properties hold:

	All eigenvalues are of AA are real (since AA is real and all eigenvalues are also real, then all eigenvectors can also be chosen to be real as well, usually by multiplying by an appropriate factor);

	The eigenvectors corresponding to distinct eigenvalues are orthogonal (in fact, the eigenvectors of AA can be chosen to be orthonormal);

	The matrix AA is always diagonalisable.

Note

For example, in the numerical approximation of solutions of boundary value problems for second-order differential equations describing ``conservative” physical processes, i.e. those where there is no dissipation of energy or it is very weak and can be neglected in the first instance.

!!! Let {λ;𝐯}\left\{ \lambda;\boldsymbol{v} \right\} be an eigenpair of AA, i.e. A𝐯=λ𝐯A\boldsymbol{v}=\lambda\boldsymbol{v}, then A𝐯=λ𝐯⇒𝐯H×𝐯HA𝐯=λ𝐯H𝐯⇒AH=A𝐯HAH𝐯=λ𝐯H𝐯⇒(A𝐯)H=𝐯HAH(A𝐯)H𝐯=λ𝐯H𝐯⇒A𝐯=λ𝐯(λ𝐯)H𝐯=λ𝐯H𝐯⇒(α𝐮)H=α‾𝐮Hλ‾𝐯H𝐯=λ𝐯H𝐯⇒𝐮H𝐮=∥𝐮∥22λ‾∥𝐯∥22=λ∥𝐯∥22⇒÷∥𝐯∥22 since 𝐯≠𝟎λ‾=λ⟹λ∈ℝ.\begin{align*}
 & A \boldsymbol{v}=\lambda \boldsymbol{v} \\
 \quad \underset{{\boldsymbol{v}}^{\mathrm{H}} \times}{\Rightarrow} \quad & {\boldsymbol{v}}^{\mathrm{H}} A \boldsymbol{v}=\lambda {\boldsymbol{v}}^{\mathrm{H}} \boldsymbol{v} \\
 \quad \underset{{A}^{\mathrm{H}}=A}{\Rightarrow} \quad & {\boldsymbol{v}}^{\mathrm{H}} {A}^{\mathrm{H}} \boldsymbol{v}=\lambda {\boldsymbol{v}}^{\mathrm{H}}\boldsymbol{v} \\
 \quad \underset{{(A\boldsymbol{v})}^{\mathrm{H}}={\boldsymbol{v}}^{\mathrm{H}}{A}^{\mathrm{H}}}{\Rightarrow} \quad & {(A\boldsymbol{v})}^{\mathrm{H}} \boldsymbol{v}=\lambda {\boldsymbol{v}}^{\mathrm{H}}\boldsymbol{v} \\
 \quad \underset{A\boldsymbol{v}=\lambda \boldsymbol{v}}{\Rightarrow} \quad & {(\lambda \boldsymbol{v})}^{\mathrm{H}} \boldsymbol{v}=\lambda {\boldsymbol{v}}^{\mathrm{H}}\boldsymbol{v} \\
 \quad \underset{{(\alpha \boldsymbol{u})}^{\mathrm{H}}=\bar{\alpha} {\boldsymbol{u}}^{\mathrm{H}}}{\Rightarrow} \quad & \bar{\lambda} {\boldsymbol{v}}^{\mathrm{H}} \boldsymbol{v}=\lambda {\boldsymbol{v}}^{\mathrm{H}}\boldsymbol{v} \\
 \quad \underset{{\boldsymbol{u}}^{\mathrm{H}}\boldsymbol{u}=\| \boldsymbol{u} \|_2^2}{\Rightarrow} \quad & \bar{\lambda} \| \boldsymbol{v} \|_2^2=\lambda \| \boldsymbol{v} \|_2^2 \\
 \quad \underset{\div \| \boldsymbol{v} \|_2^2 \text{ since } \boldsymbol{v} \neq \boldsymbol{0}}{\Rightarrow} \quad & \bar{\lambda}=\lambda \quad \implies \quad\lambda \in \mathbb{R}.
\end{align*}

Let {λ;𝐯}\left\{ \lambda;\boldsymbol{v} \right\} and {μ;𝐮}\left\{ \mu;\boldsymbol{u} \right\} be real eigenpairs of AA where λ≠μ\lambda \neq \mu, i.e. A𝐯=λ𝐯A\boldsymbol{v}=\lambda \boldsymbol{v} and A𝐮=μ𝐯A\boldsymbol{u}=\mu \boldsymbol{v}. Then A𝐮=μ𝐮⇒𝐯T×𝐯TA𝐮=μ𝐯T𝐮⇒(A𝐯)T=𝐯TAT(A𝐯)T𝐮=μ𝐯T𝐮⇒A𝐯=λ𝐯λ𝐯T𝐮=μ𝐯T𝐮⟹(λ−μ)𝐯T𝐮=0⇒λ≠μ𝐯T𝐮=0⟹𝐮 and 𝐯 are orthogonal.\begin{align*}
 & A\boldsymbol{u}=\mu \boldsymbol{u} \\
 \quad \underset{{\boldsymbol{v}}^{\mathrm{T}} \times}{\Rightarrow} \quad & {\boldsymbol{v}}^{\mathrm{T}} A \boldsymbol{u}=\mu {\boldsymbol{v}}^{\mathrm{T}} \boldsymbol{u} \\
 \quad \underset{{(A\boldsymbol{v})}^{\mathrm{T}}={\boldsymbol{v}}^{\mathrm{T}} {A}^{\mathrm{T}}}{\Rightarrow} \quad & {(A\boldsymbol{v})}^{\mathrm{T}} \boldsymbol{u}=\mu {\boldsymbol{v}}^{\mathrm{T}} \boldsymbol{u} \\
 \quad \underset{A\boldsymbol{v}=\lambda \boldsymbol{v}}{\Rightarrow} \quad & \lambda {\boldsymbol{v}}^{\mathrm{T}} \boldsymbol{u}=\mu {\boldsymbol{v}}^{\mathrm{T}} \boldsymbol{u} \\
 \implies & (\lambda - \mu){\boldsymbol{v}}^{\mathrm{T}}\boldsymbol{u}=0 \\
 \quad \underset{\lambda \neq \mu}{\Rightarrow} \quad & {\boldsymbol{v}}^{\mathrm{T}}\boldsymbol{u}=0 \quad \implies \quad\text{\boldsymbol{u} and \boldsymbol{v} are orthogonal.}
\end{align*}

Let VV be the matrix whose columns are 𝐯1,𝐯2,…,𝐯N\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_N which are the distinct eigenvectors of AA. Since all the eigenvectors of AA are orthogonal, then ⟨𝐯i,𝐯j⟩=δij\langle \boldsymbol{v}_i,\boldsymbol{v}_j \rangle=\delta_{ij} for all i,j=1,2,…,Ni,j=1,2,\dots,N. This means that VV must be an orthogonal matrix, i.e. VTV=ℐ{V}^{\mathrm{T}}V=\mathcal{I}. Moreover, since A=VΛV−1A=V\Lambda V^{-1} and V−1=VTV^{-1}={V}^{\mathrm{T}}, then A=VΛVTA=V \Lambda {V}^{\mathrm{T}}. Therefore the diagonal matrix of eigenvalues Λ\Lambda is equal to Λ=VTAV\Lambda={V}^{\mathrm{T}} A V, more specifically 𝐯iTA𝐯j=δijλi{\boldsymbol{v}_i}^{\mathrm{T}} A \boldsymbol{v}_j=\delta_{ij}\lambda_i. !!!

Therefore, if a matrix AA is real and symmetric, then the eigenvectors 𝐯1,𝐯2,…,𝐯N\boldsymbol{v}_1,\boldsymbol{v}_2,\dots,\boldsymbol{v}_N must satisfy 𝐯iT𝐯j=δij={1i=j0i≠jand𝐯iTA𝐯j=δijλi={λii=j0i≠jfor alli,j=1,2,…,N.{\boldsymbol{v}_i}^{\mathrm{T}} \boldsymbol{v}_j=\delta_{ij}=\begin{cases} 1 & i=j \\ 0 & i \neq j\end{cases} \quad \text{and} \quad {\boldsymbol{v}_i}^{\mathrm{T}} A \boldsymbol{v}_j=\delta_{ij}\lambda_i =\begin{cases} \lambda_i & i=j \\ 0 & i \neq j \end{cases}\quad \text{for all} \quad i,j=1,2,\dots,N. Since 𝐯1,𝐯2,…𝐯N\boldsymbol{v}_1, \boldsymbol{v}_2, \dots \boldsymbol{v}_N is a set of NN linearly independent vectors in ℝN\mathbb{R}^N, then they must span ℝN\mathbb{R}^N. Therefore, any vector 𝐱∈ℝN\boldsymbol{x} \in \mathbb{R}^N with ∥𝐱∥2=1\| \boldsymbol{x} \|_2=1 can be written as a linear combination of 𝐯1,𝐯2,…,𝐯N\boldsymbol{v}_1,\boldsymbol{v}_2,\dots,\boldsymbol{v}_N, specifically 𝐱=∑j=1Naj𝐯jwhereaj∈ℝfor allj=1,2,…,N.\boldsymbol{x}=\sum_{j=1}^{N}{a_j \boldsymbol{v}_j} \quad \text{where} \quad a_j \in \mathbb{R}\quad \text{for all} \quad j=1,2,\dots,N. Therefore 1=∥𝐱∥=𝐱T𝐱=∑j=1Naj2and𝐱TA𝐱=∑j=1Nλjaj2.1=\| \boldsymbol{x} \|={\boldsymbol{x}}^{\mathrm{T}}\boldsymbol{x}=\sum_{j=1}^{N}{a_j^2} \quad \text{and} \quad {\boldsymbol{x}}^{\mathrm{T}}A\boldsymbol{x}=\sum_{j=1}^{N}{\lambda_j a_j^2}.

Fibonacci Sequence

There are many applications of the eigenvalue decomposition. A simple one involves the analysis of the Fibonacci numbers. Consider the sequence {Fn}n∈ℕ\left\{ F_n \right\}_{n \in \mathbb{N}} which satisfies F0=0;F1=1;Fn+1=Fn+Fn−1,n≥1. F_0 = 0 \quad ; \quad F_1 = 1 \quad ; \quad F_{n+1} = F_n + F_{n-1}\ , \quad n \geq 1. It is known that the ratio Fn+1Fn→φ=1+52\frac{F_{n+1}}{F_{n}} \to \varphi=\frac{1+\sqrt{5}}{2} as n→∞n \to \infty. To show that in a different way using eigenvalue decomposition, consider the vector 𝐮n=(Fn+1Fn).\boldsymbol{u}_{n} = \begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix}. This vector can form the recurrence relation 𝐮n=A𝐮n−1whereA=(1110)and𝐮0=(10).\boldsymbol{u}_{n}=A\boldsymbol{u}_{n-1} \quad \text{where} \quad A=\begin{pmatrix} 1 & 1\\ 1 & 0 \end{pmatrix} \quad \text{and} \quad \boldsymbol{u}_0=\begin{pmatrix} 1\\0 \end{pmatrix}. The vector 𝐮n\boldsymbol{u}_n can then be written in terms of 𝐮0\boldsymbol{u}_0 by repeated substitution: 𝐮n=A𝐮n−1=A2𝐮n−2=…=An−2𝐧2=An−1𝐧1=An𝐮0.\boldsymbol{u}_n=A\boldsymbol{u}_{n-1}=A^2 \boldsymbol{u}_{n-2}=\dots=A^{n-2} \boldsymbol{n}_{2}=A^{n-1} \boldsymbol{n}_{1}=A^n \boldsymbol{u}_0. Therefore 𝐮n=An𝐮0\boldsymbol{u}_n = A^n \boldsymbol{u}_0 but doing this requires calculating the nth{n}^{\mathrm{th}} power of the matrix AA which may be difficult to do.

In order to circumvent calculating AnA^n explicitly, consider the eigenpairs of AA which are (noting that the eigenvectors of AA are orthogonal since AA is symmetric) {1+52;(1+52)};{1−52;(1−52)}.\left\{ \frac{1+\sqrt{5}}{2} \; ; \; \begin{pmatrix} 1+\sqrt{5} \\ 2 \end{pmatrix} \right\} \quad ; \quad \left\{ \frac{1-\sqrt{5}}{2} \; ; \; \begin{pmatrix} 1-\sqrt{5} \\ 2 \end{pmatrix} \right\}. For the sake of convenience, define λ±=1±52\lambda_{\pm}=\frac{1 \pm \sqrt{5}}{2}, then the eigenpairs can be rewritten as {λ+;(2λ+2)};{λ−;(2λ−2)}.\left\{ \lambda_+ \; ; \; \begin{pmatrix} 2\lambda_+ \\ 2 \end{pmatrix} \right\} \quad ; \quad \left\{ \lambda_- \; ; \; \begin{pmatrix} 2\lambda_- \\ 2 \end{pmatrix} \right\}. Since any multiple of an eigenvector is still an eignevctrors, then both eigenvectors can be divided by 2 to give {λ+;(λ+1)};{λ−;(λ−1)}.\left\{ \lambda_+ \; ; \; \begin{pmatrix} \lambda_+ \\ 1 \end{pmatrix} \right\} \quad ; \quad \left\{ \lambda_- \; ; \; \begin{pmatrix} \lambda_- \\ 1 \end{pmatrix} \right\}.

Let Λ\Lambda be the diagonal matrix whose entries are the eigenvalues of AA and let VV be the matrix whose columns are the eigenvectors, i.e. Λ=(λ+00λ−)andV=(λ+λ−11).\Lambda=\begin{pmatrix} \lambda_+ & 0 \\ 0 & \lambda_- \end{pmatrix} \quad \text{and} \quad V=\begin{pmatrix} \lambda_+ & \lambda_- \\ 1 & 1 \end{pmatrix}. Since the eigenvectors are distinct, then AA is diagonalisable and can be written as A=VΛV−1.A=V \Lambda V^{-1}.

This can be verified as follows: VΛV−1=(λ+λ−11)(λ+00λ−)(λ+λ−11)−1=1λ+−λ−(λ+λ−11)(λ+00λ−)(1−λ−−1λ+)=1λ+−λ−(λ+2λ−2λ+λ−)(1−λ−−1λ+)=1λ+−λ−(λ+2−λ−2−λ+2λ−+λ−2λ+λ+−λ−−λ+λ−+λ−λ+)=1λ+−λ−((λ++λ−)(λ+−λ−)λ+λ−(λ−−λ+)λ+−λ−0)=(λ++λ−−λ+λ−10)=(1+52+1−52−(1+52)(1−52)10)=(1110)=A.\begin{align*}
V \Lambda V^{-1} & = \begin{pmatrix} \lambda_+ & \lambda_- \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \lambda_+ & 0 \\ 0 & \lambda_- \end{pmatrix} \begin{pmatrix} \lambda_+ & \lambda_- \\ 1 & 1 \end{pmatrix}^{-1} \\
& = \frac{1}{\lambda_+ - \lambda_-} \begin{pmatrix} \lambda_+ & \lambda_- \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \lambda_+ & 0 \\ 0 & \lambda_- \end{pmatrix} \begin{pmatrix} 1 & -\lambda_- \\ -1 & \lambda_+ \end{pmatrix} \\
& = \frac{1}{\lambda_+ - \lambda_-} \begin{pmatrix} \lambda_+^2 & \lambda_-^2 \\ \lambda_+ & \lambda_- \end{pmatrix} \begin{pmatrix} 1 & -\lambda_- \\ -1 & \lambda_+ \end{pmatrix} \\
& = \frac{1}{\lambda_+ - \lambda_-} \begin{pmatrix} \lambda_+^2 - \lambda_-^2 & -\lambda_+^2 \lambda_-+\lambda_-^2 \lambda_+ \\ \lambda_+ - \lambda_- & -\lambda_+ \lambda_- + \lambda_- \lambda_+ \end{pmatrix} \\
& = \frac{1}{\lambda_+ - \lambda_-} \begin{pmatrix} \left(\lambda_+ + \lambda_- \right)\left(\lambda_+ - \lambda_- \right) & \lambda_+ \lambda_- \left(\lambda_- - \lambda_+ \right) \\ \lambda_+ - \lambda_- & 0 \end{pmatrix} \\
& = \begin{pmatrix} \lambda_+ + \lambda_- & - \lambda_+ \lambda_- \\ 1 & 0 \end{pmatrix} \\
& = \begin{pmatrix} \frac{1+\sqrt{5}}{2}+\frac{1-\sqrt{5}}{2} & -\left(\frac{1+\sqrt{5}}{2} \right)\left(\frac{1-\sqrt{5}}{2} \right) \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}=A.
\end{align*}

Now consider matrix A2A^2: A2=AA=(VΛV−1)(VΛV−1)=VΛ2V−1.A^2=AA=\left(V \Lambda V^{-1} \right)\left(V \Lambda V^{-1} \right)=V \Lambda^2 V^{-1}. Since Λ\Lambda is a diagonal matrix, then Λ2\Lambda^2 is also a diagonal matrix whose terms are the squares of Λ\Lambda, i.e. Λ2=(λ+00λ−)2=(λ+200λ−2).\Lambda^2=\begin{pmatrix} \lambda_+ & 0 \\ 0 & \lambda_- \end{pmatrix}^2=\begin{pmatrix} \lambda_+^2 & 0 \\ 0 & \lambda_-^2 \end{pmatrix}. Similarly, the higher powers can be done in the same way, therefore An=V(λ+n00λ−n)V−1for alln≥1.A^n=V\begin{pmatrix} \lambda_+^n & 0 \\ 0 & \lambda_-^n \end{pmatrix}V^{-1} \quad \text{for all} \quad n \geq 1. This shows a way in which the matrix powers can be calculated easily. Returning to 𝐮n=An𝐮0\boldsymbol{u}_n=A^n \boldsymbol{u}_0: 𝐮n=An𝐮0=V(λ+n00λ−n)V−1(10)=(λ+λ−11)(λ+n00λ−n)(λ+λ−11)−1(10)\boldsymbol{u}_n=A^n \boldsymbol{u}_0=V \begin{pmatrix} \lambda_+^n & 0 \\ 0 & \lambda_-^n \end{pmatrix} V^{-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix}= \begin{pmatrix} \lambda_+ & \lambda_- \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \lambda_+^n & 0 \\ 0 & \lambda_-^n \end{pmatrix} \begin{pmatrix} \lambda_+ & \lambda_- \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} ⟹𝐮n=(λ+n+1−λ−n+1λ+−λ−λ+n−λ−nλ+−λ−). \implies \quad\boldsymbol{u}_n=\begin{pmatrix} \frac{\lambda_+^{n+1} - \lambda_-^{n+1}}{\lambda_+ - \lambda_-} \\ \frac{\lambda_+^{n} - \lambda_-^{n}}{\lambda_+ - \lambda_-} \end{pmatrix}. Therefore Fn+1Fn=λ+n+1−λ−n+1λ+−λ−λ+n−λ−nλ+−λ−=λ+n+1−λ−n+1λ+n−λ−n.\frac{F_{n+1}}{F_n}= \frac{ \frac{\lambda_+^{n+1} - \lambda_-^{n+1}}{\lambda_+ - \lambda_-} }{ \frac{\lambda_+^{n} - \lambda_-^{n}}{\lambda_+ - \lambda_-} } = \frac{ \lambda_+^{n+1} - \lambda_-^{n+1} }{ \lambda_+^{n} - \lambda_-^{n}}. Since 0<|λ−|<10< | \lambda_- | < 1, then λ−n\lambda_-^n tends to 0 as nn tends to infinity. Therefore, passing the limit as nn tends to infinity gives limn→∞Fn+1Fn=limn→∞λ+n+1−λ−n+1λ+n−λ−n=limn→∞λ+n+1λ+n=limn→∞λ+=λ+=1+52\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \lim_{n \to \infty} \frac{ \lambda_+^{n+1} - \lambda_-^{n+1} }{ \lambda_+^{n} - \lambda_-^{n}} = \lim_{n \to \infty} \frac{ \lambda_+^{n+1} }{ \lambda_+^{n} } = \lim_{n \to \infty} \lambda_+ = \lambda_+=\frac{1+\sqrt{5}}{2} which is indeed the Golden Ratio.

In performing this procedure, there is one important caveat. The matrix VV must be inverted which is simple in the 2×22 \times 2 case but can be computationally expensive for much larger sizes. This, again, can be circumvented by ensuring that VV is an orthogonal matrix. Recall that since AA is Hermitian, all its eigenvectors, and hence all the columns of VV, must be orthogonal. In order to make VV an orthogonal matrix, the 2-norm of each of its columns must be equal to 1, this can be done by dividing each column by its norm (which is feasible since any multiple of an eigenvector is still an eigenvector). To normalise the vectors, divide them by their 2-norm: ∥(1±52)∥22=(1±5)2+22=10±25\left\|\begin{pmatrix} 1 \pm \sqrt{5} \\ 2 \end{pmatrix}\right\|_2^2=\left(1 \pm \sqrt{5} \right)^2+2^2=10 \pm 2\sqrt{5} Therefore, after normalisation, eigenpairs will be {λ+;c+(λ+1)};{λ−;c−(λ−1)}wherec±=210±25.\left\{ \lambda_+;c_+\begin{pmatrix} \lambda_+ \\ 1 \end{pmatrix} \right\} \quad ; \quad \left\{ \lambda_-;c_-\begin{pmatrix} \lambda_- \\ 1 \end{pmatrix} \right\} \quad \text{where} \quad c_{\pm}=\frac{2}{\sqrt{10 \pm 2\sqrt{5}}}. This means that the eigenvalue decomposition of AA is A=ṼΛṼ−1A=\tilde{V}\Lambda \tilde{V}^{-1} where Ṽ=(c+λ+c−λ−c+c−)andΛ=(λ+00λ−).\tilde{V}=\begin{pmatrix} c_+\lambda_+ & c_-\lambda_- \\ c_+ & c_- \end{pmatrix} \quad \text{and} \quad \Lambda=\begin{pmatrix} \lambda_+ & 0 \\ 0 & \lambda_- \end{pmatrix}. The most important fact about the matrix Ṽ\tilde{V} is that it is an orthogonal matrix (meaning all its columns are orthonormal). Therefore Ṽ−1=ṼT=(c+λ+c+c−λ−c−).\tilde{V}^{-1} = {\tilde{V}}^{\mathrm{T}} = \begin{pmatrix} c_+ \lambda_+ & c_+ \\ c_- \lambda_- & c_- \end{pmatrix}. The normalisation procedure is computationally cheap and so is matrix transposition, much more so than matrix inversion. The same matrix power can be used as before: 𝐮n=An𝐮0=Ṽ(λ+n00λ−n)Ṽ−1𝐮0=(c+λ+c−λ−c+c−)(λ+n00λ−n)(c+λ+c+c−λ−c−)(10)\boldsymbol{u}_n=A^n \boldsymbol{u}_0=\tilde{V} \begin{pmatrix} \lambda_+^n & 0 \\ 0 & \lambda_-^n \end{pmatrix} \tilde{V}^{-1} \boldsymbol{u}_0 = \begin{pmatrix} c_+\lambda_+ & c_-\lambda_- \\ c_+ & c_- \end{pmatrix} \begin{pmatrix} \lambda_+^n & 0 \\ 0 & \lambda_-^n \end{pmatrix} \begin{pmatrix} c_+\lambda_+ & c_+ \\ c_-\lambda_- & c_- \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} ⟹𝐮n=5(c+c−λ+n+1−c+c−λ−n+1c+c−λ+n−c+c−λ−n)=c+c−5(λ+n+1−λ−n+1λ+n−λ−n).\implies \quad\boldsymbol{u}_n =\sqrt{5}\begin{pmatrix} c_+ c_- \lambda_+^{n+1}-c_+ c_- \lambda_-^{n+1} \\ c_+ c_- \lambda_+^n -c_+ c_- \lambda_-^n \end{pmatrix}=c_+ c_- \sqrt{5}\begin{pmatrix} \lambda_+^{n+1}-\lambda_-^{n+1} \\ \lambda_+^n-\lambda_-^n \end{pmatrix}. Therefore Fn+1Fn=c+c−5(λ+n+1−λ−n+1)c+c−5(λ+n−λ−n)=λ+n+1−λ−n+1λ+n−λ−n\frac{F_{n+1}}{F_n}=\frac{c_+ c_- \sqrt{5} \left(\lambda_+^{n+1}-\lambda_-^{n+1} \right)}{c_+ c_- \sqrt{5} \left(\lambda_+^{n}-\lambda_-^{n} \right)}=\frac{\lambda_+^{n+1}-\lambda_-^{n+1}}{\lambda_+^{n}-\lambda_-^{n}} which is the same result as before. The eigenvalue decomposition is useful in this case but for larger matrices, normalisation needs to be done on the eigenvectors in order to avoid inverting matrices.

I.1 Calculating Eigenvalues Using the Power Method

For a diagonalisable matrix AA, the Power Method is a process used to calculate the smallest and largest eigenvalues (in absolute value) as well as their associated eigenvectors.

Let A∈ℝN×NA \in \mathbb{R}^{N\times N} be a real diagonalisable matrix, then A=VΛV−1A=V\Lambda V^{-1} where Λ∈ℝN×N\Lambda \in \mathbb{R}^{N \times N} is the diagonal matrix whose terms are the eigenvalues of AA and V∈ℝN×NV \in \mathbb{R}^{N \times N} is the matrix whose columns are the eigenvectors of AA corresponding to Λ\Lambda.

For now, suppose, suppose that AA is real and symmetric, then all the eigenvalues are real and all the eigenvectors are orthogonal, furthermore, the eigenvectors can be chosen to be orthonormal in order to make VV an orthogonal matrix. Suppose that the eigenvalues of AA are ordered in such a way that |λ1|≥|λ2|≥…≥|λN|,(I.1) |\lambda_1| \geq |\lambda_2| \geq \dots \geq |\lambda_N|, \qquad(I.1) in this case, the largest eigenvalue in magnitude is called the Dominant Eigenvalue, which is λ1\lambda_1 in this case.

The Power Method can be summarised as follows: Start with an arbitrary unit vector 𝐪(0)\boldsymbol{q}^{(0)} that has a non-zero component in the direction of 𝐯1\boldsymbol{v}_1 (i.e. ∥𝐪(0)∥2=1\| \boldsymbol{q}^{(0)} \|_2=1 and (𝐪(0))T𝐯1≠0{\left(\boldsymbol{q}^{(0)} \right)}^{\mathrm{T}}\boldsymbol{v}_1 \neq 0), then starting from k=1k=1:

	Calculate 𝐳(k)=A𝐪(k−1)\boldsymbol{z}^{(k)}=A\boldsymbol{q}^{(k-1)};

	Update 𝐪(k)=𝐳(k)∥𝐳(k)∥2\boldsymbol{q}^{(k)}=\frac{\boldsymbol{z}^{(k)}}{\| \boldsymbol{z}^{(k)} \|_2} (meaning that 𝐪(k)\boldsymbol{q}^{(k)} is still a unit vector);

	Update α(k)=(𝐪(k))TA𝐪(k)\alpha^{(k)}={(\boldsymbol{q}^{(k)})}^{\mathrm{T}}A\boldsymbol{q}^{(k)};

	Update k→k+1k \to k+1 and repeat until |α(k)−α(k−1)|≤τ|α(k)|\left| \alpha^{(k)}-\alpha^{(k-1)} \right| \leq \tau \left| \alpha^{(k)} \right| where τ\tau is the desired tolerance.

The final value of α\alpha will be the eigenvalue of AA which has the largest magnitude. This result can be stated more formally as follows:

Theorem I.1 (Power Method) Let A∈ℝN×NA\in\mathbb{R}^{N\times N} be symmetric with the eigenvalues λ1,λ2,…,λN\lambda_1,\lambda_2,\dots,\lambda_N and their corresponding eigenvectors 𝐯1,𝐯2,…,𝐯N\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_N such that |λ1|≥|λ2|≥…≥|λN|.|\lambda_1| \geq |\lambda_2| \geq \dots \geq |\lambda_N|. Consider a unit vector 𝐪(0)\boldsymbol{q}^{(0)} such that (𝐪(0))T𝐯1≠0{(\boldsymbol{q}^{(0)})}^{\mathrm{T}} \boldsymbol{v}_1 \neq 0 (i.e. 𝐪(0)\boldsymbol{q}^{(0)} has a component in the direction of 𝐯1\boldsymbol{v}_1). Then the sequence of vectors 𝐪(k)=A𝐪(k−1)∥A𝐪(k−1)∥2\boldsymbol{q}^{(k)}=\frac{A \boldsymbol{q}^{(k-1)}}{\| A \boldsymbol{q}^{(k-1)} \|_2} converges to 𝐯1\boldsymbol{v}_1 and α(k)=(𝐪(k))TA𝐪(k)\alpha^{(k)}={(\boldsymbol{q}^{(k)})}^{\mathrm{T}}A\boldsymbol{q}^{(k)} converges to λ1\lambda_1 as kk tends to ∞\infty.

Proof. Since AA is real and symmetric, then the eigenvectors 𝐯1,𝐯2,…,𝐯N\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_N can be chosen in such a way that they form an orthonormal basis of ℝN\mathbb{R}^N, therefore the unit vector 𝐪(0)\boldsymbol{q}^{(0)} can be written as a linear combination of 𝐯1,𝐯2,…,𝐯N\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_N as 𝐪(0)=1γ(0)∑i=1Nβi𝐯iwhereγ(0)=∑i=1Nβi2.\boldsymbol{q}^{(0)}=\frac{1}{\gamma^{(0)}} \sum_{i=1}^{N}{\beta_i \boldsymbol{v}_i} \quad \text{where} \quad \gamma^{(0)}=\sqrt{\sum_{i=1}^{N}{\beta_i^2}}. (The division by γ(0)\gamma^{(0)} is to ensure that the vector 𝐪(0)\boldsymbol{q}^{(0)} is a unit vector.)

It can be proven, by induction (as detailed in Appendix), that 𝐪(k)=A𝐪(k−1)∥A𝐪(k−1)∥2=1γ(k)∑i=1Nβiλik𝐯iwhereγ(k)=∑i=1Nβi2λi2k.\boldsymbol{q}^{(k)}=\frac{A \boldsymbol{q}^{(k-1)}}{\| A \boldsymbol{q}^{(k-1)} \|_2}=\frac{1}{\gamma^{(k)}}\sum_{i=1}^{N}{\beta_i \lambda_i^k \boldsymbol{v}_{i}} \quad \text{where} \quad \gamma^{(k)}=\sqrt{\sum_{i=1}^{N}{\beta_i^2 \lambda_i^{2k}}}. This can be rewritten by isolating the first term in the sum as 𝐪(k)=β1λ1kγ(k)(𝐯1+∑i=2Nβiβ1λikλ1k𝐯i)withγ(k)=β12λ12k(1+∑i=2Nβi2β12λi2kλ12k).\boldsymbol{q}^{(k)}=\frac{\beta_1 \lambda_1^k}{\gamma^{(k)}}\left(\boldsymbol{v}_1+\sum_{i=2}^{N}{\frac{\beta_i}{\beta_1} \frac{\lambda_i^k}{\lambda_1^k} \boldsymbol{v}_i} \right) \quad \text{with} \quad \gamma^{(k)}=\sqrt{\beta_1^2 \lambda_1^{2k} \left(1+\sum_{i=2}^{N}{\frac{\beta_i^2}{\beta_1^2} \frac{\lambda_i^{2k}}{\lambda_1^{2k}}} \right)}.

Since, by the way the eigenvalues have been arranged, it was assumed that λ1\lambda_1 is the largest eigenvalue in absolute value, then |λiλ1|<1\left| \frac{\lambda_i}{\lambda_1} \right|<1 for all ii, and therefore |λikλ1k|\left| \frac{\lambda_i^k}{\lambda_1^k} \right| tends to 0 as kk tends to ∞\infty. Meaning that as kk tends to ∞\infty, then γ(k)→β1λ1k\gamma^{(k)} \to \beta_1 \lambda_1^{k} and hence 𝐪(k)→𝐯1\boldsymbol{q}^{(k)} \to \boldsymbol{v}_1. Now consider the expression for α(k)=(𝐪(k))TA𝐪(k)\alpha^{(k)}={(\boldsymbol{q}^{(k)})}^{\mathrm{T}}A\boldsymbol{q}^{(k)}, passing the limit as kk tends to ∞\infty gives limk→∞α(k)=limk→∞[(𝐪(k))TA𝐪(k)]=𝐯1TA𝐯1=λ1\lim_{k \to \infty}\alpha^{(k)}=\lim_{k \to \infty}\left[{(\boldsymbol{q}^{(k)})}^{\mathrm{T}}A\boldsymbol{q}^{(k)} \right] = {\boldsymbol{v}_1}^{\mathrm{T}}A\boldsymbol{v}_1 =\lambda_1 since AA is diagonalisable and ∥𝐯1∥2=1\| \boldsymbol{v}_1 \|_2=1.

The power method can be generalised in several ways:

	Inverse Power Method: A possible generalization involves applying the method to the inverse of the matrix AA (provided AA is non-singular). Since the eigenvalues of A−1A^{-1} are the reciprocals of those of AA, the power method in that case gives an approximation to the eigenvalue of AA of minimum modulus. This is called the Inverse Power Method which can be formally stated as follows: Given an initial unit vector 𝐱(0)\boldsymbol{x}^{(0)}, let 𝐲(0)=𝐱(0)∥𝐱(0)∥2\boldsymbol{y}^{(0)} = \frac{\boldsymbol{x}^{(0)}}{\|\boldsymbol{x}^{(0)}\|_2}. Then, for k≥1k \geq 1, compute 𝐱(k)=A−1𝐲(k−1);𝐲(k)=𝐱(k)∥𝐱(k)∥2;μ(k)=(𝐲(k))TA−1𝐲(k).\boldsymbol{x}^{(k)} =A^{-1}\boldsymbol{y}^{(k-1)} \quad ; \quad \boldsymbol{y}^{(k)} =\frac{\boldsymbol{x}^{(k)}}{\|\boldsymbol{x}^{(k)}\|_2} \quad ; \quad \mu^{(k)}= {(\boldsymbol{y}^{(k)})}^{\mathrm{T}}A^{-1} \boldsymbol{y}^{(k)}. If AA has NN linearly independent eigenvectors and the minimum eigenvalue is distinct from all the others, then limk→∞μ(k)=1λN\lim_{k\rightarrow\infty}\mu^{(k)} = \frac{1}{\lambda_N} if the eigenvalues are arranged by size as before. This means that (μ(k))−1(\mu^{(k)})^{-1} tends to λN\lambda_N as kk tends to ∞\infty. Effectively, at every step kk, a linear system of the form A𝐱(k)=𝐲(k−1)A\boldsymbol{x}^{(k)} =\boldsymbol{y}^{(k-1)} needs to be solved. It is therefore convenient to find the LU decomposition of AA then solving the system since this would require solving two triangular systems at each iteration.

	Power Method with Shift: Another generalization of the power method involves approximating the (unknown) eigenvalue of AA nearest to a given number σ\sigma (either real or complex). Let λσ\lambda_\sigma denote such eigenvalue and define the shifted matrix Aσ=A−σℐA_\sigma = A-\sigma \mathcal{I} whose eigenvalues are λ(Aσ)=λ(A)−σ\lambda(A_\sigma) = \lambda(A)-\sigma. In order to approximate σ\sigma, we can first approximate the eigenvalue of minimum length of AσA_\sigma, say λn(Aσ)\lambda_n(A_\sigma), by applying the inverse power method to A−σℐA-\sigma \mathcal{I}, and then compute λσ=λn(Aσ)+σ\lambda_\sigma = \lambda_n(A_\sigma) + \sigma. This technique is known as the Power Method with Shift and the number σ\sigma is called the Shift. Obviously, the inverse power method (without shift) is recovered by simply setting σ=0\sigma = 0.

	QR Method: All the eigenvalues of AA can be calculate at once by using the QR Method which is based on the QR decomposition of AA. Initialise the iteration with A(0)=AA^{(0)}=A, then for k≥1k \geq 1, calculate the QR decomposition of A(k−1)A^{(k-1)} as A(k−1)=Q(k−1)R(k−1)A^{(k-1)}=Q^{(k-1)}R^{(k-1)} and the next iteration of AA will be A(k)=R(k−1)Q(k−1)A^{(k)}=R^{(k-1)}Q^{(k-1)}. It can be proven that A(k)A^{(k)} converges to an upper triangular matrix as kk tends to ∞\infty. Also A(k)=QTA(k−1)Q=Q−1A(k−1)QA^{(k)}= Q^TA^{(k-1)} Q = Q^{-1}A^{(k-1)} Q which means that, for all kk, A(k−1)A^{(k-1)} has same eigenvalues as A(0)=AA^{(0)} = A, meaning that the diagonal entries of A(k)A^{(k)} get closer and closer to the required eigenvalues of AA as kk tends to ∞\infty.

 ch026.xhtml

Appendix J — Numerical Solutions of Non-Linear Equations

An important task in numerical analysis is that of finding the root xx of a function f:ℝ→ℝf:\mathbb{R}\to \mathbb{R}, i.e. finding the point(s) x∈ℝx\in \mathbb{R} such that f(x)=0f(x)=0 (equivalently, in higher-dimensions, the root of a function 𝐟:ℝM→ℝN\boldsymbol{f}:\mathbb{R}^M \to \mathbb{R}^N is a vector/point 𝐱∈ℝM\boldsymbol{x} \in \mathbb{R}^M such that 𝐟(𝐱)=𝟎\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{0}). It is important to realise that for many real-life industrial problems (such as the discretisations of domains for partial differential equations), the system be very large, having a system of 1000010000 parameters or even higher is not uncommon.

Throughout this section, the exact roots of non-linear functions will be denoted x*x^{\ast} or 𝐱*\boldsymbol{x}^{\ast}. Numerical algorithms for the approximation of x*x^{\ast} or 𝐱*\boldsymbol{x}^{\ast} are usually iterative and the aim is to generate a sequence of values xkx_k or 𝐱k\boldsymbol{x}_k such that limk→∞xk=x*orlimk→∞𝐱k=𝐱*. \lim_{k\to \infty } x_k = x^\ast \quad \text{or} \quad \lim_{k\to \infty } \boldsymbol{x}_k = \boldsymbol{x}^\ast.

J.1 One-Dimensional Root-Finding Algorithm

In general, a non-linear function may have several roots and to find a root, an algorithm would require an initial guess x0x_0 which guides the solution procedure. Finding such a guess is usually difficult and requires some a priori knowledge.

Any method for solving a problem of the form f(x)=0f(x) = 0 (or indeed 𝐟(𝐱)=𝟎\boldsymbol{f}(\boldsymbol{x})= \boldsymbol{0}) should have the following properties:

	It should be “easy” to use, preferably using only information on ff, not on its derivatives;

	It should be fast and be able to find a root to a specified tolerance. More specifically, a sequence {xk}k∈ℕ\{x_k\}_{k \in \mathbb{N}} generated by a numerical method is said to converge to x*x^\ast with order pp if there exists a constant C>0C>0 such that for a large enough k0∈ℕk_0 \in \mathbb{N}, |xk+1−x*||xk−x*|p≤Cfor allk≥k0.\frac{|x_{k+1} - x^{\ast} |}{|x_{k} - x^{\ast} |^p} \leq C \quad \text{for all} \quad k \geq k_0.

	It should be reliable, i.e. it should converge to a root close to an initial guess and not diverge or become chaotic. The convergence of iterative methods for root-finding of a non-linear equation depends, in general, on the initial guess x0x_0. The method is called:

	Locally Convergent if the convergence holds for any starting guess x0x_0 that belongs to a suitable neighbourhood of the root x*x^\ast;

	Globally Convergent if the convergence holds for any choice of x0x_0.

There is no ideal method, so more practical algorithms use a combination of methods to find the roots.

J.2 Bisection Method

For k≥0k \geq 0:

	Find an interval [ak,bk][a_k,b_k] over which ff changes sign (i.e. f(ak)<0<f(bk)f(a_k)<0<f(b_k) or f(ak)>0>f(bk)f(a_k)>0>f(b_k)) and set ck=ak+bk2c_k=\frac{a_k+b_k}{2} and define xk+1=ckx_{k+1}=c_k;

	The function ff must change sign over one of the two intervals [ak,ck][a_k,c_k] or [ck,bk][c_k,b_k];

	
	If ff changes sign in the interval [ak,ck][a_k,c_k], then let ak+1=aka_{k+1}=a_k and bk+1=ckb_{k+1}=c_{k};

	If ff changes sign in the interval [ck,bk][c_k,b_k], then let ak+1=cka_{k+1}=c_k and bk+1=bkb_{k+1}=b_{k};

	Update k→k+1k \to k+1 and repeat steps 1-3 until |bk−ak|<τ|b_{k}-a_{k}|<\tau for some tolerance τ\tau;

	The sequence of values {xk}\left\{ x_k \right\} will converge to the exact root x*.x^{\ast}.

Advantages of the Bisection method:

	No information about the derivative of ff is needed.

	For the right choices of aa and bb, convergence is guaranteed, making it very reliable.

	The more iterations there are, the more accurate the solution will be (not susceptible to numerical errors).

	Iterations are easy to do since they require finding the average only.

Disadvantages of the Bisection method:

	The convergence is very slow, linear at best. This means that if xkx_k is an estimate for the exact root x*x^{\ast} of ff and ek=x*−xke_k=x^{\ast}-x_k is the error, then if eke_k is small, the error at the next iteration will be |ek+1|≈K|ek||e_{k+1} | \approx K |e_k| where K∈(0,1)K \in (0,1) is a constant (usually for the bisection method K=0.5K=0.5).

	Two initial guesses are needed (the values of aa and bb) in order to specify the bracketing interval, additionally, the function must change sign over this interval.

	The function has to be real and continuous.

	Relies on sign changes, meaning it cannot find repeated roots (like the root of f(x)=x2f(x)=x^2).

	The method does not work for systems of equations.

	The roots have to be reasonably far away from another another in order to ensure convergence to one root or the other.

J.3 Secant Method

For k≥0k \geq 0:

	Consider the value of ff at the two points xkx_k and xk+1x_{k+1};

	Draw a straight line through the two points (xk,f(xk))\left(x_k, f(x_k) \right) and (xk+1,f(xk+1))\left(x_{k+1}, f(x_{k+1}) \right);

	This line has a root at xk+2=xkf(xk+1)−xk+1f(xk)f(xk+1)−f(xk);x_{k+2} = \frac{x_{k} f(x_{k+1}) - x_{k+1} f(x_k)}{f(x_{k+1}) - f(x_k)};

	Update k→k+1k \to k+1 and repeat steps 1-3 for the points xk+1x_{k+1} and xk+2x_{k+2};

	Continue to produce a set of approximations xkx_k to the root x*x^{\ast} until either |f(xk)|<τor|xk+1−xk|<τ|f(x_k)|< \tau \quad \text{or} \quad |x_{k+1}-x_k| < \tau where τ\tau is some specified tolerance.

Advantages of the Secant method:

	No information about the derivative of ff is needed.

	Converges super-linearly fashion, i.e. if ek=x*−xke_k=x^{\ast}-x_k, then |ek+1|≈K|ek|φ|e_{k+1}| \approx K |e_k|^{\varphi} where K∈(0,1)K \in (0,1) and φ\varphi is the golden ratio.

	Requires only one function evaluation per iteration, making it computationally inexpensive.

Disadvantages of the Secant Method:

	It may not always converge if the initial values are not close enough to the root.

	The method may not converge if the root is near a turning point (i.e. if the function is differentiable and there is a point in ξ∈[x0,x1]\xi \in [x_0,x_1] such that f(ξ)=0f(\xi)=0, then the method may not converge).

	There is no guaranteed error bound.

J.4 Newton-Raphson Method (NR)

For k≥0k \geq 0:

	Evaluate f(x)f(x) and f′(x)f'(x) at xkx_k;

	Approximate ff by a line of slope f′(xk)f'(x_k) through the point (xk,f(xk))(x_k, f(x_k));

	This line has a root at xk+1=xk−f(xk)f′(xk);x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)};

	Update k→k+1k \to k+1 and repeat steps 1-3 until either |f(xk)|<τor|xk+1−xk|<τ.|f(x_k)|< \tau \quad \text{or} \quad \quad |x_{k+1}-x_k| < \tau.

Advantages of the NR:

	The method is quadratically convergent, i.e. if ek=x*−xke_k=x^{\ast}-x_k, then |ek+1|≈K|ek|2|e_{k+1}| \approx K |e_k|^2.

Note

To show this rate of convergence, consider the expression for the iteration: xk+1=xk−f(xk)f′(xk)⇒−x*xk+1−x*=xk−x*−f(xk)f′(xk)⇒×−1x*−xk+1=x*−xk+f(xk)f′(xk)⇒f(x*)=0x*−xk+1=x*−xk+f(xk)−f(x*)f′(xk)⟹x*−xk+1=1f′(xk)[f(xk)+f′(xk)(x*−xk)−f(x*)].\begin{align*}
& x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)} \\
\quad \underset{-x^{\ast}}{\Rightarrow} \quad & x_{k+1}-x^{\ast}=x_k-x^{\ast}-\frac{f(x_k)}{f'(x_k)} \\
\quad \underset{\times -1}{\Rightarrow} \quad & x^{\ast}-x_{k+1}=x^{\ast}-x_k+\frac{f(x_k)}{f'(x_k)} \\
\quad \underset{f\left(x^{\ast} \right)=0}{\Rightarrow} \quad & x^{\ast}-x_{k+1}=x^{\ast}-x_k+\frac{f(x_k)-f\left(x^{\ast} \right)}{f'(x_k)} \\
\implies \quad & x^{\ast}-x_{k+1}=\frac{1}{f'(x_k)} \left[f(x_k)+f'(x_k)\left(x^{\ast}-x_k \right)-f\left(x^{\ast} \right) \right]. \\
\end{align*}

Recall that by Taylor’s Theorem1, the term in the square brackets can be written as $$\left[f(x_k)+f'(x_k)(x^{\ast}-x_k)-f(x^{\ast}) \right]=-\frac{1}{2} f"(\xi) (x^\ast - x_k)^2$$ where ξ\xi is a point between xkx_k and x*x^{\ast}. Therefore |ek+1|=|x*−xk+1|=|1f′(xk)[f(xk)+f′(xk)(x*−xk)−f(x*)]|≤|1f′(xk)[−12f″(ξ)(x*−xk)2]|=12|f″(ξ)f′(xk)||en|2.\begin{align*}
|e_{k+1}|=|x^{\ast}-x_{k+1}|& =\left| \frac{1}{f'(x_k)} \left[f(x_k)+f'(x_k)\left(x^{\ast}-x_k \right)-f\left(x^{\ast} \right) \right] \right| \\
& \leq \left| \frac{1}{f'(x_k)} \left[-\frac{1}{2} f''(\xi) (x^\ast - x_k)^2 \right] \right| \\
& = \frac{1}{2} \left|\frac{f''(\xi)}{f'(x_k)} \right| |e_n|^2.
\end{align*} Therefore the NR converges quadratically. Obviously, some analysis is needed to make this statement precise, but roughly speaking it shows that provided f,f′f, f' and $f"$ are continuous near x*x^\ast, f′(x*)≠0f'(x^\ast) \neq 0 and x0x_0 is close enough to x*x^{\ast}, then Newton’s method converges quadratically.

	The method converges locally very quickly.

	Can be generalised to higher dimensions and to sets of equations.

Disadvantages of the NR:

	The function has to be differentiable, meaning it might be difficult to implement if the function was obtained from a set of measurements.

	The initial value has to be reasonably close to the root, otherwise the method will not converge.

	If the gradient at the initial point is 0 or close to 0, then the method will not converge.

Note that the NR is a generalisation of the Secant method. Indeed, the general iteration step for the secant method is xk+1=xk−1f(xk)−xkf(xk−1)f(xk)−f(xk−1).x_{k+1} = \frac{x_{k-1} f(x_k) - x_k f(x_{k-1})}{f(x_k) -
f(x_{k-1})}. The right hand side can be rearranged to give xk+1=xk−xk−xk−1f(xk)−f(xk−1)f(xk)(J.1)x_{k+1}=x_k-\frac{x_{k}- x_{k-1}}{f(x_k)-f(x_{k-1})} f(x_k) \qquad(J.1) which is a simple approximation to the iteration xk+1=xk−1f′(xk)f(xk)(J.2)x_{k+1}=x_k-\frac{1}{f'(x_k)}f(x_k) \qquad(J.2) which is well-known as NR. The Secant method Equation J.1 is therefore an approximate version of NR which makes use of evaluations of the function ff and does not require evaluations of the derivative of ff. The disadvantage of the Secant method is that it converges more slowly than NR (although both methods are faster than linear).

Python has an in-built root-finding algorithm called Brent’s Method (from Brent, R. P., Algorithms for Minimization Without Derivatives. Englewood Cliffs, NJ: Prentice-Hall, 1973. Ch. 3-4.), also sometimes referred to as the van Wijngaarden-Dekker-Brent Method. This is a more reliable version of the Secant method since it uses a combination of inverse quadratic extrapolation, root bracketing, interval bisection and inverse quadratic interpolation.

J.5 Solving Systems of Non-Linear Equations Numerically

Methods for solving non-linear systems of equations can be derived as generalisations of the scalar case. Consider the system of equations given by 𝐟(𝐱)=𝟎\boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{0} where 𝐟:ℝN→ℝN\boldsymbol{f} : \mathbb{R}^N \to \mathbb{R}^N is a given vector-valued function of the NN variables x1,x2…,xNx_1,x_2 \dots,x_N.

For example, if the function 𝐟\boldsymbol{f} is given by 𝐟(𝐱)=(x12+x22−1x1−x2),\boldsymbol{f}(\boldsymbol{x})=\begin{pmatrix} x_1^2+x_2^2-1 \\ x_1-x_2 \end{pmatrix}, then the root-finding algorithm would need to find x1x_1 and x2x_2 such that x12+x22−1=0andx1−x2=0.x_1^2 + x_2^2 -1 = 0 \quad \text{and} \quad x_1 - x_2 = 0. In this case, the first equation is a unit circle and the second is a straight line. Therefore the solution is where the circle and the line intersect, and it can easily be seen that the solutions are ±(12,12)\pm \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right).

To write down NR for a system 𝐟(𝐱)=𝟎\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{0}, first write down the “obvious” generalisation of the scalar case Equation J.2, i.e. 𝐱n+1=𝐱n−J(𝐱n)−1𝐟(𝐱n)(J.3)\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - J(\boldsymbol{x}_{n})^{-1} \boldsymbol{f}(\boldsymbol{x}_n) \qquad(J.3) where the role of the reciprocal of the derivative of 𝐟\boldsymbol{f} is replaced by the inverse of the Jacobian matrix J(𝐱)J(\boldsymbol{x}) which is given by J(𝐱)=(∂f1∂x1∂f1∂x2∂f2∂x1∂f2∂x2)J(\boldsymbol{x})=\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix} (where fif_i is the ith{i}^{\mathrm{th}} component of 𝐟\boldsymbol{f} for i=1,2i=1,2). More generally for a function 𝐟:ℝN→ℝN\boldsymbol{f}: \mathbb{R}^N \to \mathbb{R}^N, the Jacobian is given by J(𝐱)=(∂f1∂x1∂f1∂x2…∂f1∂xN∂f2∂x1∂f2∂x2…∂f2∂xN⋮⋮⋱⋮∂fN∂x1∂fN∂x2…∂fN∂xN)(𝐱)J(\boldsymbol{x})=\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_N} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_N} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \frac{\partial f_N}{\partial x_2} & \dots & \frac{\partial f_N}{\partial x_N} \end{pmatrix}(\boldsymbol{x}) where fif_i is the ith{i}^{\mathrm{th}} component of 𝐟\boldsymbol{f} for i=1,2,…,Ni=1,2,\dots,N. This can be written in element form as J(𝐱)ij=∂fi∂xj(𝐱)for alli,j=1,2,…,N.J(\boldsymbol{x})_{ij}=\frac{\partial f_i}{\partial x_j}(\boldsymbol{x}) \quad \text{for all} \quad i,j = 1,2,\dots,N.

More realistically, Equation Equation J.3 should be written as 𝐱k+1=𝐱k+𝐝k\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{d}_k where the Newton correction 𝐝k\boldsymbol{d}_k is a vector that can be computed by solving the system of NN linear equations J(𝐱k)𝐝k=−𝐟(𝐱k)J(\boldsymbol{x}_k) \boldsymbol{d}_k = - \boldsymbol{f}(\boldsymbol{x}_k). This means that each step of NR requires the solution of an NN-dimensional linear system where the matrix J(𝐱)J(\boldsymbol{x}) and right hand side 𝐟(𝐱k)\boldsymbol{f}(\boldsymbol{x}_k) have to be recomputed at every step (note that the inverse of the Jacobian is not normally computed since it is not needed, all that is needed is the solution of a single linear system with coefficient matrix J(𝐱k)J(\boldsymbol{x}_k), which can be done without actually computing the inverse of J(𝐱k)J(\boldsymbol{x}_k)).

J.6 Minimisation Problems

Closely related to the idea of root-finding is the question of minimising a function g:ℝN→ℝg : \mathbb{R}^N \to \mathbb{R}. Such a problem can take one of two forms:

	Unconstrained optimisation which minimises g(𝐱)g(\boldsymbol{x});

	Constrained optimisation minimises g(𝐱)g(\boldsymbol{x}) with an additional condition. For example, the value of 𝐱\boldsymbol{x} needs to be found such that the function gg attains its minimum provided that h(𝐱)=0h(\boldsymbol{x})=0 or h(𝐱)≥0h(\boldsymbol{x})\geq 0.

An example of a constrained minimisation problem could be to minimise the cost of producing a product in a factory subject to keeping the pollution caused in this production as low as possible.

There are two kinds of minimum points, global} and local}: Given a function g:ℝN→ℝg : \mathbb{R}^N \to \mathbb{R}

	A global minimum is a point 𝐱*\boldsymbol{x}^{\ast} such that g(𝐱*)≤g(𝐱)g(\boldsymbol{x}^{\ast}) \leq g(\boldsymbol{x}) for all 𝐱∈ℝN\boldsymbol{x} \in \mathbb{R}^N, i.e. g(𝐱*)=min𝐱∈ℝNg(𝐱).g(\boldsymbol{x}^\ast) = \min_{\boldsymbol{x} \in \mathbb{R}^N} g(\boldsymbol{x}).

	A local minimum is a point 𝐱*\boldsymbol{x}^{\ast} such that g(𝐱*)≤g(𝐱)g(\boldsymbol{x}^{\ast}) \leq g(\boldsymbol{x}) for all 𝐱\boldsymbol{x} in a small neighbourhood of 𝐱*\boldsymbol{x}^{\ast}. A necessary condition for a local minimum (for a sufficiently smooth function) is that ∇g(𝐱*)=𝟎\nabla g(\boldsymbol{x}^{\ast})=\boldsymbol{0} where ∇\nabla is the gradient operator given by ∇≡(∂∂x1∂∂x2⋮∂∂xN).\nabla \equiv \begin{pmatrix} \frac{\partial }{\partial x_1} \\ \frac{\partial }{\partial x_2} \\ \vdots \\ \frac{\partial }{\partial x_N} \end{pmatrix}. Many algorithms are available for finding local minima but the global minimum is much more difficult since g(𝐱*)g(\boldsymbol{x}^{\ast}) must be smaller than all 𝐱\boldsymbol{x} in the entire domain of gg. Finding the global minimum of a general function gg is not a simple task. Only recently have effective algorithms developed, these include Simulated Annealing and Genetic Algorithms. These algorithms are used mostly in bioinformatic industries for tasks such as protein design, and by the power generating industry to schedule the on-off times of its power stations.

J.7 Method of Steepest Descent

The simplest way to find a local minimum is the Method of Steepest Decent. This method starts from the realisation that for a function g:ℝN→ℝg: \mathbb{R}^{N} \to \mathbb{R} and a point 𝐱0∈ℝN\boldsymbol{x}_0 \in \mathbb{R}^N, the function gg decreases most rapidly in the direction −∇g(𝐱0)-\nabla g(\boldsymbol{x}_0).

Note

Indeed, consider the unit direction 𝐝̂\hat{\boldsymbol{d}} where ddt{g(𝐱0+t𝐝̂)}|t=0is minimised.\left.\frac{\mathrm{d} }{\mathrm{d} t} \left\{ g(\boldsymbol{x}_0 + t \hat{\boldsymbol{d}}) \right\} \right|_{t = 0} \quad \text{is minimised}. By using the chain rule, this implies that ∇g(𝐱0+t𝐝̂)⋅𝐝̂|t=0is minimised.\left. \nabla g(\boldsymbol{x}_0 + t \hat{\boldsymbol{d}}) \cdot \hat{\boldsymbol{d}} \right| _{t = 0} \quad \text{is minimised}. Therefore, this implies that ∇g(𝐱0)⋅𝐝̂\nabla g(\boldsymbol{x}_0) \cdot \hat{\boldsymbol{d}} should be “as negative as possible”. By the Cauchy-Schwarz inequality2, ∇g(𝐱0)⋅𝐝̂≤∥∇g(𝐱0)∥2∥𝐝̂∥2=∥∇g(𝐱0)∥2since 𝐝̂ is a unit vector.\nabla g(\boldsymbol{x}_0) \cdot \hat{\boldsymbol{d}} \leq \| \nabla g(\boldsymbol{x}_0) \|_2 \|\hat{\boldsymbol{d}}\|_2 =\|\nabla g(\boldsymbol{x}_0)\|_2 \quad \text{since $\hat{\boldsymbol{d}}$ is a unit vector.} In order for the equality to hold, 𝐝̂\hat{\boldsymbol{d}} should be a scalar multiple of ∇g(𝐱0)\nabla g(\boldsymbol{x}_0), i.e. 𝐝̂=λ∇g(𝐱0)\hat{\boldsymbol{d}}=\lambda \nabla g(\boldsymbol{x}_0) for some λ∈ℝ\lambda \in \mathbb{R}. In this case, since 𝐝̂\hat{\boldsymbol{d}} is a unit vector and it is intended to minimise, then 𝐝̂=−∇g(𝐱0)∥∇g(𝐱0)∥\hat{\boldsymbol{d}}=-\frac{\nabla g(\boldsymbol{x}_0)}{\| \nabla g(\boldsymbol{x}_0) \|} meaning that the direction of steepest descent is −∇g(𝐱0)-\nabla g(\boldsymbol{x}_0). Note that in order to maximise the function gg, the direction of steepest ascen} is 𝐝̂=∇g(𝐱0)∥∇g(𝐱0)∥.\hat{\boldsymbol{d}}=\frac{\nabla g(\boldsymbol{x}_0)}{\| \nabla g(\boldsymbol{x}_0) \|}.

The method of steepest descent can be described as follows: For a starting point 𝐱0∈ℝN\boldsymbol{x}_0 \in \mathbb{R}^N and k≥0k \geq 0:

	Let 𝐱k+1=𝐱k−t∇g(𝐱k)\boldsymbol{x}_{k+1}=\boldsymbol{x}_k-t\nabla g(\boldsymbol{x}_k);

	Find the expression for g(𝐱k+1)g(\boldsymbol{x}_{k+1}) in terms of tt;

	Find the value of tt which minimises g(𝐱k+1)g(\boldsymbol{x}_{k+1});

	Update k→k+1k \to k+1 and repeat Steps 1-3 until g(𝐱k)g(\boldsymbol{x}_{k}) cannot be reduced further. One possible stopping criterion would be |g(𝐱k+1)−g(𝐱k)|<τ|g(\boldsymbol{x}_{k+1})-g(\boldsymbol{x}_k)|<\tau for some tolerance τ>0\tau>0.

Note that Step 3 is a one-dimensional minimisation problem. It involves minimising a function of a single variable tt. This is conceptually an easy thing to do; just go downhill in one direction until it is not possible to go any further. There are many methods of doing this including the Bisection and the (faster) Golden Search Method.

The method of steepest descent is conceptually easy to understand and implement, however, the algorithm needs to calculate ∇g\nabla g at every step. The method can also be slow since the sequence of search directions are are always orthogonal to one another, meaning that the algorithm can often times make repeated searches in every direction since it will follow a perpendicular zigzag pattern.

Caution

Consider the function g:ℝ2→ℝg:\mathbb{R}^2 \to \mathbb{R} where g(x,y)=(x−y)2+(x2+y2−1)2.g(x,y) = (x-y)^2 +(x^2 +y^2 -1)^2. The method of steepest descent is shown below with four different calculations from different starting points.

[image:] [image:]

J.8 Variants of the Newton-Raphson Method

A special case of the NR for a system of equations would be to take the vector-valued function 𝐟\boldsymbol{f} to be equal to gradient of a function gg, i.e. 𝐟=∇g\boldsymbol{f}=\nabla g. This means that the NR can be used in order to implement the steepest descent method. In this case, if 𝐟=∇g\boldsymbol{f}=\nabla g, then the Jacobian will in fact become the Hessian matrix. For instance, if 𝐟(x,y,z)=∇g(x,y,z)\boldsymbol{f}(x,y,z)=\nabla g(x,y,z), then 𝐟(𝐱)=(∂g∂x∂g∂y∂g∂z)(𝐱)andH=J(𝐱)=(∂2g∂x2∂2g∂x∂y∂2g∂x∂z∂2g∂y∂x∂2g∂y2∂2g∂y∂z∂2g∂z∂x∂2g∂z∂y∂2g∂z2)(𝐱).\boldsymbol{f}(\boldsymbol{x})=\begin{pmatrix} \frac{\partial g}{\partial x} \\ \frac{\partial g}{\partial y} \\ \frac{\partial g}{\partial z} \end{pmatrix}(\boldsymbol{x}) \quad \text{and} \quad H=J(\boldsymbol{x})=\begin{pmatrix}
\frac{\partial^2 g}{\partial x^2} & \frac{\partial^2 g}{\partial x \partial y} & \frac{\partial^2 g}{\partial x \partial z} \\
\frac{\partial^2 g}{\partial y \partial x} & \frac{\partial^2 g}{\partial y^2} & \frac{\partial^2 g}{\partial y \partial z} \\
\frac{\partial^2 g}{\partial z \partial x} & \frac{\partial^2 g}{\partial z \partial y} & \frac{\partial^2 g}{\partial z^2} \end{pmatrix}(\boldsymbol{x}).
 In general, the elements of the Hessian matrix/Jacobian (which is symmetric) are given by H=J(𝐱)ij=∂2gi∂xi∂xjfor alli,j=1,2…,N.H=J(\boldsymbol{x})_{ij}=\frac{\partial^2 g_i }{\partial x_i \; \partial x_j} \quad \text{for all} \quad i,j = 1,2\dots, N. Therefore, NR for 𝐟=∇g\boldsymbol{f}=\nabla g is 𝐱k+1=𝐱k+𝐝kwith 𝐝k satisfyingHk𝐝k=−∇g(𝐱k)\boldsymbol{x}_{k+1}=\boldsymbol{x}_k+\boldsymbol{d}_k \quad \text{with \boldsymbol{d}_k satisfying} \quad H_k \boldsymbol{d}_k=-\nabla g(\boldsymbol{x}_k) where Hk=J(𝐱k)H_k=J(\boldsymbol{x}_k) is the Hessian matrix. Many methods attempt to approximate this by using the iteration 𝐱k+1=𝐱k+tkHk−1𝐝k\boldsymbol{x}_{k+1}=\boldsymbol{x}_k+t_k H_k^{-1}\boldsymbol{d}_k where tnt_n is a stepsize, 𝐝n\boldsymbol{d}_n is the approximate search direction (usually 𝐝n≈−∇g(𝐱n)\boldsymbol{d}_n \approx -\nabla g(\boldsymbol{x}_n)) and Hk−1H_k^{-1} is the inverse of the Hessian matrix, or at least an approximation to the Hessian. Note that the steepest descent method is one example of this general form where tkt_k is the result of a line search, 𝐝k=−∇g(𝐱k)\boldsymbol{d}_k = -\nabla g(\boldsymbol{x}_k) and HkH_k is the identity.

J.9 Applications of Minimisation Methods

	The minimisation of large systems: An interesting example of this arises in elliptic partial differential equations (for example problems in elasticity or electrostatics), where the solution minimises a function related to the energy of the system. Complicated engineering structures are designed by finding the local minima of a possible configuration as this represents a stable operating structure.

	Solving symmetric, positive definite linear systems: For the linear system given by A𝐱=𝐛A\boldsymbol{x}=\boldsymbol{b} where AA is a symmetric positive definite matrix, an approach to do this is by minimising the function g(𝐱)=12𝐱TA𝐱−𝐛T𝐱.g(\boldsymbol{x}) = \frac{1}{2} {\boldsymbol{x}}^{\mathrm{T}} A\boldsymbol{x}-{\boldsymbol{b}}^{\mathrm{T}} \boldsymbol{x}. This is the basis of the celebrated Conjugate Gradient method. There are also variants for non-symmetric matrices.

	Solving non-linear systems: For a non-linear system of the form 𝐟(𝐱)=𝟎⟹(f1f2⋮fN)(𝐱)=(00⋮0),\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{0} \quad \implies \quad\begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{pmatrix}(\boldsymbol{x})=\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, a solution 𝐱*\boldsymbol{x}^{\ast} would need to be found by minimising the function g(𝐱)=∥𝐟(𝐱)∥22=∑n=1N|fn(𝐱)|2 g(\boldsymbol{x}) = \| \boldsymbol{f}(\boldsymbol{x}) \|_2^2 = \sum_{n=1}^{N} | f_n(\boldsymbol{x})|^2 or more generally g(𝐱)=∑n=1Nαn|fn(𝐱)|2g(\boldsymbol{x}) = \sum_{n=1}^{N} \alpha_n | f_n(\boldsymbol{x}) |^2 where αn>0\alpha_n > 0 are suitably chosen weights. However, in order to solving the system 𝐟(𝐱)=𝟎\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{0} requires finding the global minimum of gg and unconstrained minimisation algorithms will only find a local minimum. If the initial guess for the solution is good enough, then the “local” minimum of gg near the initial guess will also be a “global” minimum.

1. For a function f:ℝ→ℝf:\mathbb{R}\to \mathbb{R}, Taylor’s theorem states that for two points x,y∈ℝx,y \in \mathbb{R} which are close to one another: f(y)∼f(x)+f′(x)(y−x)+12!f″(ξ)(y−x)2for some ξ between x and y.f(y) \sim f(x)+f'(x)(y-x)+\frac{1}{2!}f''(\xi)(y-x)^2 \quad \text{for some ξ between x and y.} \quad

2. Recall that for vectors 𝐮\boldsymbol{u} and 𝐯\boldsymbol{v}, the Cauchy-Schwarz inequality states that |⟨𝐮,𝐯⟩|≤∥𝐮∥2∥𝐯∥2|\langle \boldsymbol{u},\boldsymbol{v} \rangle| \leq \| \boldsymbol{u} \|_2 \| \boldsymbol{v} \|_2 where in this case, the inner product is simply the dot product. Note that equality hold only when 𝐮\boldsymbol{u} and 𝐯\boldsymbol{v} are linearly dependent.

EPUB/media/file13.jpg
5 10
t

h =0.625
5 10
t

h =1.25
2 -
1 L
1t
2 . |
0 5 10
t
h =0.3125
2 -
1 L
0]
1t
2 |
0 5 10

EPUB/media/file8.jpg
L5

o Initial value
——Exact solution y(t) = e~
- --Euler method with » = 0.1

3t

EPUB/media/file48.jpg

EPUB/media/file39.jpg
-
™
=
00
P~
©
1O
<t
o
N
™
-

- - - - - -

S - S S -

S GO O <t N

™
-
™
=
00
P~
©
L O
<t
e
N
™
-

- - - - - -

S G0 O < N

10

——

104

2.5
2
D
1

5
0

10

]
5

0.9
—0.5
—1

EPUB/media/file43.png
. Data_Write.dat

File Edit
\ X x"2
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100
1 121
12 144
13 169
14 196
15 225
16 256
17 289
18 324
19 361
20 400
21 441
22 484
23 529
24 576
25 625
26 676
27 729
28 784
29 841
30 900
31 961
32 1024
33 1089
34 1156
35 1225
36 1296
37 1369
38 1444
39 1521
40 1600
41 1681
42 1764
Ln1, Col 1

View

sin(x)
.8414709848
.9092974268
.1411200081
-0.7568024953
-0.9589242747
-0.2794154982
0.6569865987
0.9893582466
0.4121184852
-0.5440211109
-0.9999902066
-0.5365729180
0.4201670368
0.9906073557
0.6502878402
-0.2879033167
-0.9613974919
-0.7509872468
0.1498772097
0.9129452507
0.8366556385
-0.0088513093
-0.8462204042
-0.9055783620
-0.1323517501
0.7625584505
0.9563759284
0.2709057883
-0.6636338842
-0.9880316241
-0.4040376453
0.5514266812
0.9999118601
0.5290826861
-0.4281826695
-0.9917788534
-0.6435381334
0.2963685787
0.9637953863
0.7451131605
-0.1586226688
-0.9165215479

[ORCIS)

4,645 characters

exp(x)
.7182818285e+00
.3890560989e+00
.0085536923e+01
.4598150033e+01
.4841315910e+02
.0342879349e+02
.0966331584e+03
.9809579870e+03
.1030839276e+03
.2026465795e+04
.9874141715e+04
.6275479142e+05
.4241339201e+05
.2026042842e+06
.2690173725e+06
.8861105205e+06
.4154952754e+07
.5659969137e+07
.7848230096e+08
.8516519541e+08
.3188157345e+09
.5849128461e+09
.7448034462e+09
.6489122130e+10
.2004899337e+10
.9572960943e+11
.3204824060e+11
.4462570643e+12
.9313342971e+12
.0686474582e+13
.9048849665e+13
.8962960183e+13
.1464357979%e+14
.8346174253e+14
.5860134523e+15
.3112315471e+15
.1719142373e+16
.1855931757e+16
.6593400424e+16
.3538526684e+17
.3984349353e+17
.7392749415e+18

TP ONOOWRARUNNNRPWRURNNOWRABAMRPRONOWRARUNONEREARARUVUNNN

Plain text

100%

Windows (CRLF)

UTF-8

EPUB/media/file21.jpg
L5

——Forward
——Backward
H——Centred
——Exact

0 0.1

0.2

0.3

0.4

0.5

0.6

EPUB/media/file44.png
DEIEN

File Edit

VoONOUVIAWNR

42.
43.

Ln 40, Col 27

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
000000
000000

Read.dat

View

6.000000 0.514395
42.000000 -0.404239
164.000000 -0.836022
450.000000 -0.608083
1002.000000 0.279873
1946.000000 0.819289
3432.000000 0.684489
5634.000000 -0.144987
8750.000000 -0.790197
13002.000000 -0.744023

18636.0
25922.0
35154.0
46650.0
60752.0
77826.0
98262.0
122474.
150900.
184002.
222266.
266202.
316344.
373250.
437502.
509706.
590492.
680514.
780450.
891002.

1012896.
1146882.
1293734.
1454250.
1629252.
1819586.
2026122.
2249754.
2491400.
2752002.
3032526.
3333962.
3657324.

00000
00000
00000
00000
00000 -
00000 -
00000 -
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

(2]

]
]
]

(2]

0.004426
0.747210
0.787934
0.136312

.688695
.817847
.271704
.613367
.835315
.396850
0.520750
0.841450
0.507976
.411573
.836685
.602731
0.288001
0.820683
0.680216
.153640
0.792405
0.740775
-0.013276
-0.750336
-0.785617
-0.127615
0.692836
0.816356
0.263494
-0.618583
-0.834563
-0.389405
0.527040

3,525 characters

Plain text

100%

Windows (CRLF)

UTF-8

EPUB/media/file12.jpg
O Initial value
.05 | |—Exact solution y(z) = el
- - Euler method with h = 0.4
Heun method with h = 0.4
- - 4™ order Runge-Kutta method with h = 0.4

1-1)

0 0.5 1 1.5 2 2.5
t

EPUB/media/file14.jpg
1.5

0 500

1000

1500

t

2000

2500

3000

3500

EPUB/media/file55.jpg
0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

EPUB/media/file20.jpg
L5

——Numerical
——Exact

EPUB/media/file7.jpg
15

® Initial value

——Exact solution y(t) = e~

3t

- —-FEuler method with h =1
10 +
5
//\\
7 \\
= o~ ad i
D \\\\ // \\
-~ N
\
AN
\
S5+
-10 +
-15
0 1

EPUB/media/file49.jpg

EPUB/media/file45.png
AutoSave @ v Data... - Saved to this...

(0] [conditional Formatting v
/o

[iZ Format as Table v

[iZ cell Styles v
Styles

Clipboard Font Alignment | Number

0.841470985 2.718281828
0.909297427 7.389056099
0.141120008 20.08553692
-0.756802495 54.59815003
-0.958924275 148.4131591
-0.279415498 403.4287935
0.656986599 1096.633158
0.989358247 2980.957987
0.412118485 8103.083928
-0.544021111 22026.46579
-0.999990207 59874.14172
-0.536572918 162754.7914
0.420167037 442413.392
0.990607356 1202604.284

0.65028784 3269017.372
-0.287903317 8886110.521
-0.961397492 24154952.75
-0.750987247 65659969.14

0.14987721 178482301
0.912945251 485165195.4
0.836655639 1318815734
-0.008851309 3584912846
-0.846220404 9744803446
-0.905578362 26489122130
-0.13235175 72004899337

0.76255845 1.9573E+11
0.956375928 5.32048E+11
0.270905788 1.44626E+12
-0.663633884 3.93133E+12

NNRNNNNNNNRNREBRRR R R R P B
©Wo0NOURWNROWL®NOOUVAWNIERO

Ready E® T?,Access\bmty: Good to go [& Display Settings H

EPUB/media/file11.jpg
1.5

O Initial value

——Exact solution y(t) =

1
—t+1

- —-Heun method with h = 0.1
Euler method with h = 0.1

EPUB/media/file15.jpg
U00000000000000

EPUB/media/file54.jpg
&
Q-
© N
$o)

©

& @b?sb@“

QY A7 N
Q- Q()

0.6

D A
) \”\6”\@\?’\\%\ A
J /]

0.8

EPUB/nav.xhtml

Table of contents

		Introduction

		Material

		Unit Outline

		Aims & Objectives		Intended Learning Outcomes:

		Questions

		1 Internal Workings of MATLAB		1.1 Floating-Point Arithmetic

		1.2 Computational Complexity

		2 Solving Linear Systems of Equations		2.1 Computational Stability of Linear Systems

		2.2 Direct Methods		2.2.1 Direct Substitution

		2.2.2 Forward/Backward Substitution

		2.2.3 TDMA Algorithm

		2.2.4 Cramer’s Rule

		2.2.5 Gaussian Elimination & LU Factorisation

		2.2.6 Other Direct Methods

		2.3 Iterative Methods		2.3.1 Constructing an Iterative Method

		2.3.2 Computational Cost & Stopping Criteria

		2.4 In-Built MATLAB Procedures

		2.5 Exersises

		3 The Euler Method		3.1 Steps of the Euler Method

		3.2 Accuracy

		3.3 Set of IVPs

		3.4 Higher Order IVPs		3.4.1 Sets of Higher Order IVPs

		3.4.2 Stability of a Set of ODEs

		3.5 Limitations of the Euler Method		3.5.1 Bounds on the Stepsize

		3.5.2 Estimated Bound

		3.6 MATLAB Code

		4 The Modified Euler Method		4.1 Steps of the Modified Euler Method

		4.2 Accuracy of the Modified Euler Method

		4.3 MATLAB Code

		5 Fourth Order Runge-Kutta Method		5.1 MATLAB Code

		6 MATLAB’s In-Built Procedures

		7 Implicit IVP Solvers		7.1 Backwards Euler Method

		7.2 Stability of the Backwards Euler Method

		7.3 Order of Accuracy

		7.4 MATLAB Code

		7.5 Stiff Differential Equations

		8 Boundary Value Problems		8.1 Example of Boundary Value Problems

		8.2 Finite Difference Method for Boundary Value Problems		8.2.1 Discretisation of the Differential Equation

		8.3 MATLAB Code

		8.4 Comparison Between Forward, Backward & Centred Difference Approximations

		8.5 MATLAB’s In-Built Procedures

		9 Mixed Value Problems		9.1 Finite Difference Method for MVPs

		10 Symmetric Boundary Conditions		10.1 Finite Difference Method for Symmetric Boundary Value Problems

		11 Heat Equation		11.1 The Method of Lines for the Heat Equation

		11.2 Linear Advection Equation

		11.3 Convection-Diffusion Equation

		11.4 Asymptotic Stability		11.4.1 Stability of the Euler Method for the Advection Equation

		11.4.2 Stability of the Euler Method for the Heat Equation

		11.5 Stability of the Convection-Diffusion Equation

		Appendix A — MATLAB Basics		A.1 Command Window

		A.2 Executing Commands in the Command Window

		A.3 Defining Variables

		A.4 Naming Variables

		A.5 Scripts & Functions

		A.6 Exersises

		Appendix B — Arrays in MATLAB		B.1 Vectors

		B.2 Matrices

		B.3 Referencing Terms in Arrays

		B.4 Matrix Operations

		B.5 Substitution & Concatenation

		B.6 Finding Terms

		B.7 Exercises

		Appendix C — Loops		C.1 if Loops

		C.2 while Loops

		C.3 Multiple Conditions for if & while Loops

		C.4 for Loops

		C.5 Exercises

		Appendix D — Plotting in MATLAB		D.1 Forming Lists for Plotting

		D.2 Line Properties

		D.3 Multiple Plots		D.3.1 Legends

		D.4 Figure Properties

		D.5 Subplots

		D.6 Aesthetics

		D.7 Discrete Plots

		D.8 Plot Cheat Sheet

		Appendix E — Reading & Writing Data		E.1 Writing Into Data Files		E.1.1 Output Formats

		E.1.2 Alignment

		E.2 Reading From Data Files

		E.3 Reading & Writing Data with Excel

		Appendix F — Gaussian Elimination Method

		Appendix G — Matrix Decompositions		G.1 Orthogonality & QR Factorisation		G.1.1 QR Decomposition Using Reflections

		G.1.2 QR Decomposition Using Rotations

		G.1.3 QR Decomposition in MATLAB

		G.2 Eigenvalue Decomposition		G.2.1 Eigendecomposition

		G.3 Singular Value Decomposition (SVD)

		Appendix H — Data Fitting		H.1 Linear Regression

		H.2 Lines of Best Fit Using polyfit

		Appendix I — Eigenvalue Problems		I.1 Calculating Eigenvalues Using the Power Method

		Appendix J — Numerical Solutions of Non-Linear Equations		J.1 One-Dimensional Root-Finding Algorithm

		J.2 Bisection Method

		J.3 Secant Method

		J.4 Newton-Raphson Method (NR)

		J.5 Solving Systems of Non-Linear Equations Numerically

		J.6 Minimisation Problems

		J.7 Method of Steepest Descent

		J.8 Variants of the Newton-Raphson Method

		J.9 Applications of Minimisation Methods

 		
 Title Page

EPUB/media/file2.png
Use triangular

Use QR solver o

Is Atriangular?

s saofA)less than

o equal o 16x16 (real)
0r 848 (complex)?

Use
s Aupper . .
Hessenberg? Is Atridiagonal ridiagonal

solver

Use
Hessenberg

No solver

s A permuted
triangular?

Use permuted
triangular solver

Use YES

Does Cholesky

Cholesky |« »| UseLusoter e

aohver Succeed

EPUB/media/file53.jpg
200

150

EPUB/media/file23.jpg

EPUB/media/file46.jpg

EPUB/media/file10.jpg
h =0.0201

0.5

h =0.01

h =0.02
3 B
A
1}
0
-1 .
0 0.5
t
h =0.001
3 _
A
1}
0
-1 .
0 0.5

EPUB/media/file40.jpg
Functions

Some Random Functions

8
\’\
o"
7 \o"
\O
\0
\O
\O
\0
\0
\0
o"
0 \o"
R g
®
®
®
®
*
®
®
o"
\'\
5 e
®
®
K
&
@
N 2
\®
\®
S
¢"
¢"\
4 ‘\4‘
R
2
=
\ B
e
="
R Nie
e
¢"\‘
3 \“‘\‘\
"‘\‘
=t
“"'..." & IR “‘--...'.
\ ..
IS
&
&
.0
2 *s
L 4
4
4
2
4
S
2
s
4
S
1 Te
S
*
&,
'y
0
—1 —— cos(t)
=== Function y(t)
mmm [,ast
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5.5 6] 0.5 7 7.5 8 8.5 9 9.5 10

EPUB/media/file29.jpg
Upwind Upwind
Direction Direction
<+—d +—

EPUB/media/file16.jpg
L1

L2

Ln—1

Ln

Ln+1

Ln+42

EPUB/media/file3.png
Is A square?

Use QR solver

Is Atridiagonal,
oris the band density
of A> bandden
(default 0.5)?

Use banded YES

solver

Is the diagonal
of Aall positive
or all negative?

YES

Does Cholesky
succeed?

Use Cholesky
solver

Use LDL solver

Compute the
bandwidth of A

YES
Is Adiagonal?

Use diagonal
solver

Does Alook
triangular?
(Upper or lower
bandwidth of 0)

Is Aactually
triangular?

(diagonal is
structurally

nonzero)

YES

Use triangular
solver

Is A permuted
triangular?

Use permuted
triangular solver

Is A Hermitian?

Use LU solver

EPUB/media/file9.jpg
%10’

h =0.03

0.5 1

h =0.01

h =0.02

0.5

h =0.001

EPUB/media/file42.png
. Data_Write.dat

File Edit

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

10.000000
11.000000
12.000000
13.000000
14.000000
15.000000
16.000000
17.000000
18.000000
19.000000
20.000000
21.000000
22.000000
23.000000
24.000000
25.000000
26.000000
27.000000
28.000000
29.000000
30.000000
31.000000
32.000000
33.000000
34.000000
35.000000
36.000000
37.000000
38.000000
39.000000
40.000000
41.000000
42.000000

Ln1, Col 1

VoONOUV A WNRX

View

Xx~2 sin(x) e”x

1.000000 0.841471 2.718282
4.000000 0.909297 7.389056
9.000000 0.141120 20.085537
16.000000 -0.756802 54.598150

25.00
36.00!
49.00
64.00
81.00
100.
121.
144.
169.
196.
225.
256.
289.
324.
361.
400.
441.
484.
529.
576.
625.
676.
729.
784.
841.
900.
961.

1024.
1089.
1156.
1225.
1296.
1369.
1444,
1521.
1600.
1681.
1764.

0000 -0
0000 -0
0000 0.
0000 0.
0000 0.
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

.958924 148.413159

.279415 403.428793

656987 1096.633158

989358 2980.957987

412118 8103.083928

-0.544021 22026.465795

-0.999990 59874.141715

-0.536573 162754.791419

0.420167 442413.392009

0.990607 1202604 .284165

0.650288 3269017.372472

-0.287903 8886110.520508

-0.961397 24154952.753575
-0.750987 65659969.137331

0.149877 178482300.963187

0.912945 485165195.409790

0.836656 1318815734.483215
-0.008851 3584912846.131592
-0.846220 9744803446.248903
-0.905578 26489122129.843472
-0.132352 72004899337.385880

0.762558 195729609428.838745

0.956376 532048240601.798645

0.270906 1446257064291.475098
-0.663634 3931334297144.041992
-0.988032 10686474581524.462891
-0.404038 29048849665247.425781
0.551427 78962960182680.687500
0.999912 214643579785916.062500
0.529083 583461742527454.875000
-0.428183 1586013452313430.750000
-0.991779 4311231547115195.000000
-0.643538 11719142372802612.000000
0.296369 31855931757113756.000000
0.963795 86593400423993744.000000
0.745113 235385266837019968 . 000000
-0.158623 639843493530054912.000000

6,261 characters Plain text 100% Windows (CRLF)

UTF-8

EPUB/media/file22.jpg
05 r

+
~—
S

-0.5

EPUB/media/file47.jpg

EPUB/media/file52.jpg
200

150

EPUB/media/file17.jpg
e,
—~
©
~— W
S
—

Backward
Centered

EPUB/media/file26.jpg
0.8

0.6

0.4

0.2

EPUB/media/file51.jpg
e

EPUB/media/file35.jpg
—1.8

—1.6

—1.4

—1.2

—0.8

—0.6

—0.4

—0.2

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

EPUB/media/file27.jpg
0.8

0.6

0.4

0.2

EPUB/media/file18.jpg
L2

EPUB/media/file19.jpg
=0
Xy —

=04
L1

= 0.8
X2

= 1.2
Ly =

=1.6
Tyqg —

=2
Ty —

EPUB/media/file50.jpg
2 3

3

343
3+3

EPUB/media/file36.jpg
—1.8

—1.6

—1.4

—1.2

—0.8

—0.6

—0.4

—0.2

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

EPUB/media/file33.jpg
&

EPUB/media/file28.jpg
0.8

0.6

0.4

0.2

EPUB/media/file41.jpg
Number of Steps

180

170

160

150

140

130

120

110

100

90

80

70

60

o0

40

100

150

200

Steps of the Collatz Conjecture for Starting Points 1 to1000

450 500

Starting Value

250 300 300 400

550 600 650 700 750 800

800 900 950 1,000

EPUB/media/file32.jpg
&

==

EPUB/media/file37.jpg
140

120

100

80

60

40

20

—20

—40

—60

—80

EPUB/media/file6.jpg

EPUB/media/file24.jpg
L1

L2

EPUB/media/file1.png
4 Profiler

- o X

PROFILER

d—:JI] ‘:4;5 <::' Back @
Print Profile S Find... Highlight Enter code to run and time v] S
Summary v Profiling
FILE NAVIGATE SEARCH VIEW PROFILE a
Fib_Rec (Calls: 204668309, Time: 240.764 s) -
» Flame Graph
» Parents (calling functions)
~ Lines that take the most time
Line Number Code Calls Total Time (s) % Time Time Plot
F=Fib_Rec(N-1)+Fib_Rec(N-2); 102334154 117.553 48.8%]
13 end 204668309 16.721 6.9% n
3 if N<3