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Introduction

This unit will cover some of the numerical techniques used for solving differential equations
and using MATLAB to implement these numerical methods.
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Material

All the material will be posted on the Microsoft Teams Page for the unit. Note that is
document is regularly being updated so if you find any mistakes or parts missing then do let
me know.
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Unit Outline

All lectures will be held online on Fridays, 10.00 - 12.00 on Microsoft Teams, to which
you should have received a link. The details for the link are as follows:

Meeting ID: 358 213 646 365 0

Passcode: Us2N6hB2

Lecture Date Topic

1 17/10 • Introduction to NSDE unit for TCC
• Aims & Objectives of the unit
• Floating point arithmetic
• Computational complexity
• Code timing and profiling
• Applications for solving linear systems
• Computational stability
• Solving linear systems using direct methods

– Direct substitution
– Forward/Backward substitution

2 24/10 • Solving linear systems using direct methods

– Tridiagonal matrix algorithm
– Cramer’s Rule

• Solving linear systems using iterative methods
3 31/10 • Euler method for IVPs
4 07/11 • Modified Euler method

• Runge-Kutta method
• Backwards Euler method
• solving stiff IVPs

5 14/11 • Solving BVPs using the finite difference method
6 21/11 • Solving MVPs and symmetric BVPs
7 28/11 • Method of lines

• Apply MoL for diffusion and/or convection
8 05/12 Stability of the method of lines
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Aims & Objectives

The aim for this unit is to be able to understand and derive different numerical techniques
for solving differential equations and being able to implement them on MATLAB.

Intended Learning Outcomes:

• Understand the internal working mechanisms of MATLAB,
• Solve linear systems using direct and iterative methods,
• Use different differencing schemes to assess their ability to solve ODEs and PDEs,
• Assess the stability of different numerical methods.
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Questions

For any questions, queries or issues that you see in the material, do not hesitate to contact
me on w.a.a.ali@bath.ac.uk.
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1 Internal Workings of MATLAB

1.1 Floating-Point Arithmetic

Since computers have limited resources, only a finite strict subset F of the real numbers can
be represented. This set of possible stored values is known as Floating-Point Numbers
and these are characterised by properties that are different from those in R, since any real
number x is – in principle – truncated by the computer, giving rise to a new number denoted
by fl(x), which does not necessarily coincide with the original number x.

A computer represents a real number x as a floating-point number in F as

x = (−1)s × (a1a2 . . . at) × βE (1.1)

where:

• s ∈ {0, 1} determines the sign of the number;
• β ≥ 2 is the base;
• E ∈ Z is the exponent.
• a1a2 . . . at is the mantissa (or significand). The mantissa has length t which is the

maximum number of digits that can be stored. Each term in the mantissa must satisfy
0 ≤ ai ≤ β − 1 for all i = 1, 2, . . . , t and a1 ̸= 0 (to ensure that the same number
cannot have different representations). The digits a1a2 . . . ap (with p ≤ t) are often
called the p first significant digits of x.

The set F is therefore fully characterised by the basis β, the number of significant digits t
and the range of values that E can take.

A computer typically uses binary representation, meaning that the base is β = 2 with the
available digits {0, 1} (also known as bits) and each digit is the coefficient of a power of 2.
Available platforms (like MATLAB and Python) typically use the IEEE754 double precision
format for F , which uses 64-bits as follows:

• 1 bit for s (either 0 or 1) to determine the sign;
• 11 bits for E (which can be 0, 1, 2, . . . , 10);
• 52 bits for a2a3 . . . a53 (since a1 ̸= 0, it has to be equal to 1).

For 32-bit storage, the exponent is at most 7 and the mantissa has 23 digits. Note that 0
does not belong to F since it cannot be represented in the form shown in Equation 1.1 and
it is therefore handled separately.

The smallest and the largest positive real numbers that can be written in floating points
can be found by using the realmin and realmax commands. A positive number smaller
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than xmin yields underflow and a positive number greater than xmax yields overflow. The
elements in F are more dense near xmin, and less dense while approaching xmax. However,
the relative distance is small in both cases. Note that any number bigger than realmax or
smaller than -realmax will be assigned the values ∞ and −∞ respectively.

1 >> realmin
2 ans =
3 2.2251e-308
4 >> realmax
5 ans =
6 1.7977e308

If a non-zero real number x is replaced by its floating-point representation fl(x) ∈ F , then
there will inevitably be a round-off error, especially if the number is either too large or
too small relative to the other numbers involved. For a floating point number x, there is a
distance εx where any value in the interval (x − εx, x + εx) cannot be written as a floating
point and will therefore be assigned the value x. This interval width is called the Machine
Epsilon and can be found for any floating point number x by using the command eps(x).

1 >> ep1=eps(1)
2 ep1 =
3 2.2204e-16
4 >> 1-(1+ep1/2)
5 ans =
6 0

The larger the floating number is, the larger the machine epsilon will be, meaning that larger
numbers will have much greater tolerances of error. The smaller the number is, the larger
the relative size will be, rendering the numbers insginifciant overall.

1 >> eps(2ˆ100)
2 ans =
3 2.8147e+14
4 >> eps(2ˆ-50)
5 ans =
6 1.9722e-31

Since F is a strict subset of R, elementary algebraic operations on floating-point numbers
do not inherit all the properties of analogous operations on R. Precisely, commutativity
still holds for addition and multiplication, i.e. fl(x + y) = fl(y + x) and fl(xy) = fl(yx).
Associativity is violated whenever a situation of overflow or underflow occurs or, similarly,
whenever two numbers with opposite signs but similar absolute values are added, the result
may be quite inexact and the situation is referred to as loss of significant digits.

Properly handling floating point computations can be tricky sometimes and, if not correctly
done, may have serious consequences. There are many webpages (and books) collecting
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examples of different disasters caused by a poor handling of computer arithmetic or a bad
algorithmic implementation. See, for instance, Software Bugs and the Patriot Missile Fail
among others.

1.2 Computational Complexity

The Computational Complexity of an algorithm can be defined as the relationship
between the size of the input and the difficulty of running the algorithm to completion. The
size (or at least, an attribute of the size) of the input is usually denoted n, for instance, for
a 1-D array, n can be its length.

The difficulty of a problem can be measured in several ways. One suitable way to describe
the difficulty of the problem is to count the number of Floating-Point Operations, such as
additions, subtractions, multiplications, divisions and assignments. Floating-point operations,
also called flops, usually measures the speed of a computer, measured as the maximum
number of floating-point operations which the computer can execute in one second. Although
each basic operation takes a different amount of time, the number of basic operations needed
to complete a function is sufficiently related to the running time to be useful, and it is usually
easy to count and less dependent on the specific machine (hardware) that is used to perform
the computations.

A common notation for complexity is the Big-O notation (denoted O), which establishes the
relationship in the growth of the number of basic operations with respect to the size of the
input as the input size becomes very large. In general, the basic operations grow in direct
response to the increase in the size n of the input and, as n gets large, the highest power
dominates. Therefore, only the highest power term is included in Big-O notation; moreover,
coefficients are not required to characterise growth and are usually dropped (although this
will also depend on the precision of the estimates).

Formally, a function f behaves as f(x) ∼ O (p(x)) as x tends to infinity if

lim
x→∞

f(x)
p(x) = constant.

For example, the polynomial f(x) = x4 + 2x2 + x + 5 behaves like x4 as x tends to infinity
since this term will be the fastest to grow. This can be written as f(x) ∼ O

(
x4) as x → ∞.

Couting flops

Let f : N → N be given by

f(n) =

 n∑
j=1

j

2

This function f can be coded as fun in MATLAB as follows:
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1 function [out]=fun(n)
2

3 out = 0;
4

5 for i=1:1:n
6

7 for j=1:1:n
8

9 out = out + i*j;
10

11 end
12

13 end
14

15 end

For example, f(3) should perform the overall calculation

(1 × 1) + (1 × 2) + (1 × 3) + (2 × 1) + (2 × 2) + (2 × 3) + (3 × 1) + (3 × 2) + (3 × 3),

so fun(3) should output out=36.
This code requires the following operations:

• 1 + n + 2n2 assignments:

– 1: out=0;
– n: i=1:1:n;
– n2: for every i, j=1:1:n;
– n2: for every i, out=out+i*j;

• n2 multiplications: i*j;
• n2 additions: out=out+i*j.

Therefore, for any n, this code will need 4n2+n+1 flops, meaning that the computational
complexity is O

(
n2), i.e. the code runs in polynomial time. It is not uncommon to find

algorithms that run in exponential time O (cn), like some recursive algorithms, or in
logarithmic time O (log n).

For more complicated codes, it is important to see where most of the time is spent in a code
and how execution can be improved. A rudimentary way of timing can be done by the toc
toc:

1 >> tic;
2 >> Run code or code block
3 >> toc;

This will produce a simple time in seconds that MATLAB took from tic until toc, so if
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toc has not been types, then the timer will continue.

For more advanced analysis, MATLAB uses a Code Profiler to analyse code which includes
run times for each iteration, times a code has been called and a lot more.

Iterative vs Recursive

Suppose that a code needs to be written that finds the N th Fibonacci number starting
the sequence with (1,1). This can be done in two ways:

• Iteratively by having a self-contained code that generates all the terms of the
sequence up to N and displays the last term.

1 function [F]=Fib_Iter(N)
2

3 S=ones(1,N);
4

5 for n=3:1:N
6

7 S(n)=S(n-1)+S(n-2);
8

9 end
10

11 F=S(end);
12

13 end

• Recursively by have a self-referential code that keeps referring back to itself to
generate the last term in the sequence from the previous terms.

1 function [F]=Fib_Rec(N)
2

3 if N<3
4

5 F=1;
6

7 else
8

9 F=Fib_Rec(N-1)+Fib_Rec(N-2);
10

11 end
12

13 end

When running these codes for an input of N = 10, the times are very short, of the
order of 10−5 seconds but as N gets larger, the recursive code starts to take much
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longer. Suppose the code efficiency is to be analysed for the input N = 40, this can be
done using the profiler as follows:

1 >> profile on
2 >> Fib_Iter(40);
3 >> profile off
4 >> profile viewer

This will give a full breakdown of how many times every line was run and how much
time it took. For Fib_Iter(40), a total of 38 operations were performed, each taking
such a short amount of time that it registers as “0 seconds”.

However, performing the profiler for Fib_Rec(40) gives a dramatically different answer
with the code taking nearly 247 seconds and having to call itself more than 102 million
times.
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This is why it is important to profile longer codes to see which parts take the longest
time and which loops are the most time consuming.

ñ Good Practice

To reduce computational time in general, avoid self-referential codes because these tend
to grow in usage exponentially. Another important practice is to use in-built MATLAB
syntax, like using sum to add elements in a vector rather than manually hard coding it.
This is where being familiar with a lot of the MATLAB syntax is important; MATLAB
has a lot of built-in codes and syntaxes which can save a lot of time.
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Part I

Linear Algebra
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This section will cover some of the main methods that can be used to solve sets of linear
equations of the form

Ax = b where A ∈ RN×N , x ∈ RN , b ∈ RN .

This can be done by using a Direct Method if the solution of the system can be obtained
in a finite number of steps or an Iterative Method if the solution, in principle, requires an
infinite number of steps.

The choice between direct and iterative methods may depend on several factors, primarily
the predicted theoretical efficiency of the scheme, but also the particular type of matrix
(such as systems that are sparse, diagonally dominant, tridiagonal and so forth) and the
memory storage requirements.
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2 Solving Linear Systems of Equations

:::

Before embarking on the main purpose of the course, which is solving differential equations,
first solving linear systems will be necessary. The linear systems will take the form

Ax = b where A ∈ CN×N , x ∈ CN and b ∈ CN .

This is a situation when the LHS forms a system of equations with a vector of unknowns x
and the RHS is known.

Simple Example of a Linear System

Let a, b and c be integers such that:

• their sum is equal to 20
• a is twice as large as b
• b is bigger than c by 10.

These three relationships can be written in equation form as:

a + b + c = 20

a = 2b

b − c = 10

This can written in matrix form as:1 1 1
1 −2 0
0 1 −1


︸ ︷︷ ︸

A

a
b
c


︸ ︷︷ ︸

x

=

20
0
10


︸ ︷︷ ︸

b

.

There are two main ways in which this can be done, depending on the form of the matrix:

• Direct Methods:

– Direct substitution for diagonal systems;
– Forward substitution for lower triangular systems;
– Backward substitution for upper triangular systems;
– TDMA for tridiagonal systems;
– Cramer’s Rule and Gaussian Elimination for more general matrix systems.
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• Iterative Methods

– Jacobi;
– Gauss-Seidel.

• In-built Methods:

– Backsklash operator.

2.1 Computational Stability of Linear Systems

Before tackling any linear algebra techniques, it is important to understand Computational
Stability.

Consider the linear system

Ax = b where A ∈ CN×N , x ∈ CN and b ∈ CN .

In real-life applications, the matrix A is usually fully known and often invertible while the
vector b may not be known exactly and its measurement may often include rounding errors.
Suppose that the vector b has a small error δb, then the solution x will also have a small
error δx, meaning that the system will in fact be

A(x + δx) = b + δb. (2.1)

Subtracting Ax = b form Equation 2.1 gives Aδx = δb, therefore δx = A−1δb.

For p ∈ N, consider the ratio between the p-norm of the error ∥δx∥p and the p-norm of the
exact solution ∥x∥p:

∥δx∥p

∥x∥p

=
∥∥A−1δb

∥∥
p

∥x∥p

since δx = A−1δb

≤
∥∥A−1∥∥

p ∥δb∥p

∥x∥p

by the Submultiplicative Property

=
∥∥A−1∥∥

p ∥δb∥p

∥x∥p

×
∥A∥p

∥A∥p

multiplying by 1 =
∥A∥p

∥A∥p

= ∥A∥p

∥∥∥A−1
∥∥∥

p

∥δb∥p

∥A∥p ∥x∥p

rearranging

≤ ∥A∥p

∥∥∥A−1
∥∥∥

p

∥δb∥p

∥b∥p

since b = Ax then ∥b∥p ≤ ∥A∥p ∥x∥p

by the Submultiplicative Property,

meaning that 1
∥b∥p

≥ 1
∥A∥p ∥x∥p
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ñ Note 1: Submultiplicative Property of Matrix Norms

For matrices A and B and a vector x,

∥Ax∥ ≤ ∥A∥∥x∥,

∥AB∥ ≤ ∥A∥∥B∥.

In both cases, the equality holds when either A or B are orthogonal.

Let κp(A) =
∥∥A−1∥∥

p ∥A∥p, then

∥δx∥p

∥x∥p

≤ κp(A)
∥δb∥p

∥b∥p

The quantity κp(A) is called the Condition Number1 and it can be regarded as a measure
of how sensitive a matrix is to perturbations, in other words, it gives an indication as to the
stability of the matrix system. A problem is Well-Conditioned if the condition number
is small, and is Ill-Conditioned if the condition number is large (the terms “small” and
“large” are somewhat subjective here and will depend on the context). Bear in mind that
in practice, calculating the condition number may be computationally expensive since it
requires inverting the matrix A.

The condition number derived above follows the assumption that the error only occurs in b
which then results in an error in x. If an error δA is also committed in A, then for sufficiently
small δA, the error bound for the ratio is

∥δx∥p

∥x∥p

≤ κp(A)

1 − κp(A)∥δA∥p

∥A∥p

(
∥δb∥p

∥b∥p

+
∥δA∥p

∥A∥p

)
.

An example for which A is large is a discretisation matrix of a PDE, in this case, the condition
number of A can be very large and increases rapidly as the number of mesh points increases.
For example, for a PDE with N mesh points in 2-dimensions, the condition number κ2(A) is
of order O (N) and it is not uncommon to have N between 106 and 108. In this case, errors
in b may be amplified enormously in the solution process. Thus, if κp(A) is large, there
may be difficulties in solving the system reliably, a problem which plagues calculations with
partial differential equations.

Moreover, if A is large, then the system Ax = b may be solved using an iterative method
which generate a sequence of approximations xn to x while ensuring that each iteration is
easy to perform and that xn rapidly tends to x, within a certain tolerance, as n tends to
infinity. If κp(A) is large, then the number of iterations to reach this tolerance increases
rapidly as the size of A increases, often being proportional to κp(A) or even to κp(A)2. Thus

1Note that A−1 exists only if A is non-singular, meaning that the condition number number only exists if A
is non-singular.

22



not only do errors in x accumulate for large κp(A), but the number of computation required
to find x increases as well.

In MATLAB, the condition number can be calculated using the cond(A,p) command where
A is the square matrix in question and p is the chosen norm which can only be equal to 1, 2,
inf or 'Fro' (when using the Frobenius norm). Also note that cond(A) without the second
argument p produces the condition number with the 2-norm by default.

Properties of the Condition Number

Let A and B be invertible matrices, p ∈ N and λ ∈ R. The condition number κp has the
following properties:

• κp(A) ≥ 1;
• κp(A) = 1 if and only if A is an orthogonal matrix, i.e. A−1 = AT;
• κp(AT) = κp(A−1) = κp(A);
• κp(λA) = κp(A);
• κp(AB) ≤ κp(A)κp(B).

2.2 Direct Methods

Direct methods can be used to solve matrix systems in a finite number of steps, although
these steps could possibly be computationally expensive.

2.2.1 Direct Substitution

Direct substitution is the simplest direct method and requires the matrix A to be a diagonal
with none of the diagonal terms being 0 (otherwise the matrix will not be invertible).

Consider the matrix system Ax = b where

A =


a1

a2
. . .

aN−1
aN

 , x =


x1
x2
...

xN−1
xN

 and b =


b1
b2
...

bN−1
bN


and a1, a2, . . . , aN ̸= 0. Direct substitution involves simple multiplication and division:

Ax = b =⇒


a1

a2
. . .

aN−1
aN




x1
x2
...

xN−1
xN

 =


b1
b2
...

bN−1
bN


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=⇒

a1x1 = b1
a2x2 = b2

...
aN−1xN−1 = bN−1

aN xN = bN

=⇒

x1 = b1
a1

x2 = b2
a2...

xN−1 = bN−1
aN−1

xN = bN
aN

.

The solution can be written explicitly as xn = bn
an

for all n = 1, 2, . . . , N . Every step can
done independently, meaning that direct substitution lends itself well to parallel computing.
In total, direct substitution requires exactly N computations (all being division).

Example of Direct Substituion

Consider the system Ax = b where

A =

1 0 0
0 2 0
0 0 −1

 , x =

x1
x2
x3

 and b =

4
2
4

 .

Solving the system using direct substitution:

Ax = b =⇒

1 0 0
0 2 0
0 0 −1


x1

x2
x3

 =

4
2
4



=⇒

 x1
2x2
−x3

 =

4
2
4

 =⇒
x1 = 4
x2 = 1

x3 = −4.

2.2.2 Forward/Backward Substitution

Forward/backward substitution require that the matrix A be lower/upper triangular.

Consider the matrix system Ax = b where

A =


a11 a12 . . . a1,N−1 a1N

a22 . . . a2,N−1 a2N

. . . ...
aN−1,N−1 aN−1,N

aNN

 ,

x =


x1
x2
...

xN−1
xN

 and b =


b1
b2
...

bN−1
bN


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and a11, a22, . . . , aNN ≠ 0 (so that the determinant is non-zero). The matrix A is upper
triangular in this case and will require backwards substitution:

Ax = b =⇒


a11 a12 . . . a1,N−1 a1N

a22 . . . a2,N−1 a2N

. . . ...
aN−1,N−1 aN−1,N

aNN




x1
x2
...

xN−1
xN

 =


b1
b2
...

bN−1
bN .



=⇒

a11x1 + a12x2 + . . . + a1,N−1xN−1 + a1N xN = b1
a22x2 + . . . + a2,N−1xN−1 + a2N xN = b2

...
aN−1,N−1xN−1 + aN−1,N xN = bN−1

aNN xN = bN

Backward substitution involves using the solutions from the later equations to solve the
earlier ones, this gives:

xN = bN

aNN

xN−1 = bN−1 − aN−1,N xN

aN−1,N−1

...

x2 = b2 − a2N xN − a2,N−1xN−1 − · · · − a23x3
a22

x1 = b1 − a1N xN − a1,N−1xN−1 − · · · − a12x2
a11

.

This can be written more explicitly as:

xn =


bN

aNN
for n = N

1
ann

(
bn −

∑N
i=n+1 anixi

)
for n = N − 1, . . . , 2, 1.

A similar version can be obtained for the forward substitution for lower triangular matrices
as follows:

xn =


b1

a11
for n = 1

1
ann

(
bn −

∑n−1
i=1 anixi

)
for n = 2, 3, . . . , N − 1.

For any n = 1, 2, . . . , N − 1, calculating it requires 1 division, N − n multiplications and
N −n subtractions. Therefore cumulatively, x1, x2, . . . , xN−1 require N divisions, 1

2
(
N2 − N

)
multiplications and 1

2
(
N2 − N

)
additions with one more division required for xN , meaning

that in total, backward (and forward) substitution requires N2 + 1 computations.
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Example of Backward Substitution

Consider the system Ax = b where

A =

1 2 1
0 −1 4
0 0 −1

 , x =

x1
x2
x3

 and b =

1
0
1

 .

This problem can be solved by suing backward substitution:

Ax = b =⇒

1 2 1
0 −1 4
0 0 −1


x1

x2
x3

 =

1
0
1

 =⇒
x1 + 2x2 + x3 = 1

−x2 + 4x3 = 0
−x3 = 1

−x2 + 4x3 = 0 ⇒
x3=−1

−x2 − 4 = 0 =⇒ x2 = −4

x1 + 2x2 + x3 = 1 ⇒
x2=−4, x3=−1

x1 − 8 − 1 = 1 =⇒ x1 = 10.

2.2.3 TDMA Algorithm

The TriDiagonal Matrix Algorithm, abbreviated as TDMA (also called the Thomas
Algorithm) was developed by Llewellyn Thomas which solves tridiagonal matrix systems.

Consider the matrix system Ax = b where

A =


m1 r1
l2 m2 r2

. . . . . . . . .
lN−1 mN−1 rN−1

lN mN

 ,

x =


x1
x2
...

xN−1
xN

 and b =


b1
b2
...

bN−1
bN

 .

The m terms denote the diagonal elements, l denote subdiagonal elements (left of the
diagonal terms) and r denote the superdiagonal elements (right of the diagonal terms). The
TDMA algorithm works in two steps: first, TDMA performs a forward sweep to eliminate
all the subdiagonal terms and rescale the matrix to have 1 as the diagonal (the same can
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also be done to eliminate the superdiagonal instead). This give the matrix system
1 R1

1 R2
. . . . . .

1 RN−1
1




x1
x2
...

xN−1
xN

 =


B1
B2
...

BN−1
BN


where

Rn =


r1
m1

n = 1
rn

mn−lnRn−1
n = 2, 3, . . . , N − 1

Bn =


b1
m1

n = 1
bn−lnBn−1
mn−lnRn−1

n = 2, 3, . . . , N.

This can now be solved with backward substitution:

xn =
{

BN n = N

Bn − Rnxn+1 n = N − 1, N − 2, . . . , 2, 1.

The computational complexity can be calculated as follows:

Term × + ÷

R1 0 0 1
R2 1 1 1
...

...
...

...
RN−1 1 1 1

B1 0 0 1
B2 2 2 1
...

...
...

...
BN−1 2 2 1
BN 2 2 1
x1 1 1 0
x2 1 1 0
...

...
...

...
xN−1 1 1 0

This gives a total of 3N − 5 computations for R, 5N − 4 computations for B and 2N − 2
computations for x giving a total of 10N − 11 computations.

There are similar ways of performing eliminations that be done for pentadiagonal systems as
well as tridiagonal systems with a full first row.
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2.2.4 Cramer’s Rule

Cramer’s Rule is a method that can be used to solve any system Ax = b (of course
provided that A is non-singular).

Cramer’s rule states that the elements of the vector x are given by

xn = det(An)
det(A) for all n = 1, 2, . . . , N

where An is the matrix obtained from A by replacing the nth column by b. This method
seems very simple to execute thanks to its very simple formula, but in practice, it can be
very computationally expensive.

Example of Cramer’s Rule

Consider the system Ax = b where

A =

0 4 7
1 0 1
0 1 0

 and b =

14
1
7

 .

The determinant of A is equal to 7. Using Cramer’s rule, the solution x = (x1, x2, x3)T

can be calculated as:

x1 = det(A1)
det(A) =

det

14 4 7
1 0 1
7 1 0


7 = 21

7 = 3.

x2 = det(A1)
det(A) =

det

0 14 7
1 1 1
0 7 0


7 = 49

7 = 7.

x3 = det(A1)
det(A) =

det

0 4 14
1 0 1
0 1 7


7 = −14

7 = −2.

Generally, for a matrix of size N × N , the determinant will require O (N !) computations
(other matrix forms or methods may require fewer, of O

(
N3) at least). Cramer’s rule

requires calculating the determinants of N + 1 matrices each is size N ×N and performing N
divisions, therefore the computational complexity of Cramer’s rule is O (N + (N + 1) × N !) =
O (N + (N + 1)!). This means that if a machine runs at 1 Gigaflops per second (109 flops),
then a matrix system of size 20 × 20 will require 1620 years to compute.
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2.2.5 Gaussian Elimination & LU Factorisation

Consider the linear system

Ax = b where A ∈ RN×N , x ∈ RN , b ∈ RN .

In real-life situations, the matrix A does not always have a form that lends itself to being
easily solvable (like a diagonal, triangular, sparse, etc.). However, there are ways in which a
matrix can be broken down into several matrices, each of which can be dealt with separately
and reducing computational time.

One way of doing this is by Gaussian Elimination which is a series of steps that reduces
a matrix A into an upper triangular matrix. The steps of the Gaussian elimination are
presented in details in Appendix F.

In order to convert the linear system Ax = b into the upper triangular matrix system Ux = g
by Gaussian elimination, a series of transformations have to be done, each represented by a
matrix M (n) giving the form

U = MA where M = M (N−1)M (N−2) . . . M (1).

For every n = 1, 2, . . . , N − 1, the matrix M (n) is lower triangular (because the process is
intended to eliminate the lower triangular elements) which means that the product of all
these matrices M must also be lower triangular. Note that since M (n) and M are both
non-singular and lower triangular, then their inverses must also be lower triangular. This
means that the matrix L = M−1 will be lower triangular and invertible. Additionally, since
Gaussian elimination tends to keep the diagonal terms unchanged, then the diagonal terms
of M , and consequently L, will all be 1.

This means that the matrix A can be written as A = LU where L = M−1 is a lower triangular
matrix and U is an upper triangular matrix. This is called the LU Decomposition of A.

In the cases when there might be pivoting issues (which is when the pivot points might be
equal to 0 during the Gaussian Elimination), the LU decomposition will more precisely be
the PLU Decomposition (or the LU Decomposition with Partial Pivoting) where the
method will produce an additional permutation matrix P where PA = LU . This matrix P
will swap rows when needed in order to have non-zero pivot points and is in fact orthogonal
(i.e. P −1 = P T).

The LU decomposition can be used to solve the linear system Ax = b by splitting the matrix
A into two matrices with more manageable forms. Indeed, since A = LU , then the system
becomes LUx = b, this can be solved as follows:

• Solve the lower triangular system Ly = b for y using forward substitution;
• Solve the upper triangular Ux = y for x using backwards substitution.

This is a much better way of solving the system since both equations involve a triangular
matrix and this requires O

(
N2) computations (forward and backward substitutions).
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The advantage of using the LU decomposition is that if problems of the form Axi = bi

need to be solved with many different right hand sides bi and a fixed A, then only one LU
decomposition is needed, and the cost for solving the individual systems is only the repeated
forward and back substitutions. Note that there are other strategies optimised for specific
cases (i.e. symmetric positive definite matrices, banded matrices, tridiagonal matrices).

In MATLAB, the LU decomposition can be done by a simple lu command:

1 >> A=[5,0,1;1,2,1;2,1,1];
2 >> [L,U]=lu(A)
3 L =
4 1.0000 0 0
5 0.2000 1.0000 0
6 0.4000 0.5000 1.0000
7 U =
8

9 5.0000 0 1.0000
10 0 2.0000 0.8000
11 0 0 0.2000
12 >> L*U-A % Verify if LU is equal to A
13 ans =
14 0 0 0
15 0 0 0
16 0 0 0

Note that if the output for L is not lower triangular, that means there are some pivoting
issues that had to be overcome and L had to change to accommodate for that to maintain the
fact that A = LU . In this case, the PLU decomposition would be better suited to avoid that,
this is done by adding one extra output to the lu command, in this case, A will actually be
the product A = P TLU .

1 >>> A=[1,0,1;1,0,1;2,1,1];
2 >> [L,U]=lu(A)
3 L =
4 0.5000 1.0000 1.0000
5 0.5000 1.0000 0
6 1.0000 0 0
7 U =
8

9 2.0000 1.0000 1.0000
10 0 -0.5000 0.5000
11 0 0 0
12 >> L*U-A % Verify if LU is equal to A even though
13 % L is not lower triangular
14 ans =
15 0 0 0
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16 0 0 0
17 0 0 0
18 >> [L,U,P]=lu(A)
19 L =
20 1.0000 0 0
21 0.5000 1.0000 0
22 0.5000 1.0000 1.0000
23 U =
24

25 2.0000 1.0000 1.0000
26 0 -0.5000 0.5000
27 0 0 0
28 P =
29 0 0 1
30 0 1 0
31 1 0 0
32 >> L*U-A % Verify if P'LU is equal to A
33 ans =
34 0 0 0
35 0 0 0
36 0 0 0

2.2.6 Other Direct Methods

There are many other direct methods with more involved calculations like QR decomposition
and Singular Value Decomposition amongst others. All these methods will be placed in
Appendix G.

2.3 Iterative Methods

For a large matrix A, solving the system Ax = b directly can be computationally restrictive
as seen in the different methods shown in Section 2.2. An alternative would be to use
iterative methods which generate a sequence of approximations x(k) to the exact solution x.
The hope is that the iterative method converges to the exact solution, i.e.

lim
k→∞

x(k) = x.

A possible strategy to realise this process is to consider the following recursive definition

x(k) = Bx(k−1) + g for k ≥ 1,

where B is a suitable matrix called the Iteration Matrix (which would generally depend
on A) and g is a suitable vector (depending on A and b). Since the iterations x(k) must
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tend to x as k tends to infinity, then

x(k) = Bx(k−1) + g (2.2)

⇒
k→∞

x = Bx + g. (2.3)

Next, a sufficient condition needs to be derived; define e(k) as the error incurred from
iteration k, i.e. e(k) := x − x(k) and consider the linear systems

x = Bx + g and x(k) = Bx(k−1) + g.

Subtracting these gives

x − x(k) = (Bx + g) −
(
Bx(k−1) + g

)
=⇒ x − x(k) = B

(
x − x(k−1)

)
=⇒ e(k) = Be(k−1).

In order to find a bound for the error, take the 2-norm of the error equation

e(k) = Be(k−1) ⇒
∥·∥2

∥e(k)∥2 = ∥Be(k−1)∥2.

By the submultiplicative property of matrix norms given in Note 1, the error ∥e(k)∥ can be
bounded above as ∥∥∥e(k)

∥∥∥
2

=
∥∥∥Be(k−1)

∥∥∥
2

≤ ∥B∥2

∥∥∥e(k−1)
∥∥∥

2
.

This can be iterated backwards, so for k ≥ 1,

∥e(k)∥2 ≤ ∥B∥2∥e(k−1)∥2 ≤ ∥B∥2
2∥e(k−2)∥2 ≤ · · · ≤ ∥B∥k

2∥e(0)∥2.

Generally, this means that the error at any iteration k can be bounded above by the error
at the initial iteration e(0). Therefore, since e(0) is arbitrary, if ∥B∥2 < 1 then the set of
vectors

{
x(k)

}
k∈N

generated by the iterative scheme x(k) = Bx(k−1) + g will converge to the
exact solution x which solves Ax = b, hence giving a sufficient condition for convergence.

2.3.1 Constructing an Iterative Method

A general technique to devise an iterative method to solve Ax = b is based on a “splitting”
of the matrix A. First, write the matrix A as A = P − (P − A) where P is a suitable
non-singular matrix (somehow linked to A and “easy” to invert). Then

Px = [A + (P − A)] x since P = A + P − A

= (P − A)x + Ax expanding
= (P − A)x + b since Ax = b
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Therefore, the vector x can be written implicitly as

x = P −1(P − A)x + P −1b

which is of the form given in Equation 2.3 where B = P −1(P −A) = I −P −1A and g = P −1b.
It would then stand to reason that if the iterative procedure was of the form

x(k) = P −1(P − A)x(k−1) + P −1b

(as in Equation 2.2), then the method should converge to the exact solution (provided a
suitable choice for P ). Of course, for the iterative procedure, the iteration needs an initial
vector to start which will be

x(0) =


x

(0)
1

x
(0)
2
...

x
(0)
N

 .

The choice of the matrix P should depend on A in some way. So suppose that the matrix
A is broken down into three parts, A = D + L + U where D is the matrix of the diagonal
entries of A, L is the strictly lower triangular part or A (i.e. not including the diagonal) and
U is the strictly upper triangular part of A.

ñ Note

For example a b c
d e f
g h i


︸ ︷︷ ︸

A

=

a 0 0
0 e 0
0 0 i


︸ ︷︷ ︸

D

+

0 0 0
d 0 0
g h 0


︸ ︷︷ ︸

L

+

0 b c
0 0 f
0 0 0


︸ ︷︷ ︸

U

.

• Jacobi Method: P = D

The matrix P is chosen to be equal to the diagonal part of A, then the splitting procedure
gives the iteration matrix B = I − D−1A and the iteration itself is x(k) = Bx(k−1) + D−1b
for k ≥ 0, which can be written component-wise as

x
(k)
i = 1

aii

bi −
N∑

j=1
j ̸=i

aijx
(k−1)
j

 for all i = 1, . . . , N. (2.4)

If A is strictly diagonally dominant by rows2, then the Jacobi method converges. Note
that each component x

(k)
i of the new vector x(k) is computed independently of the others,

meaning that the update is simultaneous which makes this method suitable for parallel
programming.

2A matrix A ∈ RN×N is Diagonally Dominant if every diagonal entry is larger in absolute value than the
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• Gauss-Seidel Method: P = D + L

The matrix P is chosen to be equal to the lower triangular part of A, therefore the iteration
matrix is given by B = (D + L)−1(D + L − A) and the iteration itself is x(k+1) = Bx(k) +
(D + L)−1b which can be written component-wise as

x
(k+1)
i = 1

aii

bi −
i−1∑
j=1

aijx
(k+1)
j −

N∑
j=i+1

aijx
(k)
j

 for all i = 1, . . . , N. (2.5)

Contrary to Jacobi method, Gauss-Seidel method updates the components in sequential
mode.

There are many other methods that use splitting like:

• Damped Jacobi method: P = 1
ω D for some ω ̸= 0

• Successive over-relaxation method: P = 1
ω D + L for some ω ̸= 0

• Symmetric successive over-relaxation method: P = 1
ω(2−ω)(D + ωL)D−1(D + ωU) for

some ω ̸= 0, 2.

2.3.2 Computational Cost & Stopping Criteria

There are essentially two factors contributing to the effectiveness of an iterative method for
Ax = b: the computational cost per iteration and the number of performed iterations. The
computational cost per iteration depends on the structure and sparsity of the original matrix
A and on the choice of the splitting. For both Jacobi and Gauss-Seidel methods, without
further assumptions on A, the computational cost per iteration is O

(
N2). Iterations should

be stopped when one or more stopping criteria are satisfied, as will be discussed below. For
both Jacobi and Gauss-Seidel methods, the cost of performing k iterations is O

(
kN2); so as

long as k ≪ N , these methods are much cheaper than Gaussian elimination.

In theory, iterative methods require an infinite number of iterations to converge to the exact
solution of a linear system but in practice, aiming for the exact solution is neither reasonable
nor necessary. Indeed, what is actually needed is an approximation x(k) for which the error
is guaranteed to be lower than a desired tolerance τ > 0. On the other hand, since the error
is itself unknown (as it depends on the exact solution), a suitable a posteriori error estimator
is needed which predicts the error starting from quantities that have already been computed.
There are two natural estimators one may consider:

sum of the absolute value of all the other terms in that row. More formally

|aii| ≥
N∑

j=1
j ̸=i

|aij | for all i = 1, . . . , N.

The matrix is Strictly Diagonally Dominant if the inequality is strict.
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• Residual: The residual error at the kth iteration, denoted r(k) is given by the error
between Ax(k) and b, namely r(k) = b − Ax(k). An iterative method can be stopped
at the first iteration step k = kmin for which

∥r(k)∥ ≤ τ∥b∥.

• Increment: The incremental error at the kth iteration, denoted δ(k) is the error
between consecutive approximations, namely δ(k) = x(k) −x(k−1). An iterative method
can be stopped after the first iteration step k = kmin for which

∥δ(k)∥ ≤ τ.

Of course, another way to stop the iteration is by imposing a maximum number of allowable
iterations K, this is usually a good starting point since it is not possible to know beforehand if
the method does indeed converge. Enforcing a maximum number of iterations will determine
if the initial guess is suitable, if the method is suitable or indeed if there is any convergence.

2.4 In-Built MATLAB Procedures

Given that MATLAB is well-suited to dealing with matrices, it has a very powerful method
of solving linear systems and it is using the Backslash Operator . This is a powerful
in-built method that can solve any square linear system regardless of its form. MATLAB
does this by first determining the general form of the matrix (sparse, triangular, Hermitian,
etc.) before applying the appropriate optimised method.

For the linear system

Ax = b where A ∈ RN×N , x ∈ RN , b ∈ RN

MATLAB can solve this using the syntax x=A\b.

Starting Example

Returning to the example in the beginning of this section, the matrix system was1 1 1
1 −2 0
0 1 −1


︸ ︷︷ ︸

A

a
b
c


︸ ︷︷ ︸

x

=

20
0
10


︸ ︷︷ ︸

b

.

This can be solved as follows:
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1 >> A=[1,1,1;1,-2,0;0,1,-1];
2 >> b=[20;0;10];
3 >> A\b
4 ans =
5 15.0000
6 7.5000
7 -2.5000

ñ Note

The MATLAB website shows the following flowcharts for how A\b classifies the problem
before solving it.
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Figure 2.1: If the matrix A is full.
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Figure 2.2: If the matrix A is sparse.
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2.5 Exersises

Exercise 2.1

Let A and B be invertible matrices, p ∈ N and λ ∈ R. The condition number κp has
the following properties:

i. κp(A) ≥ 1;
ii. If A is an orthogonal matrix (A−1 = AT), then κ2(A) = 1;
iii. κ2

(
AT
)

= κ2
(
A−1) = κ2(A);

iv. κp(λA) = κp(A);
v. κp(AB) ≤ κp(A)κp(B).

You may use the fact that ∥A∥2 = ∥AT∥2.

Solution 2.1

κp(A) = ∥A∥p

∥∥∥A−1
∥∥∥

p

i. Using the submultiplicative property of matrices

κp(A) = ∥A∥p

∥∥∥A−1
∥∥∥

p
≥
∥∥∥AA−1

∥∥∥
p

= ∥I∥p = 1.

ii. If A is orthogonal (A−1 = AT), then the submultiplicative property of matrices
becomes an equality, so

κ2(A) = ∥A∥2

∥∥∥A−1
∥∥∥

2
=
∥∥∥AA−1

∥∥∥
2

= ∥I∥2 = 1.

iii.

• κ2
(
AT
)

=
∥∥∥AT

∥∥∥
2

∥∥∥∥(A−1
)T
∥∥∥∥

2
=
∥∥∥AT

∥∥∥
2

∥∥∥A−1T∥∥∥
2

= ∥A∥2

∥∥∥A−1
∥∥∥

2
= κ2(A). (2.6)

• κ2
(
A−1

)
=
∥∥∥A−1

∥∥∥
2

=
∥∥∥∥(A−1

)−1
∥∥∥∥

2
= ∥A∥2

∥∥∥A−1
∥∥∥

2
= κ2(A).

iv.

κp(λA) = ∥λA∥p

∥∥∥(λA)−1
∥∥∥

p
= ∥λA∥p

∥∥∥∥ 1
λ

A−1
∥∥∥∥

p
=

|λ| ∥A∥p

1
|λ|

∥∥∥A−1
∥∥∥

p
= ∥A∥p

∥∥∥A−1
∥∥∥

p
= κp(A). (2.7)
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v.

κp(AB) = ∥AB∥p

∥∥∥(AB)−1
∥∥∥

p
= ∥AB∥p

∥∥∥A−1B−1
∥∥∥

p

≤ ∥A∥p ∥B∥p

∥∥∥B−1
∥∥∥

p

∥∥∥A−1
∥∥∥

p
= κp(A)κp(B). (2.8)

Exercise 2.2

Solve the following linear systems of the form Ax = b using the following direct
methods:

i. Direct substitution

A =

1 0 0
0 −2 0
0 0 5

 , b =

3
9
0


ii. Backward substitution

A =

4 2 1
0 2 1
0 0 10

 , b =

1
1
1


iii. Forwards substitution

A =

1 0 0
4 5 0
9 1 2

 , b =

0
0
1


iv. TDMA

A =


2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 , b =


1
0
1
0
1


v. Cramer’s Rule

A =

 1 0 2
2 1 2

−1 0 0

 , b =

12
0
6


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Solutions 2.2

i. x =

 3
−4.5

0



ii. x =

 0
0.45
0.1



iii. x =

 0
0

0.5



iv. x =


1.5
2

2.5
2

1.5



v. x =

 0
−12

6



Exersise 2.3

Using the formulas derived, write MATLAB codes that can perform:

• Direct substitution
• Backward substitution
• Forward substitution
• TDMA
• Cramer’s Rule

Use the examples in Exercise 2.2 as test cases.

Solutions 2.3

Direct Substitution
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1 function D_Sub
2

3 A=diag([1,-2,5]);
4 b=[3;9;0];
5

6 if isdiag(A)~=1
7 error('A must be a diagonal matrix')
8 end
9

10 if any(diag(A)==0)
11 error('All diagonal terms must be non-zero')
12 end
13

14 N=length(b);
15

16 x=zeros(1,N);
17

18 for n=1:1:N
19 x(n)=b(n)/A(n,n);
20 end
21

22 disp('x=')
23 disp(x)
24

25 end

Backward Substitution
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1 function B_Sub
2

3 A=[4,2,1;0,2,1;0,0,10];
4 b=[1;1;1];
5

6 if istriu(A)~=1
7 error('A must be an upper triangluar matrix')
8 end
9

10 if any(diag(A)==0)
11 error('All diagonal terms must be non-zero')
12 end
13

14 N=length(b);
15

16 x=zeros(1,N);
17

18 x(N)=b(N)/A(N,N);
19

20 for n=N-1:-1:1
21 S=0;
22 for i=n+1:1:N
23 S=S+A(n,i)*x(i);
24 end
25 x(n)=(b(n)-S)/A(n,n);
26 end
27

28 disp('x=')
29 disp(x)
30

31 end

Forward Substitution
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1 function F_Sub
2

3 A=[1,0,0;4,5,0;9,1,2];
4 b=[0;0;1];
5

6 if istril(A)~=1
7 error('A must be a lower triangular matrix')
8 end
9

10 if any(diag(A)==0)
11 error('All diagonal terms must be non-zero')
12 end
13

14 N=length(b);
15

16 x=zeros(1,N);
17

18 x(1)=b(1)/A(1,1);
19

20 for n=2:1:N
21 S=0;
22 for i=1:1:n-1
23 S=S+A(n,i)*x(i);
24 end
25 x(n)=(b(n)-S)/A(n,n);
26 end
27

28 disp('x=')
29 disp(x)
30

31 end

TDMA
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1 function TDMA
2

3 m=[2,2,2,2,2];
4 l=[-1,-1,-1,-1];
5 r=[-1,-1,-1,-1];
6 A=diag(m)+diag(l,-1)+diag(r,1);
7

8 b=[1;0;1;0;1];
9

10 N=length(b);
11

12 R=zeros(1,N);
13 B=zeros(1,N);
14 x=zeros(1,N);
15

16 l=[0,l];
17 r=[r,0];
18

19 R(1)=r(1)/m(1);
20 for n=2:1:N-1
21 R(n)=r(n)/(m(n)-l(n)*R(n-1));
22 end
23

24 B(1)=b(1)/m(1);
25 for n=2:1:N
26 B(n)=(b(n)-l(n)*B(n-1))/(m(n)-l(n)*R(n-1));
27 end
28

29 x(N)=B(N);
30 for n=N-1:-1:1
31 x(n)=B(n)-R(n)*x(n+1);
32 end
33

34 disp('x=')
35 disp(x)
36

37 end

Cramer’s Rule
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1 function Cramer
2

3 A=[1,0,2;2,1,2;-1,0,1];
4 b=[12;0;6];
5

6 N=length(b);
7

8 d=det(A);
9

10 x=zeros(N,1);
11

12 for n=1:1:N
13 AA=A;
14 AA(:,n)=b;
15 x(n)=det(AA)/d;
16 end
17

18 disp('x=')
19 disp(x)
20

21 end
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Part II

Solving Initial Value Problems
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This section will develop the techniques used to solve initial value problems.

48



3 The Euler Method

Consider the first order ordinary differential equation (ODE)

dy

dt
= f(t, y), t ∈ [t0, tf ]

where f is a known function, t0 is an initial time and tf is the final time. An initial condition
can be prescribed to this differential equation which will assign a “starting value” for the
unknown function y at the starting time as y(t0) = y0. The combination of the first order
ODE and the initial value gives the Initial Value Problem (or IVP)

dy

dt
= f(t, y) with y(t0) = y0, t ∈ [t0, tf ].

There are many analytic methods for solving first order ordinary differential equations, but
they all hold restrictions, like linearity or homogeneity. This chapter will develop the simplest
numerical technique for solving any first order ordinary differential equation, this method is
called the Euler Method.

Consider the following first order IVP

dy

dt
= f(t, y), with y(t0) = y0 t ∈ [t0, tf ].

The function f is known and in most cases, is assumed to be “well-behaved” (does not have
discontinuities or sharp corners). The term y0 is known as the Initial Value of the function
y at the starting time t0. Solving this initial value problem is essentially finding an unknown
curve y(t) that starts at the point (t0, y0) and ends at time tf .

The first step in the Euler method (as is the case in most numerical techniques) is to discretise
the domain. This changes the domain from the continuous interval [t0, tf ] to N subintervals,
each with constant1 width h (sometimes also denoted δt), which is known as the Stepsize.
The discretised interval will be the set of points

{t0, t0 + h, t0 + 2h, . . . , t0 + Nh} .

1In most cases, the interval width h is constant but more advanced numerical techniques have different
subinterval widths.
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The aim of the numerical procedure is to start from the starting point (t0, y0) and progressively
find consequent points until the final time tf is reached.

The Euler method uses the gradient, namely dy
dt , at the starting point (t0, y0) in order to

find the value of y at the subsequent point which will be labelled (t1, y1). This will, in turn,
determine the new gradient at (t1, y1) and this process is then continued until the final time
is reached. The smaller the value of h is, the more points there will be between t0 and tf

resulting in a more accurate final solution to the initial value problem.

The accuracy of the Euler method is usually characterised by how small h is or how large
N is. Since the stepsize may not always give an appropriate subdivision (like dividing the
interval [0, 1] into subintervals of width 0.4), then the number of subdivisions N can be used
to find an appropriate h by using

h = tf − t0
N

.

3.1 Steps of the Euler Method

Consider the IVP
dy

dt
= f(t, y), with y(t0) = y0 t ∈ [t0, tf ].

Parallel Example

The steps of the Euler method will be explained theoretically and applied to this IVP
in parallel to demonstrate the steps:

dy

dt
= 6 − 2y with y(0) = 0, t ∈ [0, 2].

In this case, the function on the RHS is f(t, y) = 6 − 2y. Note that this IVP has the
exact solution

y(t) = 3 − 3e−2t.

1. Discretise the interval [t0, tf ] with stepsize h to form the set of points

{t0, t0 + h, t0 + 2h, . . . , t0 + Nh} .

Inverval Discretisation

Suppose that the interval [0, 2] is to be split into 5 subintervals, then N = 5 and

h = tf − t0
N

= 2 − 0
5 = 0.4.

Therefore the discretised points are

{0.0, 0.4, 0.8, 1.2, 1.6, 2.0} .

Note that N denotes the number of subintervals and not the number of points, that
would be N + 1 points since the starting point is 0.
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2. At the starting point (t0, y0), the gradient is known since

y′(t0) = f(t0, y0).

Gradient at (t0, y0)

At the initial point,

y′(t0) = f(t0, y0) =⇒ y′(0) = f(0, 0) = 6 − 2(0) = 6.

So the starting gradient is 6.

3. The next step is to find the the value of y at the subsequent time t1 = t0 + h. For this
purpose, consider the Taylor series expansion of y at t = t1,

y(t1) = y(t0 + h) = y(t0) + hy′(t0) + h2

2! y′′(t0) + O
(
h3
)

.

ñ Note

The term O
(
h3) simply means that the terms after this point have a common factor of

h3 and these terms are regarded as higher order terms and can be neglected since they
are far smaller than the first terms provided h is small.

Since h is assumed to be sufficiently small, then all terms higher order terms, in this case h2

or higher, can be neglected (i.e. hn ≈ 0 for n ≥ 2). Therefore

y(t1) ≈ y(t0) + hy′(t0).

Let Y1 denote the approximated value of the solution at the point t1, i.e. Y1 ≈ y(t1), so in
this case,

Y1 = y0 + hy′(t0). (3.1)

This determines the value of Y1 which is an approximation to y(t1).

Calcuating Y1

The point Y1 can be calculated as follows:

Y1 = y0 + hy′(t0) = 0 + (0.4)(6) = 2.4.

This means that the next point is (t1, Y1) = (0.4, 2.4).

4. This iteration can be continued to find Yn+1 (which is the approximate value of y(tn+1))
for all n = 1, 2, . . . , N − 1

Yn+1 = Yn + hy′(tn) where y′(tn) = f(tn, Yn).
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Calculating Yn

The values of Y2, Y3, Y4 and Y5 can be calculated as follows:

Y2 : y′(t1) = f(t1, Y1) =⇒ y′(0.4) = f(0.4, 2.4) = 6 − 2(2.4) = 1.2

=⇒ Y2 = Y1 + hy′(t1) = 2.4 + (0.4)(1.2) = 2.88

Y3 : y′(t2) = f(t2, Y2) =⇒ y′(0.8) = f(0.8, 2.88) = 6 − 2(2.88) = 0.24

=⇒ Y3 = Y2 + hy′(t2) = 2.88 + (0.4)(0.24) = 2.976

Y4 : y′(t3) = f(t3, Y3) =⇒ y′(1.2) = f(1.2, 2.976) = 6 − 2(2.976) = 0.048

=⇒ Y4 = Y3 + hy′(t3) = 2.976 + (0.4)(0.048) = 2.9952

Y5 : y′(t4) = f(t4, Y4) =⇒ y′(1.6) = f(1.6, 2.9952) = 6 − 2(2.9952) = 0.0096

=⇒ Y5 = Y4 + hy′(t4) = 2.9952 + (0.4)(0.0096) = 2.99904

5. The solution to the IVP can now be approximated by the function that passes through
the points

(t0, Y0), (t1, Y1), . . . (tN , YN ).

Solution to the IVP

The approximate solution to the IVP

dy

dt
= 6 − 2y with y(0) = 0, t ∈ [0, 2]

is the function that passes through the points:

(0, 0), (0.4, 2.4), (0.8, 2.88), (1.2, 2.976), (1.6, 2.9952), (2, 2.99904).

This is a good approximation since the exact locations, as per the exact solution are,
(to 4 decimal places):

(0, 0), (0.4, 1.6520), (0.8, 2.3943), (1.2, 2.7278), (1.6, 2.8777), (2, 2.9451)

which is not bad for such a coarse interval breakdown.

The Euler method needs N steps to complete and every step n ∈ {1, 2, . . . , N} requires
finding y′(tn−1) = f(tn−1, yn−1) and Yn = Yn−1 + hy′(tn−1). Of course, the larger N is, the
smaller h becomes, meaning that more steps will be required but the solution will be closer
to the exact solution
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Notice that the terms on the right hand side of Equation 3.1 are all known and for this
reason, the Euler method is known as an Explicit Method.

3.2 Accuracy

Consider the Taylor series expansion for the function y at the point t1 = t0 + h

y(t1) = y(t0 + h) = y(t0) + hy′(t0) + h2

2! y′′(t0) + O
(
h3
)

.

Using Taylor’s Theorem2, this can be written as

y(t1) = y(t0 + h) = y(t0) + hy′(t0) + h2

2! y′′(τ1)

for some point τ1 between t0 and t1. The Euler method determines the approximation Y1 to
the function y at the point t1, particularly,

Y1 = y(t0) + hy′(t0) ≈ y(t1).

The Local Truncation Error at the first step, denoted e1, is defined as the absolute
difference between the exact and approximated values at the first step, and this is given by

e1 = |y(t1) − Y1| = h2

2!
∣∣y′′(τ1)

∣∣ .
This can be done for all the locations to give a list of local truncation errors e1, e2, e3, . . . , eN .
Note that technically, these errors are hypothetical since the exact solution y, and thus y(tn),
are not known but these are put as placeholders to establish the full accuracy of the method.
In this case, the local truncation error e is said to be of second order since e = O

(
h2).

As the iteration progresses, the errors will accumulate to result in a Global Integration
Error denoted E. In this case, the global integration error is

E = |y(tf ) − YN |.

The global integration error has to be at most the accumulation of all the local truncation
errors, namely

E = |y(tf ) − YN | ≤
N∑

n=1
en︸ ︷︷ ︸

sum of all
local truncation

errors

=
N∑

n=1

h2

2!
∣∣y′′(τn)

∣∣ = h2
N∑

n=1

1
2
∣∣y′′(τn)

∣∣.

2Taylor’s Theorem states that for a function f that is at least N + 1 times differentiable in the open
interval (x, x0) (or (x0, x)), then

f(x) = f(x0) + f ′(x0)(x − x0) + 1
2!f

′′(x0)(x − x0)2 + 1
3!f

′′′(x0)(x − x0)

+ · · · + 1
N !f

(N)(x0)(x − x0)N + 1
(N + 1)!f

(N+1)(ξ)(x − x0)N+1

for some point ξ between x and x0.
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=⇒ E ≤ h2
N∑

n=1

1
2
∣∣y′′(τn)

∣∣ (3.2)

A bound for the sum needs to be found in order bound the global integration error. To this
end, consider the set of the second derivatives in the sum above, i.e.{1

2
∣∣y′′(τ1)

∣∣ , 1
2
∣∣y′′(τ2)

∣∣ , . . . ,
1
2
∣∣y′′(τn)

∣∣} .

Since all these terms take a finite value, then at least one of these terms must be larger than
all the rest, this is denoted M and can be written as

M = max
{1

2
∣∣y′′(τ1)

∣∣ , 1
2
∣∣y′′(τ2)

∣∣ , . . . ,
1
2
∣∣y′′(τn)

∣∣} .

This can also be expressed differently as

M = max
τ∈[t0,tf ]

{1
2
∣∣y′′(τ)

∣∣} .

Therefore, since
1
2
∣∣y′′(τn)

∣∣ ≤ M for all n = 1, 2, . . . , N

then
N∑

n=1

1
2
∣∣y′′(τn)

∣∣ ≤
N∑

n=1
M = NM.

Thus, returning back to the expression for E in Equation 3.2

E ≤ h2
N∑

n=1

1
2
∣∣y′′(τn)

∣∣ ≤ NMh2 = Mh · (Nh) = Mh(tf − t0) = O (h) .

Hence, the global integration error E = O (h), this means that the Euler method is a First
Order Method. This means that both h and the global integration error behave linearly to
one another, so if h is halved, then the global integration error is halved as well.

In conclusion, the local truncation error of the Euler method is e = O
(
h2) while the global

integration error E = O (h) when h is small.

Different Stepsizes

Returning to the IVP

dy

dt
= 6 − 2y with y(0) = 0, t ∈ [0, 2].

The Euler method can be repeated for different values of h and these can be seen in
the figure below.
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The table below shows the global integration error for the different values of h:

h E

0.4 0.05399
0.2 0.03681
0.1 0.02036
0.05 0.01060

When the value of h is halved, the global integration error is approximately halved as
well.

3.3 Set of IVPs

So far, the Euler Method has been used to solve a single IVP, however this can be extended
to solving a set of linear IVPs.
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Consider the set of K linear IVPs defined on the interval [t0, tf ]:

dy1
dt

= a11y1 + a12y2 + · · · + a1KyK + b1, y1(t0) = ỹ1

dy2
dt

= a21y1 + a22y2 + · · · + a2KyK + b2, y2(t0) = ỹ2

...
dyK

dt
= aK1y1 + aK2y2 + · · · + aKKyK + bK , yK(t0) = ỹK

where, for i, j = 1, 2, . . . , K, the functions yi = yi(t) are unknown, aij are known constant
coefficients and bi are all known (these can generally depend on t).

This set of initial value problems need to be written in matrix form as

dy

dt
= Ay + b with y(t0) = y0, t ∈ [t0, tf ]

where y(t) =


y1(t)
y2(t)

...
yK(t)

 , A =


a11 a12 . . . a1K

a21 a22 . . . a2K
...

... . . . ...
aK1 aK2 . . . aKK

 ,

b =


b1
b2
...

bK

 , y0 =


ỹ1
ỹ2
...

ỹK

 .

In this case, y(t) is the unknown solution vector, A is a matrix of constants, y0 is the vector
of initial values and b is a vector of known terms (possibly depending on t) and is referred
to as the Inhomogeneity or Forcing Term.

The Euler iteration would be performed in a similar way as before. First, the interval [t0, tf ]
needs to be discretised into N equally spaced subintervals, each of width h to give the set
of discrete times (t0, t1, . . . , tN ) where tn = t0 + nh for n = 0, 1, . . . , N . Let Y n be the
approximation to the function vector y at the time t = tn, then

Y n+1 = Y n + hy′(tn) where y′(tn) = AYn + bn for n = 0, 1, 2, . . . , N − 1

subject to the initial values Y 0 = y0. (Note that if the vector b depends on t, then
bn = b(tn).)
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Sets of IVPs

Consider the two coupled IVPs on the interval [0, 1]:

dy

dt
= y + 2z, y(0) = 1

dz

dt
= 3

2y − z, z(0) = 0

Before attempting to solve this set of IVPs, it needs to be written in matrix form as

dy

dt
= Ay + b with y(0) = y0.

In this case,

y(t) =
(

y(t)
z(t)

)
, A =

(
1 2
3
2 −1

)
, b =

(
0
0

)
, y0 =

(
1
0

)
.

Let N = 5, so
h = tf − t0

N
= 1 − 0

5 = 0.2.

The Euler iteration will be

Y n+1 = Y n + hy′(tn) where y′(tn) = AY n + bn for n = 0, 1, 2, 3, 4.

This can be written as

Y n+1 = Y n + h [AY n + bn] for n = 0, 1, 2, 3, 4

keeping in mind that tn = hn = 0.2n the vector bn = b(tn) = 0 and Y 0 = y0:

Y 1 = Y 0 + 0.2 [AY 0 + b0] =
(

1
0

)
+ 0.2

[(
1 2
3
2 −1

)(
1
0

)
+
(

0
0

)]

=
(

1.2
0.3

)

Y 2 = Y 1 + 0.2 [AY 1 + b1] =
(

1.2
0.3

)
+ 0.2

[(
1 2
3
2 −1

)(
1.2
0.3

)
+
(

0
0

)]

=
(

1.56
0.6

)

Y 3 = Y 2 + 0.2 [AY 2 + b2] =
(

1.56
0.6

)
+ 0.2

[(
1 2
3
2 −1

)(
1.56
0.6

)
+
(

0
0

)]

=
(

2.112
0.948

)
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Y 4 = Y 3 + 0.2 [AY 3 + b3] =
(

2.112
0.948

)
+ 0.2

[(
1 2
3
2 −1

)(
2.112
0.948

)
+
(

0
0

)]

=
(

2.9136
1.3920

)

Y 5 = Y 4 + 0.2 [AY 4 + b4] =
(

2.9136
1.3920

)
+ 0.2

[(
1 2
3
2 −1

)(
2.9136
1.3920

)
+
(

0
0

)]

=
(

4.0531
1.9877

)

therefore y(1) = 4.0531, z(1) = 1.9877.

3.4 Higher Order IVPs

The previous sections solved one first order IVP and a set of first order IVPs. What happens
if a higher order IVP is to be solved? Or a set of higher order IVPs? The difference will be
minimal, subject to a few manipulations first.

Consider the Kth order linear IVP on the interval [t0, tf ]

dKy

dtK
+ aK−1

dK−1y

dtK−1 + · · · + a2
d2y

dt2 + a1
dy

dt
+ a0y = f(t) (3.3)

where ak ∈ R and f is a known function. This IVP is to be solved subject to the initial
conditions

y(t0) = η0,
dy

dt
(t0) = η1 . . .

dK−1y

dtK−1 (t0) = ηK−1.

58



This Kth order IVP can be written as a set of K first order IVPs. Indeed, let the functions
yk be given by

y1(t) = dy

dt

y2(t) = y′
1(t) = d2y

dt2

y3(t) = y′
2(t) = d3y

dt3

...

yK−3(t) = y′
K−4(t) = dK−3y

dtK−3

yK−2(t) = y′
K−3(t) = dK−2y

dtK−2

yK−1(t) = y′
K−2(t) = dK−1y

dtK−1

Notice that

dyK−1
dt

= dKy

dtK
= −aK−1

dK−1y

dtK−1 − · · · − a2
d2y

dt2 − a1
dy

dt
− a0y + f(t)

= −aK−1yK−1 − · · · − a2y2 − a1y1 − a0y + f(t)

Let y be the vector of the unknown functions y, y1, y2, . . . , yK−1. This means that the IVP
in Equation 3.3 can be written in matrix form y′ = Ay + b as follows:

dy

dt
= d

dt



y
y1
y2
...

yK−3
yK−2
yK−1


=



y′

y′
1

y′
2
...

y′
K−3

y′
K−2

y′
K−1


=



y1
y2
y3
...

yK−2
yK−1
dKy
dtK



=



y1
y2
y3
...

yK−2
yK−1

−aK−1yK−1 − · · · − a2y2 − a1y1 − a0y + f(t)


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=



0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
0 0 0 . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . 0 1 0
0 0 0 . . . 0 0 1

−a0 −a1 −a2 . . . −aK−3 −aK−2 −aK−1


︸ ︷︷ ︸

A



y
y1
y2
...

yK−3
yK−2
yK−1


︸ ︷︷ ︸

y

+



0
0
0
...
0
0

f(t)


︸ ︷︷ ︸

b

= Ay + b.

The initial condition vector will be

y0 =



y(0)
y1(0)
y2(0)

...
yK−3(0)
yK−2(0)
yK−1(0)


=



y(0)
dy
dt (0)

d2y
dt2 (0)

...
dK−3y
dtK−3 (0)
dK−2y
dtK−2 (0)
dK−1y
dtK−1 (0)


=



η0
η1
η2
...

ηK−3
ηK−2
ηK−1


.

The matrix A is called the Companion Matrix and is a matrix with 1 on the super
diagonal and the last row is the minus of the coefficients in the higher order IVP, and zeros
otherwise. Now that the Kth order IVP has been converted into a set of K linear IVPs,
it can be solved just as in Section 3.3. Note that any linear Kth order IVP can always be
converted into a set of K first order IVPs but the converse is not always possible.

Higher Order IVPs

Consider the following higher order IVP

d4y

dt4 − 8d3y

dt3 + 7d2y

dt2 − dy

dt
+ 2y = cos(t) for t ∈ R≥0

with y(0) = 4,
dy

dt
(0) = 1,

d2y

dt2 (0) = 3,
d3y

dt3 (0) = 0.

Let u = dy
dt , v = u′ = d2y

dt2 and w = v′ = d3y
dt3 . The derivatives of u, v and w are:

u′ = v

v′ = w

w′ = d4y

dt4 = 8d3y

dt3 − 7d2y

dt2 + dy

dt
− 2y + cos(t) = 8w − 7v + u + 2y + cos(t)

Define the vector y = (y, u, v, w)T

dy

dt
= d

dt


y
u
v
w

 =


u
v
w

cos(t) + 8w − 7v + u − 2y


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=


0 1 0 0
0 0 1 0
0 0 0 1

−2 1 −7 8


︸ ︷︷ ︸

A


y
u
v
w


︸ ︷︷ ︸

y

+


0
0
0

cos(t)


︸ ︷︷ ︸

b(t)

= Ay + b(t).

The initial condition vector will be

y0 =


y(0)
u(0)
v(0)
w(0)

 =


y(0)
dy
dt (0)

d2y
dt2 (0)
d3y
dt3 (0)

 =


4
1
3
0

 .

Now the IVP can be solved using the Euler method as before but only the first function
is the most relevant, all others have been used as placeholders.

3.4.1 Sets of Higher Order IVPs

The method above can be extended into a set of higher order IVPs.

Set of Higher Order IVPs

Consider the following coupled system of higher order IVPs

y′′ + 6y′ + y = sin(t), z′′′ − 8z′′ = 5y − 2y′ + e2t

with y(0) = 1,
dy

dt
(0) = 2, z(0) = 4,

dz

dt
(0) = 1,

d2z

dt2 (0) = 2

In the case of a coupled system, the vector function y should consist of all the unknown
functions and their derivatives up to but not including their highest order derivative.
In other words,

dy

dt
= d

dt


y
y′

z
z′

z′′

 =


y′

y′′

z′

z′′

z′′′

 =


y′

−y − 6y′ + sin(t)
z′

z′′

5y − 2y′ + 8z′′ + e2t



=


0 1 0 0 0

−1 −6 0 0 0
0 0 0 1 0
0 0 0 0 1
5 −2 0 0 8


︸ ︷︷ ︸

A


y
y′

z
z′

z′′


︸ ︷︷ ︸

y

+


0

sin(t)
0
0

e2t


︸ ︷︷ ︸

b

.
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The vector of initial values would be

y(0) =


y(0)
y′(0)
z(0)
z′(0)
z′′(0)

 =


1
2
4
1
2

 .

Now this can be solved just as before with the most relevant terms being the first and
third (since those are y and z).

3.4.2 Stability of a Set of ODEs

Consider the set of K homogeneous ODEs

dy

dt
= Ay.

Let λ1, λ2, . . . , λK be the eigenvalues of the matrix A and v1, v2, . . . , vK be their distinct cor-
responding eigenvectors (distinct for the sake argument). Analytically, the set of differential
equations y′ = Ay has the general solution

y(t) = C1v1eλ1t + C2v2eλ2t + · · · + CKvKeλKt

where C1, C2, . . . , Cn are constants that can be determined from the initial values.

Definition 3.1. The initial value problem

dy

dt
= Ay + b with y(0) = y0

is said to be Asymptotically Stable if y → 0 as t → ∞, in other words, all functions in y
tend to 0 as t tends to infinity.

This definition will be important when looking at the long term behaviour of solutions from
the eigenvalues to then determine stepsize bounds.

Theorem 3.1. The initial value problem

dy

dt
= Ay + b

is asymptotically stable if all the eigenvalues of the matrix A have negative real parts. If A has
at least one eigenvalue with a non-negative real part, then the system is not asymptomatically
stable.

Notice that the stability of a set of ODEs does not depend on the forcing term b nor does it
depend on the initial condition y(0).
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3.5 Limitations of the Euler Method

In some cases, if the stepsize h is taken to be too large, then the Euler method can give
misleading results.

For example, consider the initial value problem:

dy

dt
= −3y with y(0) = 1, t ∈ [0, 5].

Choosing a large stepsize h can render the method ineffective. Case in point, when h = 1,
the approximate solution oscillates and grows quite rapidly, however choosing a smaller
value of h, say h = 0.1, gives a very good approximation to the exact solution. These are
illustrated in the figures below.
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Another situation when the Euler method fails is when the IVP does not have a unique
solution. For example, consider the IVP:

dy

dt
= y

1
3 with y(0) = 0, t ∈ [0, 2].

This has the exact solution y(t) =
(

2
3 t
) 3

2 however this is not unique since y(t) = 0 is also a
perfectly valid solution. The Euler method in this case will not be able to capture the first
non-trivial solution but will only capture the second trivial solution giving a straight line at
03.

3In general, according to the Picard-Lindelöf Theorem, an IVP of the form y′ = f(t, y) with y(0) = y0
has a unique solution if the function f is continuous in t and uniformly Lipschitz continuous in y. In
this example shown above, the function f(t, y) = y

1
3 does not satisfy the aforementioned conditions and

therefore the initial value problem does not have a unique solution. These concepts of continuity are far
beyond the realms of this course and no further mention of them will be made.
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3.5.1 Bounds on the Stepsize

Consider the initial value problem
dy

dt
= Ay + b with y(0) = y0.

If A is asymptotically stable, then a maximum bound h0 for the stepsize can be found to
ensure that the iterations converge. (This means that asymptotic stability of A is a necessary
and sufficient condition for the existence of an upper bound h0 such that if h < h0, then the
Euler iteration converges.)

If the stepsize is too large, then the method may not converge but on the other hand if it is
too low, then the iteration will take a considerable amount of time to perform. Therefore an
“optimal” stepsize is needed to obtain sufficiently accurate solutions.

Different Stepsizes

Consider the following initial value problem
dy

dt
= 100(sin(t) − y) with y(0) = 0.

The figure below shows the Euler method being used to solve the initial value problem
in the interval [0, 1] for the stepsizes h = 0.03, 0.02, 0.01, 0.001.

When h = 0.03, the Euler method does not converge. At h = 0.02, the Euler method
converges but there clearly is a distinct artefact in the solution that shows a slight
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oscillation. For h less than 0.02, this oscillation is no longer observed and the Euler
method is convergent.

Consider the IVP
dy

dt
= Ay + b with y(0) = y0.

Let λ1, λ2, . . . , λK be the eigenvalues of A. Suppose that the matrix A is asymptotically
stable (i.e. ℜ(λk) < 0 for all k = 1, 2, . . . , K). In order for the Euler iterations to converge,
the stepsize h needs be less than the threshold stepsize h0 where

h0 = 2 min
k=1,2,...,K

{ |ℜ(λk)|
|λk|2

}
(3.4)

or h0 = 2 min
k=1,2,...,K

{ 1
|λk|

}
if all the eigenvalues are real.

In other words, if the initial value problem is asymptotically stable, then the Euler method is
stable if an only if h < h0. This means that the convergence of the Euler is characterised by the
eigenvalue that is furthest away from the origin, also called the Dominant Eigenvalue.

Euler Upper Bound

Consider the system of differential equations y′ = Ay with y(0) = y0 where

A =

−1 0 3
0 −10 0
18 −1 −100

 .

The eigenvalues of the matrix A are −0.4575, −100.5425, −10. Since all the eigenvalues
are negative, this system is asymptotically stable. Since all the eigenvalues are real,
then the threshold stepsize for a convergent Euler method is

h0 = 2 min
{ 1

|λk|

}
= 2 min

{ 1
| − 0.4575|

,
1

| − 100.5425|
,

1
| − 10|

}
= 2 min {2.0858, 0.0099, 0.1} = 2 × 0.0099 = 0.0199.

Solutions for different stepsizes are as shown below with the initial values y1(0) = 1
(blue), y2(0) = 2 (red) and y3(0) = 1 (magenta). It can be seen that if h ≥ h0, then at
least one solution will diverge but if h < h0, then all solutions converge to 0.
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3.5.2 Estimated Bound

One drawback in attempting to determine the value of h0 using Equation 3.4 is that all the
eigenvalues of the matrix A have to be determined before h0 can be found. This can be
computationally expensive for especially for very large matrices.

An estimate for the threshold stepsize h0 can be found with far fewer computations using
the sup-norm ∥·∥∞ (also known as the infinity norm or the Chebyshev norm). Recall that
for a vector x = (x1, x2, . . . , xn), the sup-norm of x is the maximum absolute value in the
vector, i.e.

∥x∥∞ = max |xn|.

Whereas for a matrix A, the sup-norm of A is the maximal absolute row sum. In other
words, for a given matrix A, take the absolute value of all the terms, take the sum of each
row and the sup-norm will be the largest out of these.
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Sup-Norm of Vectors & Matrices

Consider the vector x and matrix M given by

x =


1

−4
−9
7

 , M =


5 2 4 1

−9 5 3 −7
6 0 −1 4
9 5 −2 4

 .

The sup-norm of x is simply the largest absolute element which is 9, therefore ∥x∥∞ = 9.
As for M , to find the sup-norm, first take the absolute value of all the terms, then add
the rows. The sup-norm is the maximum element that results:

5 2 4 1
−9 5 3 −7
6 0 −1 4
9 5 −2 4

 −→
|•|


5 2 4 1
9 5 3 7
6 0 1 4
9 5 2 4


→ 12
→ 24
→ 11
→ 20

maximum is 24.

Therefore ∥M∥∞ = 24.
Both of these can be found in MATLAB using norm(x,Inf) and norm(M,Inf).

Theorem 3.2. Consider the set of linear IVPs

dy

dt
= Ay + b with y(0) = y0

where A is asymptotically stable. Then the Euler method is numerically convergent for any
choice of h which satisfies

∥I + hA∥∞ ≤ 1.

Computing all the eigenvalues of the matrix A can be computationally expensive but
obtaining the sup-norm is takes far fewer computations, however as a drawback, the resulting
value of h0 would be an estimate.

Stepsize Bound Estimate 1 (Tridiagonal)

Consider the differential equation y′ = Ay where

A =


−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2

 .

To find the upper bound for the stepsize for which the Euler method converges, first
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evaluate I + hA:

I + hA =


1 − 2h h 0 0 0

h 1 − 2h h 0 0
0 h 1 − 2h h 0
0 0 h 1 − 2h h
0 0 0 h 1 − 2h


To find the sup-norm, take the absolute value of all the terms and find the maximal
row sum:

−→
|•|


|1 − 2h| h 0 0 0

h |1 − 2h| h 0 0
0 h |1 − 2h| h 0
0 0 h |1 − 2h| h
0 0 0 h |1 − 2h|


→
→
→
→
→

|1 − 2h| + h
|1 − 2h| + 2h
|1 − 2h| + 2h
|1 − 2h| + 2h
|1 − 2h| + h.

Let a = |1 − 2h| + 2h and b = |1 − 2h| + h. Since h > 0, then a > b, therefore

∥I + hA∥∞ = |1 − 2h| + 2h.

In order to satisfy the inequality ∥I + hA∥∞ ≤ 1, consider the cases when 1 − 2h ≥ 0
and 1 − 2h < 0 separately:

1. If 1 − 2h ≥ 0, then h ≤ 1
2 :

∥I + hA∥∞ = |1 − 2h| + 2h = 1 − 2h + 2h = 1.

Therefore ∥I + hA∥∞ = 1 ≤ 1 is indeed true.

2. If 1 − 2h < 0, then h > 1
2 :

∥I + hA∥∞ = |1 − 2h| + 2h = 2h − 1 + 2h = 4h − 1.

If ∥I + hA∥∞ ≤ 1, then 4h − 1 ≤ 1. Simplifying this would result in h ≤ 1
2 which

contradicts with the assumption that h > 1
2 .

From these two cases, it is clear that h ≯ 1
2 (since that case leads to a contradiction),

therefore h ≤ 1
2 . Thus for a convergent Euler method, the stepsize h must be less than

the threshold stepsize h0 = 1
2 .

This can be compared to the exact bound; the eigenvalues of the matrix A are

−3.7321, −3, −2, −1, −0.2679.

Therefore
h0 = 2 min

{ 1
|λk|

}
= 0.5359

which is a larger bound compared to the one obtained using the sup-norm method.
Observe that if the size of the matrix was larger but followed the same theme (i.e. 2 on
the main diagonal and −1 and the sub and super diagonals), then no further calculations
are required for the sup-norm method, the outcome will still be h0 = 1

2 . As for the
eigenvalue method, all the eigenvalues have to be recalculated again.
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Stepsize Bound Estimate 2 (Bidiagonal)

Consider the differential equation y′ = Ay where

A =


−1 0 0 0 0
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

 .

To find the upper bound for the stepsize for which the Euler method converges, first
evaluate I + hA:

I + hA =


1 − h 0 0 0 0

h 1 − h 0 0 0
0 h 1 − h 0 0
0 0 h 1 − h 0
0 0 0 h 1 − h


To find the sup-norm, take the absolute value of all the terms and find the maximal
row sum:

−→
|•|


|1 − h| 0 0 0 0

h |1 − h| 0 0 0
0 h |1 − h| 0 0
0 0 h |1 − h| 0
0 0 0 h |1 − h|


→
→
→
→
→

|1 − h|
|1 − h| + h
|1 − h| + h
|1 − h| + h
|1 − h| + h.

Let a = |1 − h| + h and b = |1 − h|. Clearly a > b since h > 0, therefore

∥I + hA∥∞ = |1 − h| + h.

In order to satisfy the inequality, ∥I + hA∥∞ ≤ 1, consider the cases when 1 − h ≥ 0
and 1 − h < 0:

1. If 1 − h ≥ 0, then h ≤ 1:

∥I + hA∥∞ = |1 − h| + h = 1 − h + h = 1,

therefore ∥I + hA∥∞ ≤ 1 is indeed true.

2. If 1 − h < 0, then h > 1:

∥I + hA∥∞ = |1 − h| + h = h − 1 + h = 2h − 1.

If ∥I + hA∥∞ ≤ 1, then 2h − 1 ≤ 1, meaning that h ≤ 1 which contradicts with
the assumption that h > 1.

This means that for a convergent Euler method, the stepsize h must be less than h0 = 1.
This can be compared to the exact upper bound. The eigenvalues of the matrix A are
just −1 five times, therefore

h0 = 2 min
{ 1

|λk|

}
= 2,

this shows that the sup-norm method gives a tighter than using eigenvalues.
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The sup-norm method works well when the matrix in question has a diagonal, bidiagonal
or tridiagonal structure where the diagonal terms are the same. In general, the sup-norm
method might not be suitable for any matrix.

Stepsize Bound Estimate 3 (General)

Consider the differential equation y′ = Ay where

A =
(

−1 −2
4 −3

)
.

Find the sup-norm:

I + hA =
(

1 − h −2h
4h 1 − 3h

)
−→
|•|

(
|1 − h| 2h

4h |1 − 3h|

)
→
→

|1 − h| + 2h
|1 − 3h| + 4h

Let a = |1 − h| + 2h and b = |1 − 3h| + 4h. Here, it is not obvious which is larger, a or
b. Therefore, consider the three cases 0 < h < 1

3 , 1
3 < h < 1 and h > 1.

1. 0 < h < 1
3 : In this case, 1−h > 0 and 1−3h > 0, therefore a = |1−h|+2h = 1+h

and b = |1 − 3h| + 4h = 1 + h, hence ∥I + hA∥∞ = 1 + h. In order to satisfy
∥I + hA∥∞ ≤ 1, this would mean that h < 0 which contradicts with the fact that
h > 0. Therefore h /∈

(
0, 1

3

)
.

2. 1
3 < h < 1: In this case, 1−h > 0 and 1−3h < 0, therefore a = |1−h|+2h = 1+h
and b = |1 − 3h| + 4h = 7h − 1. This should now be split into two subcases to
check which one will lead to a contradiction:

i. Suppose that a > b, then

1 + h > 7h − 1 =⇒ h <
1
3

which contradicts with h > 1
3

ii. Suppose that a < b, then

1 + h < 7h − 1 =⇒ h >
1
3

not leading to any contradiction. therefore since b > a, then ∥I + hA∥∞ =
b = 7h − 1.

In order to satisfy ∥I + hA∥∞ ≤ 1 then h < 2
7 which contradicts with the fact that

1
3 < h. Therefore h /∈

(
1
3 , 1
)
.

3. h > 1: In this case, 1 − h < 0 and 1 − 3h < 0, therefore a = |1 − h| + 2h = 3h − 1
and b = |1−3h|+4h = 7h−1. Clearly b > a since h > 0, so ∥I + hA∥∞ = 7h−1.
In order to satisfy ∥I + hA∥∞ ≤ 1 then h < 2

7 which contradicts with the fact
that h > 1. This means that h ≯ 1.
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So in every possible case, there will be a contradiction when using the sup-norm method.
This does not mean that the system is asymptotically unstable, in fact, the eigenvalues
of the matrix A are −2 ± 2.65i meaning that the system is asymptotically stable and
the threshold stepsize is in fact h0 = 0.0992.
This example shows that the sup-norm method cannot be used for any matrix system,
but if a matrix has a banded structure, then it would be appropriate and would require
fewer computations compared to finding all the eigenvalues.

3.6 MATLAB Code

The following MATLAB code performs the Euler iteration for the following set of IVPs on
the interval [0, 1]:

du

dt
= 2u + v + w + cos(t), u(0) = 0

dv

dt
= sin(u) + e−v+w, v(0) = 1

dw

dt
= uv − w, w(0) = 0.

ñ Linearity

Note that this code is built for a general case that does not have to be linear even
though the entire derivation process was built on the fact that the system is linear.

1 function IVP_Euler
2

3 %% Solve a set of first order IVPs using Euler
4

5 % This code solves a set of IVP when written explicitly
6 % on the interval [t0,tf] subject to the initial conditions
7 % y(0)=y0. The output will be the graph of the solution(s)
8 % and the vector value at the final point tf. Note that the
9 % IVPs do not need to be linear or homogeneous.

10

11 %% Lines to change:
12

13 % Line 28 : t0 - Start time
14 % Line 31 : tf - End time
15 % Line 34 : N - Number of subdivisions
16 % Line 37 : y0 - Vector of initial values
17 % Line 106+ : Which functions to plot, remembering to assign
18 % a colour, texture and legend label
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19 % Line 120+ : Set of differential equations written
20 % explicitly. These can also be non-linear and
21 % include forcing terms. These equations can
22 % also be written in matrix form if the
23 % equations are linear.
24

25 %% Set up input values
26

27 % Start time
28 t0=0;
29

30 % End time
31 tf=1;
32

33 % Number of subdivisions
34 N=5000;
35

36 % Column vector initial values y0=y(t0)
37 y0=[0;1;0];
38

39 %% Set up IVP solver parameters
40

41 % T = Vector of times t0,t1,...,tN.
42 % This is generated using linspace which splits the
43 % interval [t0,tf] into N+1 points (or N subintervals)
44 T=linspace(t0,tf,N+1);
45

46 % Stepsize
47 h=(tf-t0)/N;
48

49 % Number of differential equations
50 K=length(y0);
51

52 %% Perform the Euler iteration
53

54 % Y = Solution matrix
55 % The matrix Y will contain K rows and N+1 columns. Every
56 % row corresponds to a different IVP and every column
57 % corresponds to a different time. So the matrix Y will
58 % take the following form:
59 % y_1(t_0) y_1(t_1) y_1(t_2) ... y_1(t_N)
60 % y_2(t_0) y_2(t_1) y_2(t_2) ... y_2(t_N)
61 % ...
62 % y_K(t_0) y_K(t_1) y_K(t_2) ... y_K(t_N)
63 Y=zeros(K,N+1);
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64

65 % The first column of the vector Y is the initial vector y0
66 Y(:,1)=y0;
67

68 % Set the current time t to be the starting time t0 and the
69 % current value of the vector y to be the strtaing values y0
70 t=t0;
71 y=y0;
72

73 for n=2:1:N+1
74

75 dydt=DYDT(t,y,K); % Find gradient at the current step
76

77 y=y+h*dydt; % Find y at the current step
78

79 t=T(n); % Update the new time
80

81 Y(:,n)=y; % Replace row n in Y with y
82

83 end
84

85 %% Setting plot parameters
86

87 % Clear figure
88 clf
89

90 % Hold so more than one line can be drawn
91 hold on
92

93 % Turn on grid
94 grid on
95

96 % Setting font size and style
97 set(gca,'FontSize',20,'FontName','Times')
98 set(legend,'Interpreter','Latex')
99

100 % Label the axes
101 xlabel('$t$','Interpreter','Latex')
102 ylabel('$\mathbf{y}(t)$','Interpreter','Latex')
103

104 % Plot the desried solutions. If all the solutions are
105 % needed, then consider using a for loop in that case
106 plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
107 plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_2(t)$')
108 plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_3(t)$')
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109

110 % Display the values of the vector y at tf
111 disp(strcat('The vector y at t=',num2str(tf),' is:'))
112 disp(Y(:,end))
113

114 end
115

116 function [dydt]=DYDT(t,y,K)
117

118 % When the equation are written in explicit form
119

120 dydt=zeros(K,1);
121

122 dydt(1)=2*y(1)+y(2)+y(3)+cos(t);
123

124 dydt(2)=sin(y(1))+exp(-y(2)+y(3));
125

126 dydt(3)=y(1)*y(2)-y(3);
127

128 % If the set of equations is linear, then these can be
129 % written in matrix form as dydt=A*y+b(t). For example, if
130 % the set of equations is:
131 % dudt = 7u - 2v + w + exp(t)
132 % dvdt = 2u + 3v - 9w + cos(t)
133 % dwdt = 2v + 5w + 2
134 % Then:
135 % A=[7,-2,1;2,3,-9;0,2,5];
136 % b=@(t) [exp(t);cos(t);2];
137 % dydt=A*y+b(t)
138

139 end
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4 The Modified Euler Method

The Euler method can be effective when it comes to solving differential equations numerically
but on occasions, the global error of O (h) is rather poor. The Euler method can modified
and improved to give Modified or Improved Euler Method (also known as the Heun
Method, named after Karl Heun).

4.1 Steps of the Modified Euler Method

The Modified Euler Method utilises the Fundamental Theorem of Calculus which states
that for a differentiable function y defined on the interval [t0, t1] (where t1 = t0 + h for some
stepsize h),

y(t1) − y(t0) =
t1∫

t0

y′(t) dt.

In the interval [t0, t1], the derivative y′(t) may be approximated by the derivative at the
leftmost point y′(t0), this approximation forms the basis of the standard Euler method;

y(t1) − y(t0) =
t1∫

t0

y′(t) dt

=
t1∫

t0

y′(t0) dt

= hy′(t0)

=⇒ y(t1) = y(t0) + hy′(t0).

However, if y′(t) varies substantially then this approximation can lead to some poor pre-
dictions. This can be modified so rather than approximating y′(t) by y′(t0) only, it can be
approximated by taking an average between y′(t0) and y′(y1), namely

y′(t) ≈ 1
2
(
y′(t0) + y′(t1)

)
.
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Thus

y(t1) − y(t0) =
t1∫

t0

y′(t) dt

=
t1∫

t0

1
2
(
y′(t0) + y′(t1)

)
dt

= h

2
(
y′(t0) + y′(t1)

)
=⇒ y(t1) = y(t0) + h

2
(
y′(t0) + y′(t1)

)
.

Initially, one might suspect that the derivative y′(t1) can be found from the differential
equation itself, namely, y′(t1) = f(t1, y(t1)) but to do that, a Prediction-Correction
procedure needs to be employed where the Euler method can be used to predict a value of
y(t1) and this is then corrected afterwards. This is done as follows:

• Predictor: Ỹn+1 = Yn + hf(tn, Yn)

• Corrector: Yn+1 = Yn + h

2
[
f(tn, Yn) + f(tn+1, Ỹn+1)

]
.

Modified Euler Method

Consider the differential equation

dy

dt
= (1 − 2t)y2 with y(0) = 1, t ∈ [0, 2].

This differential equation is non-linear but has a known particular solution which is

y(t) = 1
t2 − t + 1

and this will be compared to the approximate solutions obtained from the standard
and Modified Euler methods.
The figure below shows how the standard and modified Euler methods compare to the
exact solution for the same stepsize h = 0.1. This suggests that the Modified Euler
method has improved accuracy compared to the Euler method for the same stepsize,
however as a consequence, the function f on the right hand side of the differential
equation has to be calculated twice for every step; once in the prediction stage and once
for the correction. However even with this in mind, doubling the number of calculations
to improve accuracy can also warrant for a coarser choice of the stepsize to allow for a
more efficient use of computational time.
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4.2 Accuracy of the Modified Euler Method

In order to asses the accuracy of the Modified Euler method, consider the Taylor series
expansion of y at the points t0 and t1 about t0.5 = t0 + 1

2h:

y(t1) = y

(
t0.5 + h

2

)
= y(t0.5) + h

2 y′(t0.5) +
(

h

2

)2 1
2!y

′′(t0.5) + O
(
h3
)

,

y(t0) = y

(
t0.5 − h

2

)
= y(t0.5) − h

2 y′(t0.5) +
(

h

2

)2 1
2!y

′′(t0.5) + O
(
h3
)

.

Subtracting y(t0) from y(t1) gives

y(t1) − y(t0) = hy′(t0.5) + O
(
h3
)

. (4.1)
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The Taylor series expansion can also be done for the derivative of y at the points t0 and t1
about t0.5 = t0 + 1

2h in a similar way as above, i.e.

y′(t1) = y′
(

t0.5 + h

2

)
= y′(t0.5) + h

2 y′′(t0.5) + O
(
h2
)

,

y′(t0) = y′
(

t0.5 − h

2

)
= y′(t0.5) − h

2 y′′(t0.5) + O
(
h2
)

.

Adding y′(t0) to y′(t1) gives

y′(t1) + y′(t0) = 2y′(t0.5) + O
(
h2
)

,

thus multiplying by h
2 and using equation Equation 4.1 yields

h

2
[
y′(t1) + y′(t0)

]
= y(t1) − y(t0) + O

(
h3
)

. (4.2)

The first step of the Modified Euler method is to predict the value of y′(t1) using the Euler
iteration;

Ỹ1 = y(t0) + hy′(t0)︸ ︷︷ ︸
≈y(t1)

+O
(
h2
)

.

Hence
y′(t1) = f(t1, y(t1)) ≈ f(t1, Ỹ1) + O

(
h2
)

.

All this information can now be used to obtain the improved update Y1 which is the corrected
form of Ỹ1. Thus from equation Equation 4.2,

y(t1)︸ ︷︷ ︸
≈Y1

= y(t0)︸ ︷︷ ︸
=Y0

+h

2 [ y′(t1)︸ ︷︷ ︸
=f(t1,Ỹ1)

+ y′(t0)︸ ︷︷ ︸
=f(t0,Y0)

] + O
(
h3
)

=⇒ Y1 = Y0 + h

2
[
f(t1, Ỹ1) + f(t0, Y0)

]
. (4.3)

Equations Equation 4.3 and Equation 4.2 can be used to find the local truncation error for
the Modified Euler method at the first time step which is

e = |y(t1) − Y1| =
∣∣∣∣y(t1) −

[
y(t0) + h

2
(
y′(t1) + y′(t0)

)]∣∣∣∣+ O
(
h3
)

= O
(
h3
)

.

Therefore the local truncation error e = O
(
h3) meaning that the Modified Euler method is

third order accurate which is an improvement over the Euler method.

The global integration error can be obtained just as before to show that the global integration
error of the Modified Euler method is E = O

(
h2) meaning that this is a second order method.

In particular, if the stepsize h is halved, the global integration error will be reduced by a
factor of four while the local truncation error will reduce by a factor of eight.
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4.3 MATLAB Code

The following MATLAB code performs the Modified Euler iteration for the following set of
IVPs on the interval [0, 1]:

du

dt
= 2u + v + w + cos(t), u(0) = 0

dv

dt
= sin(u) + e−v+w, v(0) = 1

dw

dt
= uv − w, w(0) = 0.

ñ Linearity

Note that this code is built for a general case that does not have to be linear even
though the entire derivation process was built on the fact that the system is linear.

1 function IVP_Mod_Euler
2

3 %% Solve a set of first order IVPs using Modified Euler
4

5 % This code solves a set of IVP when written explicitly
6 % on the interval [t0,tf] subject to the initial conditions
7 % y(0)=y0. The output will be the graph of the solution(s)
8 % and the vector value at the final point tf. Note that the
9 % IVPs do not need to be linear or homogeneous.

10

11 %% Lines to change:
12

13 % Line 28 : t0 - Start time
14 % Line 31 : tf - End time
15 % Line 34 : N - Number of subdivisions
16 % Line 37 : y0 - Vector of initial values
17 % Line 116+ : Which functions to plot, remembering to assign
18 % a colour, texture and legend label
19 % Line 130+ : Set of differential equations written
20 % explicitly. These can also be non-linear and
21 % include forcing terms. These equations can
22 % also be written in matrix form if the
23 % equations are linear.
24

25 %% Set up input values
26

27 % Start time
28 t0=0;
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29

30 % End time
31 tf=1;
32

33 % Number of subdivisions
34 N=5000;
35

36 % Column vector initial values y0=y(t0)
37 y0=[0;1;0];
38

39 %% Set up IVP solver parameters
40

41 % T = Vector of times t0,t1,...,tN.
42 % This is generated using linspace which splits the
43 % interval [t0,tf] into N+1 points (or N subintervals)
44 T=linspace(t0,tf,N+1);
45

46 % Stepsize
47 h=(tf-t0)/N;
48

49 % Number of differential equations
50 K=length(y0);
51

52 %% Perform the Modified Euler iteration
53

54 % Y = Solution matrix
55 % The matrix Y will contain K rows and N+1 columns. Every
56 % row corresponds to a different IVP and every column
57 % corresponds to a different time. So the matrix Y will
58 % take the following form:
59 % y_1(t_0) y_1(t_1) y_1(t_2) ... y_1(t_N)
60 % y_2(t_0) y_2(t_1) y_2(t_2) ... y_2(t_N)
61 % ...
62 % y_K(t_0) y_K(t_1) y_K(t_2) ... y_K(t_N)
63 Y=zeros(K,N+1);
64

65 % The first column of the vector Y is the initial vector y0
66 Y(:,1)=y0;
67

68 % Set the current time t to be the starting time t0 and the
69 % current value of the vector y to be the strtaing values y0
70 t=t0;
71 y=y0;
72

73 for n=2:1:N+1
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74

75 % Prediction Step:
76 % Use the Euler iteration to obtain an appromxation for
77 % the derivatives at the current time step
78

79 dydt=DYDT(t,y,K); % Find gradient at the current step
80 y_pred=y+h*dydt; % Predict y at current time step
81

82 % Corrector Step:
83 % Use the Modified Euler to correct y_pred
84

85 dydt_pred=DYDT(t,y_pred,K); % Predict the gradient
86 % from the predicted y
87 y=y+0.5*h*(dydt+dydt_pred); % Find y at the current step
88

89 t=T(n); % Update the new time
90

91 Y(:,n)=y; % Replace row n in Y with y
92

93 end
94

95 %% Setting plot parameters
96

97 % Clear figure
98 clf
99

100 % Hold so more than one line can be drawn
101 hold on
102

103 % Turn on grid
104 grid on
105

106 % Setting font size and style
107 set(gca,'FontSize',20,'FontName','Times')
108 set(legend,'Interpreter','Latex')
109

110 % Label the axes
111 xlabel('$t$','Interpreter','Latex')
112 ylabel('$\mathbf{y}(t)$','Interpreter','Latex')
113

114 % Plot the desried solutions. If all the solutions are
115 % needed, then consider using a for loop in that case
116 plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
117 plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_1(t)$')
118 plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_1(t)$')
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119

120 % Display the values of the vector y at tf
121 disp(strcat('The vector y at t=',num2str(tf),' is:'))
122 disp(Y(:,end))
123

124 end
125

126 function [dydt]=DYDT(t,y,K)
127

128 % When the equation are written in explicit form
129

130 dydt=zeros(K,1);
131

132 dydt(1)=2*y(1)+y(2)+y(3)+cos(t);
133

134 dydt(2)=sin(y(1))+exp(-y(2)+y(3));
135

136 dydt(3)=y(1)*y(2)-y(3);
137

138 % If the set of equations is linear, then these can be
139 % written in matrix form as dydt=A*y+b(t). For example, if
140 % the set of equations is:
141 % dudt = 7u - 2v + w + exp(t)
142 % dvdt = 2u + 3v - 9w + cos(t)
143 % dwdt = 2v + 5w + 2
144 % Then:
145 % A=[7,-2,1;2,3,-9;0,2,5];
146 % b=@(t) [exp(t);cos(t);2];
147 % dydt=A*y+b(t)
148

149 end
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5 Fourth Order Runge-Kutta Method

The Modified Euler method extended the Euler method to a two-stage procedure with a
global integration error of O

(
h2). This can be extended further to a Multi-Stage Method,

also called a Runge-Kutta Method with p stages and a global error integration error of
O (hp) for any arbitrarily large p (in this case, the Modified Euler method is known as a
second order Runge-Kutta method since it has two stages). For instance, the fourth order
Runge-Kutta method requires four calculations for every step and has a global integration
error of O

(
h4), this is formulated as follows:

K1 = f(tn, YN ),

K2 = f

(
tn + h

2 , Yn + h

2 K1

)
,

K3 = f

(
tn + h

2 , Yn + h

2 K2

)
,

K4 = f (tn+1, Yn + hK3)

Yn+1 = Yn + h

6 [K1 + 2K2 + 2K3 + K4] .

Runge-Kutta methods like this are quite versatile and are generally the most used methods
for their accuracy since the stepsize h does not need to be too small to achieve good results.
Even though every step requires four calculations, the value of h can be made larger in order
to reduce the cost but retain considerable accuracy.

Runge-Kutta Method

Consider the differential equation

dy

dt
= y(1 − 2t) where y(0) = 1, t ∈ [0, 3.2].

The exact solution to this differential equation is known to be

y(t) = et(1−t).
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The figure above shows the exact solution to the differential equation (solid line) with
the three different methods used to approximate the solution all at the same resolution
of h = 0.4. The stepsize h is quite coarse but this is merely for the purposes of
demonstration. The Euler method is the least accurate for this coarse grid, the Heun
method improves the accuracy while the fourth order Runge-Kutta method is the most
accurate out of the three even for the same stepsize.
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5.1 MATLAB Code

The following MATLAB code performs the fourth order Runge-Kutta iteration for the
following set of IVPs on the interval [0, 1]:

du

dt
= 2u + v + w + cos(t), u(0) = 0

dv

dt
= sin(u) + e−v+w, v(0) = 1

dw

dt
= uv − w, w(0) = 0.

ñ Linearity

Note that this code is built for a general case that does not have to be linear even
though the entire derivation process was built on the fact that the system is linear.

1 function IVP_RK4
2

3 %% Solve a set of first order IVPs using RK4
4

5 % This code solves a set of IVP when written explicitly
6 % on the interval [t0,tf] subject to the initial conditions
7 % y(0)=y0. The output will be the graph of the solution(s)
8 % and the vector value at the final point tf. Note that the
9 % IVPs do not need to be linear or homogeneous.

10

11 %% Lines to change:
12

13 % Line 28 : t0 - Start time
14 % Line 31 : tf - End time
15 % Line 34 : N - Number of subdivisions
16 % Line 37 : y0 - Vector of initial values
17 % Line 110+ : Which functions to plot, remembering to assign
18 % a colour, texture and legend label
19 % Line 124+ : Set of differential equations written
20 % explicitly. These can also be non-linear and
21 % include forcing terms. These equations can
22 % also be written in matrix form if the
23 % equations are linear.
24

25 %% Set up input values
26

27 % Start time
28 t0=0;

86



29

30 % End time
31 tf=1;
32

33 % Number of subdivisions
34 N=50;
35

36 % Column vector initial values y0=y(t0)
37 y0=[0;1;0];
38

39 %% Set up IVP solver parameters
40

41 % T = Vector of times t0,t1,...,tN.
42 % This is generated using linspace which splits the
43 % interval [t0,tf] into N+1 points (or N subintervals)
44 T=linspace(t0,tf,N+1);
45

46 % Stepsize
47 h=(tf-t0)/N;
48

49 % Number of differential equations
50 K=length(y0);
51

52 %% Perform the RK4 iteration
53

54 % Y = Solution matrix
55 % The matrix Y will contain K rows and N+1 columns. Every
56 % row corresponds to a different IVP and every column
57 % corresponds to a different time. So the matrix Y will
58 % take the following form:
59 % y_1(t_0) y_1(t_1) y_1(t_2) ... y_1(t_N)
60 % y_2(t_0) y_2(t_1) y_2(t_2) ... y_2(t_N)
61 % ...
62 % y_K(t_0) y_K(t_1) y_K(t_2) ... y_K(t_N)
63 Y=zeros(K,N+1);
64

65 % The first column of the vector Y is the initial vector y0
66 Y(:,1)=y0;
67

68 % Set the current time t to be the starting time t0 and the
69 % current value of the vector y to be the strtaing values y0
70 t=t0;
71 y=y0;
72

73 for n=2:1:N+1
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74

75 % Determine the coefficients of RK4
76

77 K1=DYDT(t,y,K);
78 K2=DYDT(t+h/2,y+h*K1/2,K);
79 K3=DYDT(t+h/2,y+h*K2/2,K);
80 K4=DYDT(t+h,y+h*K3,K);
81 y=y+(h/6)*(K1+2*K2+2*K3+K4);
82

83 t=T(n); % Update the new time
84

85 Y(:,n)=y; % Replace row n in Y with y
86

87 end
88

89 %% Setting plot parameters
90

91 % Clear figure
92 clf
93

94 % Hold so more than one line can be drawn
95 hold on
96

97 % Turn on grid
98 grid on
99

100 % Setting font size and style
101 set(gca,'FontSize',20,'FontName','Times')
102 set(legend,'Interpreter','Latex')
103

104 % Label the axes
105 xlabel('$t$','Interpreter','Latex')
106 ylabel('$\mathbf{y}(t)$','Interpreter','Latex')
107

108 % Plot the desried solutions. If all the solutions are
109 % needed, then consider using a for loop in that case
110 plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
111 plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_2(t)$')
112 plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_3(t)$')
113

114 % Display the values of the vector y at tf
115 disp(strcat('The vector y at t=',num2str(tf),' is:'))
116 disp(Y(:,end))
117

118 end
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119

120 function [dydt]=DYDT(t,y,K)
121

122 % When the equation are written in explicit form
123

124 dydt=zeros(K,1);
125

126 dydt(1)=2*y(1)+y(2)+y(3)+cos(t);
127

128 dydt(2)=sin(y(1))+exp(-y(2)+y(3));
129

130 dydt(3)=y(1)*y(2)-y(3);
131

132 % If the set of equations is linear, then these can be
133 % written in matrix form as dydt=A*y+b(t). For example, if
134 % the set of equations is:
135 % dudt = 7u - 2v + w + exp(t)
136 % dvdt = 2u + 3v - 9w + cos(t)
137 % dwdt = 2v + 5w + 2
138 % Then:
139 % A=[7,-2,1;2,3,-9;0,2,5];
140 % b=@(t) [exp(t);cos(t);2];
141 % dydt=A*y+b(t)
142

143 end
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6 MATLAB’s In-Built Procedures

So far, the three main iterative methods have been developed that solve IVPs numerically.
MATLAB, however, has its own built-in procedures that can solve IVPs with a combination
of several methods. The two main ones are ode23 (which uses a combination of a second
and third order RK methods) and ode45 (which uses a combination of a fourth and fifth
order RK methods).

Both ode45 and ode23 are hybrid methods and use adaptive meshing, this means that the
time span grid is not necessarily uniform, but it changes depending on the gradients; if
the gradient is large at some point, then the stepsize will be small to capture these drastic
changes.

The following MATLAB code solves the following set of IVPs on the interval [0, 1] using
ode45:

du

dt
= 2u + v + w + cos(t), u(0) = 0

dv

dt
= sin(u) + e−v+w, v(0) = 1

dw

dt
= uv − w, w(0) = 0.

1 function IVP_InBuilt
2

3 %% Solve a set of first order IVPs using In-Built codes
4

5 % This code solves a set of IVP when written explicitly
6 % on the interval [t0,tf] subject to the initial conditions
7 % y(0)=y0. The output will be the graph of the solution(s)
8 % and the vector value at the final point tf. Note that the
9 % IVPs do not need to be linear or homogeneous.

10

11 %% Lines to change:
12

13 % Line 28 : t0 - Start time
14 % Line 31 : tf - End time
15 % Line 43 : T_Span - Time span for evaluation
16 % Line 46 : y0 - Vector of initial values
17 % Line 86+ : Which functions to plot, remembering to assign
18 % a colour, texture and legend label
19 % Line 100+ : Set of differential equations written
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20 % explicitly. These can also be non-linear and
21 % include forcing terms. These equations can
22 % also be written in matrix form if the
23 % equations are linear.
24

25 %% Set up input values
26

27 % Start time
28 t0=0;
29

30 % End time
31 tf=1;
32

33 % Time span
34 % In-built methods tend to use adaptive meshing; decreasing
35 % the stepsize near locations with drastic derivative
36 % changes and increasing near small derivative changes.
37 % Sometimes this is not desired but a uniform meshing is
38 % requiredfrom the start time t0 to the end time tf being
39 % split into N equal sub intervals. This can be changed
40 % here:
41 % Adaptive meshing: T_Span=[t0 tf]
42 % Specific meshing: T_Span=linspace(t0,tf,N)
43 T_Span=[t0 tf];
44

45 % Column vector initial values y0=y(t0)
46 y0=[0;1;0];
47

48 %% Set up IVP solver parameters
49

50 % Number of differential equations
51 K=length(y0);
52

53 %% Use solver
54

55 % Set the solver tolerance
56 tol=odeset('RelTol',1e-6);
57

58 % Solve the IVP using ode45 or ode23
59 [T,Y]=ode45(@(t,y) DYDT(t,y,K),T_Span,y0,tol);
60

61 % Convert T and Y to columns for consistency
62 T=T';
63 Y=Y';
64
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65 %% Setting plot parameters
66

67 % Clear figure
68 clf
69

70 % Hold so more than one line can be drawn
71 hold on
72

73 % Turn on grid
74 grid on
75

76 % Setting font size and style
77 set(gca,'FontSize',20,'FontName','Times')
78 set(legend,'Interpreter','Latex')
79

80 % Label the axes
81 xlabel('$t$','Interpreter','Latex')
82 ylabel('$\mathbf{y}(t)$','Interpreter','Latex')
83

84 % Plot the desried solutions. If all the solutions are
85 % needed, then consider using a for loop in that case
86 plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
87 plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_2(t)$')
88 plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_3(t)$')
89

90 % Display the values of the vector y at tf
91 disp(strcat('The vector y at t=',num2str(tf),' is:'))
92 disp(Y(:,end))
93

94 end
95

96 function [dydt]=DYDT(t,y,K)
97

98 % When the equation are written in explicit form
99

100 dydt=zeros(K,1);
101

102 dydt(1)=2*y(1)+y(2)+y(3)+cos(t);
103

104 dydt(2)=sin(y(1))+exp(-y(2)+y(3));
105

106 dydt(3)=y(1)*y(2)-y(3);
107

108 % If the set of equations is linear, then these can be
109 % written in matrix form as dydt=A*y+b(t). For example, if
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110 % the set of equations is:
111 % dudt = 7u - 2v + w + exp(t)
112 % dvdt = 2u + 3v - 9w + cos(t)
113 % dwdt = 2v + 5w + 2
114 % Then:
115 % A=[7,-2,1;2,3,-9;0,2,5];
116 % b=@(t) [exp(t);cos(t);2];
117 % dydt=A*y+b(t)
118

119 end
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7 Implicit IVP Solvers

In some cases, IVPs can be difficult to solve because of the non-linearity of its terms, this is
where Implicit Methods should be used to accommodate for these issues.

7.1 Backwards Euler Method

Consider the Euler method at the starting time t = t0. The value of the function y at
t1 = t0 + h is approximated by

y(t1) ≈ Y1 = Y0 + hy′(t0)
and this gives an upper bound for a stable stepsize of

h0 = 2 min
( |ℜ(λk)|

|λk|2
)

in order to ensure that the Euler method is computationally stable. However, suppose that
this modified slightly by using the gradient at y(t1) rather than at y(t0), in other words,
suppose that the value of y at t1 is approximated by

y(t1) ≈ Y1 = Y0 + hy′(t1).

This approach is known as the Backwards Euler Method and is an implicit procedure
since the value of y′(t1) is not known to begin with.

The general formulation is as follows: Consider the system of differential equations
y′ = Ay + b(t) with y(t0) = y0, x ∈ [t0, tf ].

Discretise the interval [t0, tf ] into N equal subintervals, each with width h = tf −t0
N . At the

time step t = tn = t0 + nh, the backwards Euler method is
Y n+1 = Y n + hy′(tn+1) = Y n + h [AY n+1 + b(tn+1)] .

This can be rearranged to give
(I − hA)Y n+1 = Y n + hb(tn+1).

Rearranging further fives the basis for the Backwards Euler iteration which is
Y n+1 = (I − hA)−1 [Y n + hb(tn+1)]

whereas the standard Euler method in matrix form is
Y n+1 = (I + hA)−1Y n + hg(tn+1).

The Euler method requires explicit calculations using matrix multiplications but the back-
wards Euler method requires matrix inversion instead.
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7.2 Stability of the Backwards Euler Method

Consider the initial value problem in its scalar form

dy

dt
= λy + b(t) with y(0) = y0.

The backwards Euler method at the time t = tn+1 = t0 + (n + 1)h gives

Yn+1 = (1 − hλ)−1 [Yn + hg(tn+1)] .

This initial condition can be perturbed by adding a small parameter ε ≠ 0 to give the
perturbed differential equation

dz

dt
= λz + g(t) with z(0) = y0 + ε.

The backwards Euler then yields

Zn+1 = (1 − hλ)−1 [Zn + hg(tn+1)]

The differential equations in Y and Z can be subtracted to give a perturbation term E
where

En+1 = Zn+1 − Yn+1 = (1 − hλ)−1 [Zn − Yn] = (1 − hλ)−1En.

Notice that once again, the forcing function g(t) has been eliminated and therefore does not
affect the stability of the backwards Euler method. The differential equation for E will have
the initial condition E0 = Z0 − Y0 = ε. This expression can be used to represent En in terms
of ε recursively as:

En = (1 − hλ)−1En−1 = (1 − hλ)−2En−2

= · · · = (1 − hλ)−(n−1)E1 = (1 − hλ)−nE0 = (1 − hλ)−nε.

=⇒ En = (1 − hλ)−nε.

This means that the method is stable for stepsizes h that satisfy |1 − hλ| > 1 and since λ < 0
for an asymptotically stable system, then this inequality is always satisfied. This means that
the backwards Euler method is stable for all stepsizes h > 0, no matter how large.

Backwards Euler Method

Consider the differential equation

y′ = −100y + 100 sin(t) with y(0) = 1.

In this case, λ < 0 meaning that this differential equation is asymptotic stable. The
maximum allowable stepsize for the Euler method is h0 = 2

|−100| = 0.02. However, the
backwards Euler method is stable for any stepsize h as seen below (very large stepsizes
will still converge but they will not give any useful information).
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The formulation presented above also holds for sets of differential equations in the same
way with one difference. Instead of having (1 − hλ)−1 = 1

1−hλ , the procedure for systems
will require the matrix inverse (1 − λA)−1 or the MATLAB backslash operator can be used
instead.

7.3 Order of Accuracy

The backwards Euler method is numerically stable for all values the stepsize h and has the
same order of accuracy as the Euler method, i.e. the local truncation error is of O

(
h2) while

the global integration error is of O (h). However, this increased stability comes at a cost,
the backwards Euler methods requires double the computational cost compared to the Euler
method.
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7.4 MATLAB Code

The following MATLAB code performs the Backwards Euler iteration for the system y′ =
Ay + b(t) subject to y(0) = y0 where

A =

−7 −2 1
2 −1 −9
0 0 −5

 , b(t) =

sin(t)
0
2

 , y0 =

0
1
0

 .

1 function IVP_Back_Euler
2

3 %% Solve a set of first order IVPs using Backwards Euler
4

5 % This code solves a set of IVP when written in the form
6 % dydt=A*y+b(t) on the interval [t0,tf] subject to the
7 % initial conditions y(0)=y0. The output will be the graph
8 % of the solution(s) and the vector value at the final
9 % point tf.

10

11 %% Lines to change:
12

13 % Line 25 : t0 - Start time
14 % Line 28 : tf - End time
15 % Line 31 : N - Number of subdivisions
16 % Line 34 : A - Matrix A
17 % Line 37 : b - Forcing vector b(t)
18 % Line 40 : y0 - Vector of initial values
19 % Line 106+ : Which functions to plot, remembering to assign
20 % a colour, texture and legend label
21

22 %% Set up input values
23

24 % Start time
25 t0=0;
26

27 % End time
28 tf=1;
29

30 % Number of subdivisions
31 N=5000;
32

33 % Matrix A
34 A=[-7,-2,1;2,-1,-9;0,0,-5];
35

36 % Vector b, which can be a function of t in general
37 b=@(t) [sin(t);0;2];

97



38

39 % Column vector initial values y0=y(t0)
40 y0=[0;1;0];
41

42 %% Set up IVP solver parameters
43

44 % T = Vector of times t0,t1,...,tN.
45 % This is generated using linspace which splits the
46 % interval [t0,tf] into N+1 points (or N subintervals)
47 T=linspace(t0,tf,N+1);
48

49 % Stepsize
50 h=(tf-t0)/N;
51

52 % Number of differential equations
53 K=length(y0);
54

55 %% Perform the Euler iteration
56

57 % Y = Solution matrix
58 % The matrix Y will contain K rows and N+1 columns. Every
59 % row corresponds to a different IVP and every column
60 % corresponds to a different time. So the matrix Y will
61 % take the following form:
62 % y_1(t_0) y_1(t_1) y_1(t_2) ... y_1(t_N)
63 % y_2(t_0) y_2(t_1) y_2(t_2) ... y_2(t_N)
64 % ...
65 % y_K(t_0) y_K(t_1) y_K(t_2) ... y_K(t_N)
66 Y=zeros(K,N+1);
67

68 % The first column of the vector Y is the initial vector y0
69 Y(:,1)=y0;
70

71 % Set the current time t to be the starting time t0 and the
72 % current value of the vector y to be the strtaing values y0
73 y=y0;
74

75 for n=2:1:N+1
76

77 t=T(n); % Update the new time
78

79 y=(eye(K,K)-h*A)\(y+h*b(t));% Find y at the current step
80

81 Y(:,n)=y; % Replace row n in Y with y
82
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83 end
84

85 %% Setting plot parameters
86

87 % Clear figure
88 clf
89

90 % Hold so more than one line can be drawn
91 hold on
92

93 % Turn on grid
94 grid on
95

96 % Setting font size and style
97 set(gca,'FontSize',20,'FontName','Times')
98 set(legend,'Interpreter','Latex')
99

100 % Label the axes
101 xlabel('$t$','Interpreter','Latex')
102 ylabel('$\mathbf{y}(t)$','Interpreter','Latex')
103

104 % Plot the desried solutions. If all the solutions are
105 % needed, then consider using a for loop in that case
106 plot(T,Y(1,:),'-b','LineWidth',2,'DisplayName','$y_1(t)$')
107 plot(T,Y(2,:),'-r','LineWidth',2,'DisplayName','$y_1(t)$')
108 plot(T,Y(3,:),'-k','LineWidth',2,'DisplayName','$y_1(t)$')
109

110 end

7.5 Stiff Differential Equations

Stiff sets of differential equations with a large value of the total computational cost N0
can be very difficult to solve numerically using explicit methods but implicit methods can
work very well. MATLAB has its very own built-in stiff differential equation solver under
the command ode15s and this can be implemented exactly as ode45. This solves sets of
differential equations implicitly using numerical differentiation of orders 1 to 5.
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Stiff IVPs

Consider the set of differential equations on the interval [0, 3500]

dy1
dt

= y2 y1(0) = 2

dy2
dt

= 1000(1 − y2
1)y2 − y1 y2(0) = 0.

This is a very stiff set of differential equations, solving this using ode45 takes upwards
of 92 seconds while solving using the stiff solver ode15s requires a mere 0.233 seconds
(depending on you machine). The result of solving this differential equation is shown
below for y1(t) only since y2(t) takes very large values and this distorts the graphical
interpretation.

Using the stiff solver optimises the stepsizes for stiff regions. Particularly, if a region is
deemed to be considerably “stiff”, the ode15s will use smaller stepsizes to solve the
problem but if there is a region where the differential is not “stiff”, then larger stepsizes
will be used. Therefore, ode15s usually requires fewer grid points overall, for instance
to solve the above set of differential equations, ode15s only requires 1,836 grid points
while ode45 requires 7,820,485 grid points, that is over 4,200 times more grid points
than ode15s. This just goes to show that stiff differential need implicit methods, even
though the cost for every step is greater than that of an explicit method, fewer steps
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are required in total.
An alternative stiff differential equation solver is ode23s which achieves that same
outcome as ode15s but with a lower accuracy and more grid points using only second
and third order methods.
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Part III

Solving Boundary Value Problems
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This section will cover ways of solving Boundary Value Problems (BVPs) using the different
differencing schemes.
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8 Boundary Value Problems

Boundary Value Problems (BVPs) are similar in many ways to initial value problems
in the sense that a set of differential equations are given that are to be solved subject to
certain conditions. In initial value problems, these conditions are imposed at the starting
time but in boundary value problems, they are imposed at particular locations.

One of the most important differences when it comes to solving BVPs versus IVPs is the
existence of solutions. Solutions to initial value problems always exist and are unique (subject
to certain restriction on the right hand side), this is as a consequence of the Picard-Lindelöf
theorem. The same cannot be said for boundary value problems; the solution to BVPs could
exist and be unique, exist and not be unique or not exist at all.

8.1 Example of Boundary Value Problems

Consider a mass m hanging from a spring with spring constant K. Suppose
that the spring is extended (by pulling the mass) by a distance x as seen below.
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Then by Hooke’s Law, the force pulling the mass back to its equilibrium position is given
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by
F = −Kx.

As the mass is released, it will accelerate upwards with an acceleration a and the force
responsible for this acceleration is given by Newton’s Second Law of Motion

F = ma.

The acceleration a is the second derivative of the displacement x with respect to time and
since it acts in a direction opposite to the extension, then

a = −d2x

dt2 =⇒ F = −m
d2x

dt2

Equating the two expressions for the force from Newton’s Second Law and Hooke’s Law will
give

−Kx = −m
d2x

dt2 =⇒ d2x

dt2 + ω2x = 0 where ω =

√
K

m
.

This differential equation represents the simple harmonic motion of a mass hanging on a
frictionless massless spring which oscillates with a frequency ω. Since this is a second order
differential equation, two conditions need to be imposed:

• Initial conditions can be imposed at the starting time, specifically x(0) and x′(0) which
prescribe the initial position and initial speed,

• Boundary conditions can be imposed at different times, say x(0) and x(10) which
prescribe the location at time t = 0 and time t = 10.

Consider the differential equation for the undamped simple harmonic oscillator with frequency
1, namely

d2u

dt2 = −u.

This differential equation has the general analytic solution

u(t) = C1 cos(t) + C2 sin(t)

where C1 and C2 are constants of integration which will be determined form the boundary
conditions.

Three qualitatively different sets of boundary conditions will be investigated:

• u(0) = 1 and u(5π
2 ) = −1: The constants C1 and C2 can be found as:

1 = u(0) = C1 cos(0) + C2 sin(0) = C1 =⇒ C1 = 1

−1 = u

(5π

2

)
= C1 cos

(5π

2

)
+ C2 sin

(5π

2

)
= C2 =⇒ C2 = −1.

Therefore the analytic solution to the boundary value problem subject to these condi-
tions is

u(t) = cos(t) − sin(t)
and this is captured by the finite difference approximation. In this case, the solution
to the boundary value problem exists and is unique.
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• u(0) = 0 and u(2π) = 0: The constants C1 and C2 can be found as:

0 = u(0) = C1 cos(0) + C2 sin(0) = C1 =⇒ C1 = 0

0 = u(2π) = C1 cos(2π) + C2 sin(2π) = C1 =⇒ C1 = 0.

These two conditions provide an expressions for the constant C1 only and not C2,
therefore the particular solution will be

u(t) = C2 sin(t)

which is valid for any value of C2. Therefore in this case, the solution exists but is not
unique.

• u(0) = 1 and u(2π) = −1: The constants C1 and C2 can be found as:

1 = u(0) = C1 cos(0) + C2 sin(0) = C1 =⇒ C1 = 1

−1 = u(π) = C1 cos(2π) + C2 sin(2π) = C1 =⇒ C1 = −1.

In this case, the boundary values have resulted in a contradiction and therefore the
solution does not exist when subject to these boundary conditions.

This final case is when the solution to a boundary value problem does not exist.

8.2 Finite Difference Method for Boundary Value Problems

Consider the general second order boundary value problem

a(x)d2u

dx2 + b(x)du

dx
+ c(x)u = f(x) with 0 < x < L

and u(0) = ul, u(L) = ur

where the functions a, b, c and f are known functions of x. Boundary value problems like this
are solved using an incredibly versatile method known as the Finite Difference Method.
This procedure essentially changes a differential equation into a set of difference equations
by using approximations to the derivatives.

The term finite difference approximation refers to how derivatives can be approximated using
linear expressions of the function at neighbouring points. For instance, the derivative of
some function u at a given point X can be approximated as the gradient of u between two
points around X, for example

df

dx
(X) ≈ f(X + h) − f(X − h)

2h
.

There are many other ways in which these approximations can be made depending on the
way in which the grid has been set up or on the context of the problem.

107



Consider a general unknown function u(x) defined on [0, L] where u(0) and u(L) are given
(as boundary conditions). First, split the interval into N equally sized sections, each of width
h, and label the points as x0, x1, . . . , xN where xn = nh.

For first and second derivatives, there are three main approximations that are most widely
used:

• Forward Difference:
du

dx
(xn) ≈ u(xn+1) − u(xn)

h

d2u

dx2 (xn) ≈ u(xn+2) − 2u(xn+1) + u(xn)
h2

• Backward Difference:

du

dx
(xn) ≈ u(xn) − u(xn−1)

h

d2u

dx2 (xn) ≈ u(xn) − 2u(xn−1) + u(xn−2)
h2

• Centred Difference:
du

dx
(xn) ≈ u(xn+1) − u(xn−1)

2h

d2u

dx2 (xn) ≈ u(xn+1) − 2u(xn) + u(xn−1)
h2

The graphical interpretation of the approximations to the first derivatives are shown below.
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ñ Second Derivative Expression

To show how the second derivative expressions are obtained, consider the centred
difference approximation

du

dx
(xn) ≈ u(xn+1) − u(xn−1)

2h
.

To derive the expression for the second derivative, introduce two fictitious points xn−0.5
(which is half-way between xn−1 and xn) and xn+0.5 (which is half-way between xn and
xn+1). Then

d2u

dx2 (xn) = d
dx

(du

dx
(xn)

)
≈ d

dx

(
u(xn+0.5) − u(xn−0.5)

h

)
≈ u′(xn+0.5) − u′(xn−0.5)

h

≈
u(xn+1)−u(xn)

h − u(xn)−u(xn−1)
h

h

= u(xn+1) − 2u(xn) + u(xn−1)
h2 .

The derivation of the second derivative approximations for the forward and backward
differences can be done in a very similar way but without the need for half steps.

Any of these three approximations can be used to approximate the derivatives of the function
u at the point xn. Denote the approximation of u at the point xn by Un, i.e. Un ≈ u(xn),
then
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• Forward Difference:

du

dx
(xn) ≈ Un+1 − Un

h
; d2u

dx2 (xn) ≈ Un+2 − 2Un+1 + Un

h2

• Backward Difference:

du

dx
(xn) ≈ Un − Un−1

h
; d2u

dx2 (xn) ≈ Un − 2Un−1 + Un−2
h2

• Centred Difference:

du

dx
(xn) ≈ Un+1 − Un−1

2h
; d2u

dx2 (xn) ≈ Un+1 − 2Un + Un−1
h2 .

These approximations will form the basis for solving the BVP.

8.2.1 Discretisation of the Differential Equation

Returning to the differential equation

a(x)d2u

dx2 + b(x)du

dx
+ c(x)u = f(x).

Evaluate this equation at x = xn for some n, then

a(xn)d2u

dx2 (xn) + b(xn)du

dx
(xn) + c(xn)u(xn) = f(xn).

For now, suppose the centred differencing approximation is used to approximate the deriva-
tives. Replacing the approximations of the derivatives of u at xn gives

a(xn)Un+1 − 2Un + Un−1
h2 + b(xn)Un+1 − Un−1

2h
+ c(xn)Un = f(xn).

This can be simplified by collecting the U terms resulting in:

αnUn−1 + βnUn + γnUn+1 = f(xn)

αn = a(xn)
h2 − b(xn)

2h
, βn = −2a(xn)

h2 + c(xn), γn = a(xn)
h2 + b(xn)

2h
.

This expression will hold for all the values of n = 1, 2, . . . , N − 1 (otherwise there will be
points x−1 and xN+1 which are outside the domain [0, L]). Therefore, this mean that there
will be N − 1 equations in N + 1 unknowns which are U0, U1, U2, . . . , UN .

This system may seem to be undetermined however, there are two boundary conditions that
have not been taken into consideration yet, namely u(x0) = ul and u(xN ) = u(L) = ur. Since
these are known, the approximations U0 and UN have defined values, i.e. U0 ≈ u(x0) = ul

and UN = u(xN ) = ur. This eliminates two of the unknowns giving N − 1 equations in
N − 1 unknowns.
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At n = 1, the approximation to the differential equation is

α1U0 + β1U1 + γ1U2 = f(x1)

and since U0 is already known, then it can be taken to the right hand side to give

β1U1 + γ1U2 = f(x1) − α1u0.

Similarly, at n = N − 1, the approximation is

αN−1UN−2 + βN−1UN−1 + γN−1UN = f(xN−1)

and since UN is known, this can be rewritten as

αN−1UN−2 + βN−1UN−1 = f(xN−1) − γN−1uL.

For n = 2, 3, . . . , N − 2, the approximation is

αnUn−1 + βnUn + γnUn+1 = f(xn)

where Un−1, Un and Un+1 are al unknown. In summary, all of these N − 1 equations are:

n = 1 : β1U1 + γ1U2 = f(x1) − α1u0

n = 2 : α2U1 + β2U2 + γ2U3 = f(x2)
n = 3 : α3U2 + β3U3 + γ3U4 = f(x3)

...
n = N − 3 : αN−3UN−4 + βN−3UN−3 + γN−3UN−2 = f(xN−3)
n = N − 2 : αN−2UN−3 + βN−2UN−2 + γN−2UN−1 = f(xN−2)
n = N − 1 : αN−1UN−2 + βN−1UN−1 = f(xN−1) + γN−1uL
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These can be written in matrix form as AU = g, namely

β1 γ1 0 0 . . . 0 0 0 0
α2 β2 γ2 0 . . . 0 0 0 0
0 α3 β3 γ3 . . . 0 0 0 0
0 0 α4 β4 . . . 0 0 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 0 . . . βN−4 γN−4 0 0
0 0 0 0 . . . αN−3 βN−3 γN−3 0
0 0 0 0 . . . 0 αN−2 βN−2 γN−2
0 0 0 0 . . . 0 0 αN−1 βN−1


︸ ︷︷ ︸

A



U1
U2
U3
U4
...

UN−4
UN−3
UN−2
UN−1


︸ ︷︷ ︸

U

=



f(x1) − α1ul

f(x2)
f(x3)
f(x4)

...
f(xN−4)
f(xN−3)
f(xN−2)

f(xN−1) − γN−1ur


︸ ︷︷ ︸

g

.

The matrix A is of size (N − 1) × (N − 1) all of whose terms are known, the vector g of size
(N − 1) × 1 also has terms that are all known. The unknown vector here is U and it can be
found by inverting A to give U = A−1g.

Carrying out matrix inversions by hand can become increasingly cumbersome if A is larger
than 2×2 and therefore this process should be done computationally. This can be done using
TDMA as explained in Section 2.2.3 or solved in MATLAB by using either U=inv(A)*g or
U=A\g. The backslash method is faster than explicit matrix inversion if the matrix is of a
large size.

The same process can be done for the forward and backward differencing approximations as
well, the only difference will be the expressions for α, β and γ:

• Forward Differencing:

αn = a(xn)
h2 − b(xn)

h
+ c(xn), βn = −2a(xn)

h2 + b(xn)
h

, γn = a(xn)
h2 .

• Backward Differencing:

αn = a(xn)
h2 , βn = −2a(xn)

h2 − b(xn)
h

, γn = a(xn)
h2 + b(xn)

h
+ c(xn).
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ñ Steps of The Finite Difference Method

In summary, these are the steps of the finite difference method:

1. Divide the interval [0, L] into N equally sized sections, each of width
h = L

N and label the points as x0, x1, x2, . . . , xN where xn = nh.

2. The values of the function u are to be found at all the locations xn. Denote the
approximation to the function u at the point xn by Un, i.e. Un ≈ u(xn) for all
n = 0, 1, 2, . . . , N .

3. Evaluate the differential equation at all the points xn where the derivatives are
replaced by their finite difference approximations.

4. This will result in a set of N − 1 linear equations in N + 1 unknowns, namely,
U0, U1, U2, . . . , UN .

5. The values for U0 and UN are known from the boundary conditions, since U0 =
u(0) = ul and UN = u(L) = ur and no approximation is needed since the exact
values are known.

6. Write the whole system of equations in the matrix form AU = g and solve using
TDMA of MATLAB’s backlash operator.

BVP Example

Consider the boundary value problem

d2u

dx2 = x3, x ∈ [0, 2] with u(0) = 0 and u(2) = 1.

The differential equation itself can be solved analytically to give

u(x) = 1
20x5 − 3

10x.

This example will be used for the purposes of demonstration and comparison between
the numerically obtained solution and the exact solution.
Suppose the interval [0, 2] is to be divided into 5 equally
sized sections, therefore N = 5 and h = L

N = 2
5 = 0.4.
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The functions a(x), b(x), c(x) and f(x) in this interval are:

a(x) = 1, b(x) = 0, c(x) = 0, f(x) = x3.

The matrix values are
αn = a(xn)

h2 − b(xn)
2h

= 6.25

βn = −2a(xn)
h2 + c(xn) = −12.5

γn = a(xn)
h2 + b(xn)

2h
= 6.25.

These can be used to obtain expressions for the matrix A and the vector g as

A =


−12.5 6.25 0 0
6.25 −12.5 6.25 0

0 6.25 −12.5 6.25
0 0 6.25 −12.5

 , g =


0.064
0.512
1.728
4.096

 .

This system can be solved using U=inv(A)*g or U=A\g. The
numerical solution is compared to exact solution below.
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The advantage of using this boundary value solver is that the computations are in
no way taxing on MATLAB. The system that results is composed entirely of linear
equations and this system is solvable (provided the boundary value problem does indeed
have a solution which may not always be possible). MATLAB’s backslash operator is
very effective in dealing with matrices, especially owing to the fact that the matrix A
is a tridiagonal matrix.

8.3 MATLAB Code

Below is the MATLAB code that solves the BVP

d2u

dx2 + 2du

dt
+ e−xu = sin(x), x ∈ [0, 10] with u(0) = 1 and u(10) = −1

using the centred differencing method with N = 50.

1 function BVP_CD
2

3 %% Solve BVPs using centered differences
4

5 % The bvp is written in the form
6 % a(x) u'' + b(x) u' + c(x) u = f(x) on x in [x0,L]
7 % with the boundary conditions u(x0)=ul and u(L)=ur.
8 % After the centered difference approximation is
9 % used, the system will be written in the form AU=g.

10

11 %% Lines to change:
12

13 % Line 26 : x0 - Start point
14 % Line 29 : L - End point
15 % Line 32 : N - Number of subdivisions
16 % Line 35 : xl - Left boundary value
17 % Line 38 : xr - Right boundary value
18 % Line 119 : Expression for the function a(x)
19 % Line 127 : Expression for the function b(x)
20 % Line 135 : Expression for the function c(x)
21 % Line 143 : Expression for the function f(x)
22

23 %% Set up input values
24

25 % Start point
26 x0=0;
27

28 % End point
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29 L=10;
30

31 % Number of subdivisions
32 N=50;
33

34 % Boundary value at x=x0
35 ul=1;
36

37 % Boundary value at x=L
38 ur=-1;
39

40 %% Set up BVP solver parameters
41

42 % Interval width
43 h=(L-x0)/N;
44

45 % X = Vector of locations
46 % (x1, x2, x3, ..., xN) (notice the start is x1 NOT x0)
47 X=x0+h:h:L;
48

49 % Evaluate the functions a(x), b(x), c(x) and f(x) at X
50 aX=a(X);
51 bX=b(X);
52 cX=c(X);
53 fX=f(X);
54

55 % Find the expressions for alpha, beta and gamma at X
56 alpha=aX/(hˆ2)-bX/(2*h);
57 beta=-2*aX/(hˆ2)+cX;
58 gamma=aX/(hˆ2)+bX/(2*h);
59

60 % Set up the vector g on the right hand side
61 g=zeros(N-1,1);
62 g(1)=fX(1)-alpha(1)*ul;
63 g(N-1)=fX(N-1)-gamma(N-1)*ur;
64 for j=2:1:N-2
65 g(j)=fX(j);
66 end
67

68 % Set up the matrix A on the left hand side (LHS_A is
69 % to avoid confusion with the function a(x))
70 A=zeros(N-1,N-1);
71 A(1,1)=beta(1);
72 A(1,2)=gamma(1);
73 A(N-1,N-1)=beta(N-1);
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74 A(N-1,N-2)=alpha(N-1);
75 for j=2:1:N-2
76 A(j,j-1)=alpha(j);
77 A(j,j)=beta(j);
78 A(j,j+1)=gamma(j);
79 end
80

81 % Solve for the unknown vector U (it is then readjusted
82 % from a column vector to a row vector for plotting)
83 U=A\g;
84 U=U';
85

86 % Add the missing term x0 to the start of the vector x
87 X=[x0,X];
88

89 % Add the left and right boundary values to the vector U
90 U=[ul,U,ur];
91

92 %% Setting plot parameters
93

94 % Clear figure
95 clf
96

97 % Hold so more than one line can be drawn
98 hold on
99

100 % Turn on grid
101 grid on
102

103 % Setting font size and style
104 set(gca,'FontSize',20,'FontName','Times')
105

106 % Label the axes
107 xlabel('$t$','Interpreter','Latex')
108 ylabel('$u(t)$','Interpreter','Latex')
109

110 % Plot solution
111 plot(X,U,'-k','LineWidth',2)
112

113 end
114

115 function [A]=a(X)
116 A=zeros(size(X));
117 for i=1:1:length(X)
118 x=X(i);
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119 A(i)=1;
120 end
121 end
122

123 function [B]=b(X)
124 B=zeros(size(X));
125 for i=1:1:length(X)
126 x=X(i);
127 B(i)=2;
128 end
129 end
130

131 function [C]=c(X)
132 C=zeros(size(X));
133 for i=1:1:length(X)
134 x=X(i);
135 C(i)=exp(-x);
136 end
137 end
138

139 function [F]=f(X)
140 F=zeros(size(X));
141 for i=1:1:length(X)
142 x=X(i);
143 F(i)=sin(x);
144 end
145 end

8.4 Comparison Between Forward, Backward & Centred
Difference Approximations

The main difference between the different differencing schemes if the order of accuracy.
Indeed, the error of the forward and backward differencing methods are O (h) whereas the
error for the centred differencing is O

(
h2). This means that if the stepsize h was reduced by

a factor of 10, then the error for the forward and backward finite difference approximations
would also reduce by a factor of 10 while the centred would reduce by a factor of 100.

Comparison Between CD, FD and BD

Consider the BVP

d2u

dx2 = 25π2 sin(5πx), x ∈ [0, 1] with u(0) = 0 and u(1) = 0.
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This has the exact solution
u(x) = − sin(5πx).

Below are the plots for the numerical solution to this boundary value
problem using the forward (red), backward (blue) and centred (green) dif-
ference approximations compared to the exact solution when N = 10.

It can be seen that even for this relatively crude interval subdivision of N = 10, the
centred approximation has yielded a far more favourable result compared to the other
two methods. The following table shows the 2-norm error between the exact solution
and the approximation for different values of N :

Method N = 10 N = 20 N = 50 N = 100

Forward 4.1444 3.0875 1.9823 1.4048
Backward 4.7243 3.8535 2.0939 1.4251
Centred 0.5226 0.1677 0.0413 0.0146

It can be seen that even when N = 100, the 2-norm error has still not reduced below 1
for the forward and backward difference approximations but the centred has already
achieved that even at N = 10. This is just a demonstration to show that how a simple
change in the way in which derivatives are approximated can have such a drastic effect
on the final solution.

8.5 MATLAB’s In-Built Procedures

MATLAB has an in-built mechanism that can also solve second (or even higher order) BVPs,
this is done using the bvp4c command.
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Below is the MATLAB code that solves the BVP

d2u

dx2 + 2du

dt
+ e−xu = sin(x), x ∈ [0, 10] with u(0) = 1 and u(10) = −1

using bvp4c.

1 function BVP_InBuilt
2

3 %% Solve BVPs using bvp4c
4

5 % The bvp is written in the form
6 % a(x) u'' + b(x) u' + c(x) u = f(x) on x in [x0,L]
7 % with the boundary conditions u(x0)=ul and u(L)=ur.
8

9 %% Lines to change:
10

11 % Line 24 : x0 - Start point
12 % Line 27 : L - End point
13 % Line 30 : N - Number of spatial points
14 % Line 33 : xl - Left boundary value
15 % Line 36 : xr - Right boundary value
16 % Line 44 : Expression for the function a(x)
17 % Line 45 : Expression for the function b(x)
18 % Line 46 : Expression for the function c(x)
19 % Line 47 : Expression for the function f(x)
20

21 %% Set up input values
22

23 % Start point
24 x0=0;
25

26 % End point
27 L=10;
28

29 % Number of spatial points
30 N=50;
31

32 % Boundary value at x=x0
33 ul=1;
34

35 % Boundary value at x=L
36 ur=-1;
37

38 %% Set up BVP solver parameters
39

40 % Set up solving space
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41 X=linspace(x0,L,N);
42

43 % Define the functions in the BVP
44 a= @(x) 1;
45 b= @(x) 2;
46 c= @(x) exp(-x);
47 f= @(x) sin(x);
48

49 %% Set up BVP solving parameters
50

51 % First, write the second order ODE as a set of first order
52 % ODEs:
53 % U'=V
54 % V'=(-b(x)*V-c(x)*U+f(x))/a(x)
55

56 % Second order BVPs can have more than one solution
57 % and vector v is the initialising vector of solutions.
58 % It can be kept as a vector of zeros
59 v=[0 0];
60

61 % Initialise vectors for space and v
62 init=bvpinit(X,v);
63

64 % Solve the bvp subject to the boundary values and
65 % inital guesses
66 sol=bvp4c(@(x,u) DUDT(x,u,a,b,c,f),@(x0,L) BCs(x0,L,ul,ur),init);
67

68 % Evaluate the solution at the grid points
69 U=deval(sol,X);
70

71 % Convert U to columns for consistency
72 U=U';
73

74 %% Setting plot parameters
75

76 % Clear figure
77 clf
78

79 % Hold so more than one line can be drawn
80 hold on
81

82 % Turn on grid
83 grid on
84

85 % Setting font size and style
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86 set(gca,'FontSize',20,'FontName','Times')
87

88 % Label the axes
89 xlabel('$t$','Interpreter','Latex')
90 ylabel('$u(t)$','Interpreter','Latex')
91

92 % Plot solution
93 plot(X,U(:,1),'-k','LineWidth',2)
94

95 end
96

97 function [dudx]=DUDT(x,u,a,b,c,f)
98

99 dudx(1)=u(2);
100

101 dudx(2)=(-b(x)*u(2)-c(x)*u(1)+f(x))/(a(x));
102

103 end
104

105 function res=BCs(x0,L,ul,ur)
106 % The boundary conditions are written as
107 % u(x0)=ul
108 % x(L)=ur
109

110 res=[x0(1)-ul;L(1)-ur];
111

112 end
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9 Mixed Value Problems

Initial and boundary value problems are not the only two ways in which conditions can
be expressed. Sometimes these conditions can be presented in a mixed form where the
condition on one or both boundaries may depend on the derivative of the solution function.
For instance, consider the steady-state convection-diffusion equation on a bar on length 5
with density ρ, convective velocity v, specific heat capacity Cp, thermal conductivity kf and
heat source f :

−kf
d2T

dx2 + ρvCp
dT

dx
= f(x) on x ∈ [0, 5] with T (0) = 100 and dT

dx
(5) = 0

where T (x) is the temperature at x. This set of conditions are known as Mixed Conditions:
the first T (0) = 100 means that the temperature at the location x = 0 is 100, the second
dT
dx (5) = 0 means that at the location x = 5, there is no heat flux. This can be quite useful if
say, a metal rod is being heated to 100◦C on one side an insulated on the other.

The method to solving MVPs is the same as boundary value problems subject to a few
modifications.

9.1 Finite Difference Method for MVPs

Consider the differential equation

a(x)d2u

dx2 + b(x)du

dx
+ c(x)u = f(x) with 0 < x < L

as before. The interval [0, L] will be split into N equally sized sections each of width h = L
N

and the grid points are labelled xn = nh for n = 0, 1, 2, . . . , N . This differential equation
can be discretised using the centred difference approximation just as before to give

αnUn−1 + βnUn + γnUn+1 = f(xn) for n = 1, 2, . . . , N − 1

where αn = a(xn)
h2 − b(xn)

2h
, βn = −2a(xn)

h2 + c(xn), γn = a(xn)
h2 + b(xn)

2h
.

This gives a set of N − 1 equations in N + 1 unknowns, namely U0, U1, U2, . . . , UN (recall
that Un ≈ u(xn) for n = 0, 1, 2, . . . , N).

When the differential equation is subjected to two boundary conditions, say

u(0) = ul and u(L) = ur,
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then expressions for U0 and UL are provided which gives N − 1 equations in N − 1 unknowns,
hence resulting in a well-defined system which can be solved as before.

However, suppose that a set of mixed conditions is given as

du

dx
(0) = ũl and u(L) = ur.

In this case, only UN ≈ u(L) = ur is explicitly known, meaning that there will be N − 1
equations in N unknowns since U0 ≈ u(x0) is not known giving an under-determined system
(a system with more unknowns than equations). So either one more equation is needed or
one more unknown needs to be removed. All the unknowns are certainly needed, otherwise
the solution will be incomplete, so the alternative is to find another equation to add to the
set of equations.

The set of N − 1 equations is:

n = 1 : α1U0 + β1U1 + γ1U2 = f(x1)
n = 2 : α2U1 + β2U2 + γ2U3 = f(x2)

...
n = N − 1 : αN−1UN−2 + βN−1UN−1 = f(xN−1) − γN−1uL.

All these come from the discretisation

αnUn−1 + βnUn + γnUn+1 = f(xn).

Evaluating this at n = 0 gives

α0U−1 + β0U0 + γ0U1 = f(x0). (9.1)

Initially, this may seem to be quite strange since there is a point U−1 which is the approx-
imation to the solution u at the point x = x−1 = −h which is certainly out of the range
of consideration. This point is considered to be an artificial grid point that will act as a
placeholder in meantime.

Consider the condition at the start point

du

dx
(0) = ũl.

Using the centred finite difference approximation on the derivative gives

ũl = du

dx
(0) = du

dx
(x0) ≈ u(x1) − u(x−1)

2h
≈ U1 − U−1

2h
=⇒ U1 − U−1

2h
≈ ũl

This approximation can be manipulated to provide an expression for the artificial point U−1
as

U−1 = U1 − 2hũl.

Replacing this into the equation Equation 9.1 will eliminate U−1 completely giving an
equation in terms of U0 and U1 only, namely

β0U0 + (γ0 + α0)U1 = f(x0) + 2hũlα0.
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Therefore, another equation has been found which now completes the system of N equations
in N unknowns. Thus the system of equations is:

n = 0 : β0U0 + (γ0 + α0)U1 = f(x0) + 2hũlα0

n = 1 : α1U0 + β1U1 + γ1U2 = f(x1)
n = 2 : α2U1 + β2U2 + γ2U3 = f(x2)

...
n = N − 1 : αN−1UN−2 + βN−1UN−1 = f(xN−1) − γN−1uL.

This can be written in matrix form as AU = g where



β0 γ0 + α0 0 . . . 0 0 0
α1 β1 γ1 . . . 0 0 0
0 α2 β2 . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . βN−3 γN−3 0
0 0 0 . . . αN−2 βN−2 γN−2
0 0 0 . . . 0 αN−1 βN−1


︸ ︷︷ ︸

A



U0
U1
U2
...

UN−3
UN−2
UN−1


︸ ︷︷ ︸

U

=



f(x0) + 2hα0ũl

f(x1)
f(x2)

...
f(xN−3)
f(xN−2)

f(xN−1) − γN−1ur


︸ ︷︷ ︸

g

.

This can once again be solved on MATLAB using U=inv(A)*g or U=A\g.

If, on the other hand, the mixed conditions were instead

u(0) = ul and du

dx
(L) = ũr,

then the artificial point will be located at x = xN+1 but the same procedure can be done
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give the matrix system AU = g where



β1 γ1 0 . . . 0 0 0
α2 β2 γ2 . . . 0 0 0
0 α3 β3 . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . βN−2 γN−2 0
0 0 0 . . . αN−1 βN−1 γN−1
0 0 0 . . . 0 αN + γN βN


︸ ︷︷ ︸

A



U1
U2
U3
...

UN−2
UN−1
UN


︸ ︷︷ ︸

U

=



f(x1) − α1ul

f(x2)
f(x3)

...
f(xN−2)
f(xN−1)

f(xN ) − 2hγN ũr


︸ ︷︷ ︸

g

.

Mixed Value Problem

Consider the differential equation for a damped harmonic oscillator

d2u

dt2 + 0.5du

dt
+ u = 0 for 0 < t < 2π

with the mixed conditions

du

dt
(0) = 1 and u(2π) = 0.

This MVP is to determine the trajectory of the mass if the launching speed at the start
is 1, which is du

dt (0) = 1, and after 2π seconds, the mass reaches its equilibrium state,
which is u(2π) = 0. Notice that there is no restriction on the starting location, only the
starting speed, so the mass can start anywhere as long as it is launched with a velocity 1.
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The starting location here happens to be at 0.2188 but that is no restricted by the
mixed conditions as long as the gradient at the start is 1.
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10 Symmetric Boundary Conditions

The use of symmetric boundary conditions arises in many cases where conditions at the ends
are not known explicitly but they are related. For instance, consider the ODE representing
the conduction problem

−kf
d2T

dx2 = qgen(x) in − L < x < L

where kf is the material’s conductivity and qgen is the heat transfer. Symmetric boundary
conditions can be imposed as

T (−L) = T (L) and kf
dT

dx
(L) = α(T (L) − Tair)

for some constant α. This problem can be interpreted as an insulated metal rod of length 2L
that has been heated all the way through and then as it cools, it loses heat equally from both
ends (which is the condition T (−L) = T (L)), and that this heat loss at L is proportional
to the temperature gradient between the rod and the air (which is the second condition
kf

dT
dx (L) = α(T (L) − Tair)). The issue with this type of problems is that the temperature at

both boundaries are not explicitly known, but it is known that they are the same.

10.1 Finite Difference Method for Symmetric Boundary Value
Problems

This problem can be tackled in a very similar way to BVPs and MVPs. Consider the
differential equation

a(x)d2u

dx2 + b(x)du

dx
+ c(x)u = f(x) with − L < x < L.

The interval [−L, L] will be split into N equally sized sections each of width h = 2L
N and the

grid points are labelled xn = −L + nh for n = 0, 1, 2, . . . , N . This differential equation can
be discretised using the centred difference approximation (just as in Section 8.2) to give

αnUn−1 + βnUn + γnUn+1 = f(xn) for n = 1, 2, . . . , N − 1

where αn = a(xn)
h2 − b(xn)

2h
, βn = −2a(xn)

h2 + c(xn), γn = a(xn)
h2 + b(xn)

2h
.

This gives a set of N − 1 equations in N + 1 unknowns, namely U0, U1, U2, . . . , UN . In
this case, neither U0 nor UN are explicitly known, therefore none of the unknowns can be
eliminated from the boundary conditions per se.
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Suppose the given conditions are

u(−L) = u(L) and du

dx
(L) = pu(L) + q

where p and q are some constants. The first condition is the symmetric boundary condition
which represents the fact that the value of the unknown solution u at both ends is the same,
then U0 = UN , even though neither is explicitly known. The term U0 can be eliminated since
determining UN automatically determines U0, this reduces the number of unknowns to N .

Consider the discretisation at n = 1, namely

α1U0 + β1U1 + γ1U2 = f(x1),

since U0 = UN , this can be rewritten in terms of UN instead as

β1U1 + γ1U2 + α1UN = f(x1).

The discretised form of the differential equation at n = N is

αN UN−1 + βN UN + γN UN+1 = f(xN ). (10.1)

Just as in the case with the MVPs, an artificial point UN+1 is introduced which is the
solution approximated at the point x = xN+1 = L + h which is beyond the computational
domain.

To find an expression for UN+1, first consider the second condition

du

dx
(xN ) = du

dx
(L)pu(L) + q ≈ pUN + q.

The LHS can be rewritten in terms of its centred differencing approximation as

du

dx
(xN ) ≈ u(xN+1) − u(xN−1)

2h
≈ UN+1 − UN−1

2h
.

Combining these two can give an expression for UN+1 as:

UN+1 − UN−1
2h

≈ pUN + q =⇒ UN+1 = UN−1 + 2hpUN + 2hq.

Replacing this into Equation 10.1 gives

(αN + γN )UN−1 + (βN + 2hpγN )UN = f(xN ) − 2hqγN ,
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thus providing the last equation to complete the set. Finally, this system can be written in
matrix form as AU = g where



β1 γ1 0 . . . 0 0 α1
α2 β2 γ2 . . . 0 0 0
0 α3 β3 . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . βN−2 γN−2 0
0 0 0 . . . αN−1 βN−1 γN−1
0 0 0 . . . 0 αN + γN βN + 2hpγN


︸ ︷︷ ︸

A



U1
U2
U3
...

UN−2
UN−1
UN


︸ ︷︷ ︸

U

=



f(x1)
f(x2)
f(x3)

...
f(xN−2)
f(xN−1)

f(xN ) − 2hqγN


︸ ︷︷ ︸

g

.

This can then be solved in MATLAB but bearing in mind that U0 = UN which determines
the function U at −L and L.

Symmetric Boundary Value Problem

Consider the conduction problem

−d2T

dx2 = 40 sin(x) in − 1 < x < 1

with the conditions

T (−1) = T (1) and dT

dx
(1) = 1

2(T (1) − 25).
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Part IV

Solving Partial Differential Equations
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This section will cover how solutions to IVPs and BVPs can be combined to solve PDEs.
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11 Heat Equation

Ordinary differential equations have been the main focus of this course so far but this will
now be extended to partial differential equations. The differential equations that will be
studied here are the 1-Dimensional Heat (or Diffusion) Equation and the 1-Dimensional
Advection (or Convection) Equation.

The 1-dimensional heat (or diffusion) equation is a partial differential equation that represents
the heat transfer across a rod and is given by

∂u

∂t
= α

∂2u

∂x2 with 0 < x < L and t > 0

where u = u(x, t) is the temperature at location x at time t and α is the thermal diffusivity1.
This equation represents the flow of heat along the length of a rod of length L.

This partial differential equation has three derivatives in total, two derivatives in x and one
derivative in t, this means that three conditions are needed, two on x and one on t:

• u(x, 0) = uinit(x) for x ∈ [0, L]: Initial heat distribution across the rod;
• u(0, t) = ul(t) for t > 0: The temperature at the left end of the rod;
• u(L, t) = ur(t) for t > 0: The temperature at the right end of the rod.

This set of conditions along with the differential equation are known collectively as an
Initial-Boundary Value Problem and can be solved using the Method of Lines.

11.1 The Method of Lines for the Heat Equation

The outline of the method of lines for the heat equation is as follows:

1. Divide the spatial interval [0, L] into Nx equally sized sections and label the points as
x0, x1, x2, . . . , xNx where xn = nhx and the spatial interval width is hx = L

Nx
.

1The thermal diffusivity will always be regarded as a constant and usually takes the form α = k
ρCp

where k
is the thermal conductivity, ρ is the density of the material and Cp is the specific heat capacity.
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2. Left Hand Side: For each point xn, define the approximation Un(t) ≈ u(xn, t).
Therefore the left hand side of the heat equation can be written as

∂u

∂t
(xn, t) ≈ dUn

dt
(t)

and this holds for n = 1, 2, . . . , Nx − 1 since U0(t) ≈ u(0, t) = ul(t) and UN (t) ≈
u(L, t) = ur(t) are already known from the boundary conditions. Notice that the
derivative of Un is an ordinary derivative since Un is a function of t only.

3. Right Hand Side: Use the finite difference approximation to approximate the spatial
derivative in the differential equation. Here, the centred difference approximation for
the second derivative will be used, namely

∂2u

∂x2 (xn, t) ≈ Un+1(t) − 2Un(t) + Un−1(t)
h2

x

.

Therefore the right hand side of the heat equation will become

α
∂2u

∂x2 (xn, t) ≈ α

h2
x

[Un−1(t) − 2Un(t) + Un+1(t)] .

This holds for n = 1, 2, . . . , Nx − 1 bearing in mind, once again, that U0(t) ≈ u(0, t) =
ul(t) and UNx(t) ≈ u(L, t) = ur(t) are known beforehand.

4. These can be combined to give the discretised form of the heat equation
dUn

dt
= α

h2
x

[Un−1 − 2Un + Un+1]

for all n = 1, 2, . . . , Nx − 1 where Un = Un(t). This means that the partial differential
equation has been split into Nx − 1 ordinary differential equations.

5. This entire system of Nx−1 equations can now be written in matrix form as dU
dt = AU+b

where

d
dt



U1(t)
U2(t)
U3(t)

...
UNx−3(t)
UNx−2(t)
UNx−1(t)


︸ ︷︷ ︸

U

= α

h2
x



−2 1 0 . . . 0 0 0
1 −2 1 . . . 0 0 0
0 1 −2 . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . −2 1 0
0 0 0 . . . 1 −2 1
0 0 0 . . . 0 1 −2


︸ ︷︷ ︸

A



U1(t)
U2(t)
U3(t)

...
UNx−3(t)
UNx−2(t)
UNx−1(t)


︸ ︷︷ ︸

U

+ α

h2
x



ul(t)
0
0
...
0
0

ur(t)


︸ ︷︷ ︸

b
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subject to the initial condition

U0 =



U1(0)
U2(0)
U3(0)

...
UNx−3(0)
UNx−2(0)
UNx−1(0)


≈



u(x1, 0)
u(x2, 0)
u(x3, 0)

...
u(xNx−3, 0)
u(xNx−2, 0)
u(xNx−1, 0)


=



uinit(x1)
uinit(x2)
uinit(x3)

...
uinit(xNx−3)
uinit(xNx−2)
uinit(xNx−1)


.

This system can now be solved using any of the IVP solvers with a temporal stepsize
ht.

In essence, the Method of Lines has converted a PDE into a set of ODEs using the same
techniques as BVPs and will be solved in the same way as IVPs.

Heat Equation

Consider an iron rod (of thermal diffusivity α = 2.3 × 10−5) of length 1 where the
middle section of length 0.2 has been heated to a temperature of 1 while the rest is at
0. The ends of the rod have been kept at a constant temperature of 2. This system
can be represented by the IBVP

∂u

∂t
= α

∂2u

∂t2 , x ∈ [0, 1], t > 0

u(x, 0) = uinit(x) =


0 0 ≤ x < 0.4
1 0.4 ≤ x < 0.6
0 0.6 ≤ x ≤ 1

,

u(0, t) = ul(t) = 2, u(L, t) = ur(t) = 2.

First, divide the interval [0, 1] into five equal sec-
tions (which will be of width hx = 1−0

5 = 0.2).

This system can be discretised using the centred difference method and written in
matrix form as dU

dt = AU + b where

d
dt


U1(t)
U2(t)
U3(t)
U4(t)
U5(t)


︸ ︷︷ ︸

U

= α

h2


−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2


︸ ︷︷ ︸

A


U1(t)
U2(t)
U3(t)
U4(t)
U5(t)


︸ ︷︷ ︸

U

+ α

h2


ul(t)

0
0
0

ur(t)


︸ ︷︷ ︸

b
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The differential equation
dU

dt
= AU + b

can be solved using the Euler method with the initial condition

U(0) =


uinit(x1)
uinit(x2)
uinit(x3)
uinit(x4)
uinit(x5)


subject to a time stepsize ht. Below are the plots of the heat distribution
at t = 0, 100, 1000 for Nx = 500 (hx = 0.002) and ht = 0.02 (Nt = 50000).
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At the beginning, the temperature at the ends is 2 and the middle section is at a
temperature of 1. As time progresses, the heat evens out across the iron bar until
eventually, the whole bar will be the same temperature.

11.2 Linear Advection Equation

The heat equation deals with heat transfer through diffusion throughout a material. Another
way in which heat transfer can be achieved by advection (or convection) and this is given
by

∂u

∂t
= −v

∂u

∂x
with 0 < x < L and t > 0

where u = u(x, t) is the temperature at location x at time t and v is the flow speed.

This partial differential equation has two derivatives in total, one in x and one in t, this
means that two conditions are needed, one spatial and one temporal:

• u(x, 0) = uinit(x) for x ∈ [0, L]: Initial heat distribution across the rod;
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• u(0, t) = ul(t) for t > 0: The temperature at the left end of the rod.

Consider the PDE along with the initial condition only, namely u(x, 0) = uinit(x) for
x ∈ [0, L]. The exact solution to this differential equation is given by

u(x, t) = uinit(x − vt),

this can be verified from the partial differential equation as follows:

∂u

∂t
= −v

∂u

∂x
at u(x, t) = uinit(x − vt)

LHS = ∂

∂t
u(x, t) = ∂

∂t
(uinit(x − vt)) = −vu′

init(x − vt)

RHS = ∂

∂x
u(x, t) = ∂

∂x
(uinit(x − vt)) = −vu′

init(x − vt).

This means that if the initial heat profile takes the form of uinit(x), then after time t, the
profile will look exactly the same but shifted to the right by a distance vt.
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The “information” moves from left to right so if the finite differences are to be used, the
centred differencing approach would not be suitable since the information on the right is not
known yet. Therefore the backwards differencing approximation will be the most suitable.
This is known as an upwind/upstream scheme (i.e. against the direction of the wind/stream)
if v > 0. Therefore using the convention Un(t) ≈ u(xn, t) where x = xn is the discretisation
of the spatial points for n = 0, 1, 2, . . . , Nx, the backward differencing approximation to the
spatial derivative is

∂u

∂x
(xn, t) ≈ ∂Un

∂x
= Un − Un−1

hx
.

Therefore is discretised advection equation is
dUn

dt
= v

hx
(Un−1 − Un) for n = 1, 2, . . . , Nx

and this can be solved subject to the initial condition
u(x, 0) = uinit(x)

and boundary condition
u(0, t) = ul(t)

to give the discretised set of equations in the form dU
dt = AU + b where

d
dt



U1(t)
U2(t)
U3(t)

...
UNx−2(t)
UNx−1(t)
UNx(t)


︸ ︷︷ ︸

U

= v

hx



−1 0 0 . . . 0 0 0
1 −1 0 . . . 0 0 0
0 1 −1 . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . −1 0 0
0 0 0 . . . 1 −1 0
0 0 0 . . . 0 1 −1


︸ ︷︷ ︸

A



U1(t)
U2(t)
U3(t)

...
UNx−2(t)
UNx−1(t)
UNx(t)


︸ ︷︷ ︸

U

+ v

hx



ul(t)
0
0
...
0
0
0


︸ ︷︷ ︸

b

and the initial condition is

U0 =



U1(0)
U2(0)
U3(0)

...
UNx−2(0)
UNx−1(0)
UNx(0)


≈



u(x1, 0)
u(x2, 0)
u(x3, 0)

...
u(xNx−2, 0)
u(xNx−1, 0)
u(xNx , 0)


=



uinit(x1)
uinit(x2)
uinit(x3)

...
uinit(xNx−2)
uinit(xNx−1)
uinit(xNx)


.
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11.3 Convection-Diffusion Equation

The heat (or diffusion) equation dictates the spread of heat across a length of material while
on the other hand, the advection (or convection) equation dictates the flow of heat in a certain
direction. The combination of these two effects gives rise to the Convection-Diffusion
Equation which takes the form

∂u

∂t
= α

∂2u

∂x2 − v
∂u

∂x
with 0 < x < L, t > 0.

Just as in the heat equation, this partial differential equation has three derivatives in total,
two derivatives in x and one derivative in t, this means that three conditions are needed,
two on x and one on t, these will be as follows:

• u(x, 0) = uinit(x) for x ∈ [0, L]: Initial heat distribution across the rod;
• u(0, t) = ul(t) for t > 0: The temperature at the left end of the rod;
• u(L, t) = ur(t) for t > 0: The temperature at the right end of the rod.

In order to discretise this system, a finite difference approximation needs to be chosen first.
The centred difference approximation was used for the heat equation and the backwards
difference approximation for the advection. Here, the combination of both will be used.
Even though this might initially seem like an inconsistency, but in fact, this will allow the
system to present a distinct stable advantage as will be seen in the next section.

This system can be discretised in exactly the same way as before, so for n = 1, 2, . . . , Nx −1,

dUn

dt
(t) = α

h2
x

[Un−1(t) − 2Un(t) + Un+1(t)] − v

hx
[Un(t) + Un−1(t)] .

This system can be written in the form dU
dt = AU + b where

A = α

h2
x



−2 1 0 . . . 0 0 0
1 −2 1 . . . 0 0 0
0 1 −2 . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . −2 1 0
0 0 0 . . . 1 −2 1
0 0 0 . . . 0 1 −2



+ v

hx



−1 0 0 . . . 0 0 0
1 −1 0 . . . 0 0 0
0 1 −1 . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . −1 0 0
0 0 0 . . . 1 −1 0
0 0 0 . . . 0 1 −1


, (11.1)
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U =


U1(t)
U2(t)

...
UN−2(t)
UN−1(t)

 , b = α

h2
x


ul(t)

0
...
0

ur(t)

+ v

hx


ul(t)

0
...
0
0

 .

and this system can be solved using an Euler iteration subject to the initial condition
u(x, 0) = uinit(x).

11.4 Asymptotic Stability

The method of lines is essentially a hybrid method that makes use of a combination between
a finite difference approximation and the Euler method and is very effective at solving partial
differential equations, as seen from solving the heat, advection and convection-diffusion
equations. The derivation of the method of lines for the different methods builds on the very
same principle and the codes can be adapted quite easily. One main issue that arises here is
the choice for the stepsizes for both the spatial and temporal discretisations, i.e. the choice
of ht and hx respectively. When both methods are combined, there needs to be a restriction
on both stepsizes.

The first issue that needs to be addressed is the asymptotic stability of the heat equation and
the advection equation. For arbitrarily large matrices, it may not be simple to determine if
all the eigenvalues are negative since it may be computationally restrictive to do so. However,
a result can be used to see if all the eigenvalues are negative without explicitly calculating
them.

Theorem 11.1 (Gershgorin Circle Theorem). Let A be an N × N given by

A =


a11 a12 a13 . . . a1N

a21 a22 a23 . . . a2N

a31 a32 a33 . . . a3N
...

...
... . . . ...

aN1 aN2 aN3 . . . aNN

 .

On the complex plane, consider N closed discs, each centred at the locations aii for i =
1, 2, . . . , n (the diagonal terms) where the disc centred at aii has a radius Ri where

Ri =
∑
j ̸=i

|aij |.

Then all the eigenvalues of the matrix A will have to lie in at least one of these discs. In
other words, every eigenvalues of A satisfies

|λ − aii| ≤ Ri for at least one i = 1, 2, . . . , n.
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Gershgorin Circle Theorem Exapmple

Consider the matrix

A =


−1 3 4 2 −4
0 5 4 7 1
4 −2 0 −3 0
6 −6 −4 −6 −1
7 4 7 9 7

 .

Following the steps of the theorem:

1. Indicate the locations of the diagonal terms (namely −1, 5, 0, −6, 7) on the complex
plane.

2. Find the radii Ri which are equal to the row sum of the absolute terms without
the diagonal terms, in other words,

abs(A) =


1 3 4 2 4
0 5 4 7 1
4 2 0 3 0
6 6 4 6 1
7 4 7 9 7


→
→
→
→
→

3 + 4 + 2 + 4
0 + 4 + 7 + 1
4 + 2 + 3 + 0
6 + 6 + 4 + 1
7 + 4 + 7 + 9

= 13
= 12
= 9
= 17
= 27

→ R1
→ R2
→ R3
→ R4
→ R5

3. Draw a circle around a11 = −1 with radius R1 = 13, a circle around a22 = 5 with
radius R2 = 12 and so on.

4. All the eigenvalues of the matrix A must lie in at least one of the circles
indicated. Indeed, the following figure shows the diagonal terms each
with circles around them with the appropriate radius. The eigenvalues are
given in red and the blue circles are those which contain all said eigenvalues.

144



11.4.1 Stability of the Euler Method for the Advection Equation

Consider the matrix A2 of size N × N from the advection equation

A2 =


−1 0 . . . 0 0
1 −1 . . . 0 0
...

... . . . ...
...

0 0 . . . −1 0
0 0 . . . 1 −1

 .

Following the steps of the Gershgorin theorem, the centres of all the circles on the complex
plane will be located at the diagonal terms, all of which are −1. The radii of these circles
are the row sums of the matrix A2 without the diagonal terms, which means that all
the radii will be 1. The figure below shows the circle that results on the complex plane.
Therefore regardless of what the eigenvalues might be, it is known that they will always have
negative real parts and therefore the advection matrix forms an asymptotically stable system.
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Since the advection equation is asymptotically stable, a bound for the temporal stepsize
needs to be found. Consider the advection equation after the discretisation dU

dt = AU + b
where A = v

hx
A2. The Euler method is numerically stable if the time step ht satisfies

∥I + htA∥∞ ≤ 1.

First calculate I + htA:

I + htA = I + vht

hx
A2 =


1 − ṽ 0 0 . . . 0 0 0

ṽ 1 − ṽ 0 . . . 0 0 0
0 ṽ 1 − ṽ . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . 0 ṽ 1 − ṽ

 .

where ṽ = vht
hx

. Now taking the absolute value of all the terms and taking the row sums

146



gives:

abs
(

I + vht

hx
A2

)
=


|1 − ṽ| 0 0 . . . 0 0 0

ṽ |1 − ṽ| 0 . . . 0 0 0
0 ṽ |1 − ṽ| . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . 0 ṽ |1 − ṽ|


→
→
→
...

→

|1 − ṽ|
ṽ + |1 − ṽ|
ṽ + |1 − ṽ|

...
ṽ + |1 − ṽ|

.

The row sums of the absolute terms of this matrix are

a = |1 − ṽ| and b = |1 − ṽ| + ṽ.

Since it is assumed that v > 0, then b > a therefore, ∥I + htA∥∞ = b = |1 − ṽ| + ṽ. Consider
the two cases when 1 − ṽ > 0 and 1 − ṽ < 0.

1. If 1 − ṽ > 0, then 0 < ṽ < 1:

∥I + htA∥∞ = |1 − ṽ| + ṽ = 1 − ṽ + ṽ = 1.

Therefore if 1 − ṽ > 0, then ∥I + htA∥∞ ≤ 1.

2. If 1 − ṽ < 0, then ṽ > 1:

∥I + htA∥∞ = |1 − ṽ| + ṽ = ṽ − 1 + ṽ = 2ṽ − 1,

therefore in this case, if ∥I + htA∥∞ needs to be less than or equal to 1, then

∥I + htA∥∞ ≤ 1 =⇒ 2ṽ − 1 ≤ 1 =⇒ ṽ ≤ 1

which contradicts with the assumption that ṽ > 1.

Therefore, the Euler method will produce a convergent solution if

ṽ < 1 =⇒ v
ht

hx
< 1.

In terms of number of spatial and temporal points Nx and Nt respectively, this restriction
would be

v
tf − t0
L − x0

Nx

Nt
< 1

So for a fixed velocity v, if the time step ht is to be halved, then the spatial step would also
need to be halved as well.

11.4.2 Stability of the Euler Method for the Heat Equation

Consider the matrix A1 of size N × N from the heat equation

A1 =


−2 1 . . . 0 0
1 −2 . . . 0 0
...

... . . . ...
...

0 0 . . . −2 1
0 0 . . . 1 −2

 .
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The steps of the Gershgorin theorem can be followed to produce the following figure on the

complex plane.
Once again, this shows that all the eigenvalues will have negative real parts even though
their explicit values are not known.

To determine the bound on the stepsize, consider the heat equation after the discretisation,
which is dU

dt = AU + b where A = α
h2

x
A1. The Euler method is numerically stable if the time

step ht satisfies
∥I + htA∥∞ ≤ 1.

First calculate I + htA:

I + htA = I + αht

h2
x

A1 =


1 − 2α̃ α̃ 0 . . . 0 0 0

α̃ 1 − 2α̃ α̃ . . . 0 0 0
0 α̃ 1 − 2α̃ . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . 0 α̃ 1 − 2α̃


where α̃ = αht

h2
x

. Now taking the absolute value of all the terms and taking the row sums
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gives:

abs
(

I + αht

h2
x

A1

)
=


|1 − 2α̃| α̃ 0 . . . 0 0 0

α̃ |1 − 2α̃| α̃ . . . 0 0 0
0 α̃ |1 − 2α̃| . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . 0 α̃ |1 − 2α̃|


→ α̃ + |1 − 2α̃|
→ 2α̃ + |1 − 2α̃|
→ 2α̃ + |1 − 2α̃|

...
→ α̃ + |1 − 2α̃|.

The row sums of the absolute terms of this matrix are

a = α̃ + |1 − 2α̃| and b = 2α̃ + |1 − 2α̃|.

Since tildeα > 0, then b > a and therefore, ∥I + htA∥∞ = b = 2α̃ + |1 − 2α̃|. Consider the
two cases 1 − 2α̃ > 0 and 1 − 2α̃ < 0.

1. If 1 − 2α̃ > 0, then 0 < α̃ < 1
2 :

∥I + htA∥∞ = |1 − 2α̃| + 2α̃ = 1 − 2α̃ + 2α̃ = 1,

therefore ∥I + htA∥∞ ≤ 1.

2. If 1 − 2α̃ < 0, then α̃ > 1
2 :

∥I + htA∥∞ = |1 − 2α̃| + 2α̃ = 2α̃ − 1 + 2α̃ = 4α̃ − 1,

therefore in this case, if ∥I + htA∥∞ needs to be less than or equal to 1, then

∥I + htA∥∞ ≤ 1 =⇒ 4α̃ − 1 ≤ 1 =⇒ α̃ ≤ 1
2

which contradicts with the assumption that α̃ > 1
2 .

This means that the Euler method produces a stable convergent solution if

α̃ <
1
2 =⇒ α

ht

h2
x

<
1
2 .

In terms of number of spatial and temporal points Nx and Nt respectively, this restriction
would be

2α
tf − t0

(L − x0)2
N2

x

Nt
< 1

So for a fixed diffusivity α, if the time step ht is to be halved, then the spatial step would
should be quartered.
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11.5 Stability of the Convection-Diffusion Equation

Now that it has been established that both the heat and advection equations are asymptoti-
cally stable and the stepsize bounds have been found, it is time to combine both cases to
tackle the convection-diffusion equation.

When discretised, the convection-diffusion equation can be written as dU
dt = AU + b where

the matrix A is given by

A = α

h2
x


−2 1 . . . 0 0
1 −2 . . . 0 0
...

... . . . ...
...

0 0 . . . −2 1
0 0 . . . 1 −2

+ v

hx


−1 0 . . . 0 0
1 −1 . . . 0 0
...

... . . . ...
...

0 0 . . . −1 0
0 0 . . . 1 −1

 .

The Gershgorin theorem can be applied to the matrix A to show that all the eigenvectors
have negative real parts. Indeed,

A =


−2α̂ − v̂ α̂ 0 . . . 0 0 0

α̂ + v̂ −2α̂ − v̂ α̂ . . . 0 0 0
0 α̂ + v̂ −2α̂ − v̂ . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . 0 α̂ + v̂ −2α̂ − v̂

 .

where α̂ = α
h2

x
and v̂ = v

hx
. By the Gershgorin theorem, the centres of the circles will be

located at the diagonal terms, namely at −2α̂ − v̂ with the radii α̂, α̂ + v̂ and 2α̂ + v̂. The
largest radius is 2α̂ + v̂ which means that all the eigenvalues will be negative as shown below.
Therefore the convection-diffusion equation is asymptotically stable.
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To find the bound for the stepsizes, consider the convection-diffusion equation after the
discretisation dU

dt = AU + b where A = α
h2

x
A1 + v

hx
A2. The Euler method is numerically

stable if the time step ht satisfies

∥I + htA∥∞ ≤ 1.

Calculating I + htA:

I+htA =



1 − 2α̃ − ṽ α̃ 0 . . . 0 0 0
α̃ + ṽ 1 − 2α̃ − ṽ α̃ . . . 0 0 0

0 α̃ + ṽ 1 − 2α̃ − ṽ . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . 1 − 2α̃ − ṽ α̃ 0
0 0 0 . . . α̃ + ṽ 1 − 2α̃ − ṽ α̃
0 0 0 . . . 0 α̃ + ṽ 1 − 2α̃ − ṽ


where α̃ = αht

h2
x

and ṽ = vht
hx

. Taking the absolute value of all the terms and adding the rows
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gives

abs (I + htA) =


|1 − 2α̃ − ṽ| α̃ 0 . . . 0 0 0

α̃ + ṽ |1 − 2α̃ − ṽ| α̃ . . . 0 0 0
0 α̃ + ṽ |1 − 2α̃ − ṽ| . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . 0 α̃ + ṽ |1 − 2α̃ − ṽ|


→ α̃ + |1 − 2α̃ − ṽ|
→ 2α̃ + ṽ + |1 − 2α̃ − ṽ|
→ 2α̃ + ṽ + |1 − 2α̃ − ṽ|

...
→ α̃ + ṽ + |1 − 2α̃ − ṽ|

.

The row sums of the absolute terms of this matrix are

a = α̃ + |1 − 2α̃ − ṽ|, b = 2α̃ + ṽ + |1 − 2α̃ − ṽ| and c = α̃ + ṽ + |1 − 2α̃ − ṽ|.

Since α̃ > 0 and ṽ > 0, then b > c > a, therefore, ∥I + htA∥∞ = b = 2α̃ + ṽ + |1 − 2α̃ − ṽ|.
Consider the two cases 1 − 2α̃ − ṽ > 0 and 1 − 2α̃ − ṽ < 0.

1. If 1 − 2α̃ − ṽ > 0, then 2α̃ + ṽ < 1:

∥I + htA∥∞ = |1 − 2α̃ − ṽ| + 2α̃ + ṽ = 1 − 2α̃ − ṽ + 2α̃ + ṽ = 1,

therefore ∥I + htA∥∞ ≤ 1.

2. If 1 − 2α̃ − ṽ < 0, then 2α̃ + ṽ > 1:

∥I + htA∥∞ = |1 − 2α̃ − ṽ| + 2α̃ + ṽ = 2α̃ + ṽ − 1 + 2α̃ + ṽ = 4α̃ + 2ṽ − 1,

therefore in this case, if ∥I + htA∥∞ needs to be less than or equal to 1, then

∥I + htA∥∞ ≤ 1 =⇒ 4α̃ + 2ṽ − 1 ≤ 1 =⇒ 2α̃ + ṽ ≤ 1

which contradicts with the assumption that 2α̃ + ṽ > 1.

This means that the Euler method will produce a stable convergent solution if

2α̃ + ṽ < 1 =⇒ 2α
ht

h2
x

+ v
ht

hx
< 1.

This means that a choice can be made with regards to the bounds of the different components,
for instance, the values of hx and ht can be chosen such that

α̃ <
1
4 and ṽ <

1
2 or α̃ <

1
3 and ṽ <

1
3

or any combination thereof provided that the choices satisfy the inequality 2α̃ + ṽ < 1.
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\ Bound for Convection-Diffusion

Consider the convection-diffusion equation

∂u

∂t
= 0.1∂2u

∂x2 − 0.5∂u

∂x

t ∈ [0, 10]
x ∈ [−2, 2]

u(x, 0) = uinit(x) = 10, u(−2, t) = ul(t) = 1, u(2, t) = ur(t) = 0.

This can be discretised to give dU
dt = AU where

d
dt


U1(t)
U2(t)

...
UN−1(t)
UN (t)


︸ ︷︷ ︸

U

=


0.1
h2

x


−2 1 . . . 0 0
1 −2 . . . 0 0
...

... . . . ...
...

0 0 . . . −2 1
0 0 . . . 1 −2

+ 0.5
hx


−1 0 . . . 0 0
1 −1 . . . 0 0
...

... . . . ...
...

0 0 . . . −1 0
0 0 . . . 1 −1




︸ ︷︷ ︸

A


U1(t)
U2(t)

...
UN−1(t)
UN (t)


︸ ︷︷ ︸

U

subject to

U(0) =


uinit(x1)
uinit(x2)

...
uinit(xN−1)
uinit(xN )

 where uinit(x) = 10.

As yet, the value of N has not been put forward since the stepsizes need to be established
first. For a stable Euler method, the stepsizes ht and hx need to satisfy

2α
ht

h2
x

+ v
ht

hx
< 1 =⇒ 2 ht

hx
+ 5 ht

h2
x

< 10.

If ht = 2.5 × 10−5 and hx = 0.02 (which corresponds to Nt = 40000 and Nx = 100),
then the Euler method will be stable.
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A MATLAB Basics

This Appendix will cover some of the basic procedures in MATLAB.

A.1 Command Window

When MATLAB is opened, you will be faced with a window containing several parts.

Figure A.1: Default MATLAB layout.

These different areas serve the following purpose:

• Command Window: This is the main window where the first line starts with >>.
This is where commands are executed, note that once a command has been run (i.e. you
pressed Enter), then what has been written cannot be edited or undone and therefore,
this is a suitable space for running or executing codes only, not for writing extensive
codes.

• Directory: This is the destination folder that MATLAB is going to refer to in either
opening or saving codes. Note that all MATLAB files are saved as .m files.
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• Current Folder: This displays the functions, figures, subfolders, scripts, codes, etc.
that are in the current directory.

• Workspace: This displays all the the variables that have been used, along with their
types (number, matrix, etc.) and their values.

A.2 Executing Commands in the Command Window

The command window will be where all the codes and functions are executed. It can also
be used to perform quick calculations. Some examples of MATLAB syntax and built-in
functions are shown below:

Mathematical Symbol MATLAB Syntax

+ +
− -
× *
÷ /
35 3ˆ5
π pi
e2 exp(2)

sin(π) sin(pi)
sin−1(π) asin(pi)

⌊3.6⌋ floor(3.6)
⌈4.7⌉ ceil(4.7)
|−4| abs(-4)

1 + 2i 1+2i
i 0+i

ℜ(1 + 2i) real(1+2i)
ℑ(3 − 4i) imag(3-4i)
2 × 107 2e7

147 (mod 5) mod(147,5)

All trigonometric functions follow the same syntax as sin, but bear in mind that by default,
all the angles should be in radians and not in degrees. To use degrees, just put a d at the
end of the trigonometric function, i.e. use sind, cosd, asind, etc.

The functions ⌈•⌉ and ⌊•⌋ are the ceiling and floor functions respectively. Their purpose
is to round up to the nearest integer (ceiling) or round down to the nearest integer (floor).
Standard rounding can be done using round.

Another important function is mod which find the remainder when dividing one number by
another. For example, 147 (mod 5) is the remainder after dividing 147 by 5 which is 2.
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1 >> 2+2
2 ans =
3 4
4 >> sin(0)
5 ans =
6 0
7 >> sin(pi/2)
8 ans =
9 1

10 >> sin(30)
11 ans =
12 -0.9880
13 >> sind(30)
14 ans =
15 0.5000
16 >> pi
17 ans =
18 3.1416
19 >> exp(1)
20 ans =
21 2.7813
22 >> ceil(2.1)
23 ans =
24 3
25 >> floor(6.9)
26 ans =
27 6
28 >> round(2.3)
29 ans =
30 2
31 >> mod(147,5)
32 ans =
33 2

If the outcome of a calculation is an integer, then MATLAB will usually display it as an
integer, if not, then by default, it will display the solution as a number to 4 decimal places.
The number of decimal places can be increased by using format long and reversed by using
format short.

ñ Note

Note that any command executed in the Command Window will be applied globally, so
if format long is used, it will apply to everything executed in the Command Window
until it is reversed or MATLAB is restarted.
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1 >> pi/2
2 ans =
3 1.5708
4 >> format long
5 >>pi/2
6 ans =
7 1.570796326794897
8 >> format short
9 >> pi/2

10 ans =
11 1.5708

A.3 Defining Variables

MATLAB is a numerical programming language that relies on a “box” feature. This means
that standard algebraic practices cannot be used, for instance, writing 2x = x + 1 makes
perfect sense mathematically and yields a solution of x = 1, however writing 2*x=x+1 makes
no sense in MATLAB.

ñ Note

A very important note to bear in mind here is that in MATLAB syntax, 2x has no
meaning. In order to multiply terms, the multiplication sign * needs to be used.

A “box” with a given name, which is always on the left hand side of the = sign, is assigned a
value, which is on the right hand side, and the value can then be manipulated or changed,
so there are no variables in MATLAB per se. In the following example, a “box” is given the
name x and the number 3 is assigned to it, calculations can then be done by referring to the
number that is in said box. The values within the boxes can be redefined by using the =
sign again.

1 >> x=3
2 x =
3 3
4 >> x+1
5 ans =
6 4
7 >> x+x
8 ans =
9 6

10 >> 3*x
11 ans =
12 9
13 >> y=(2*x)ˆx

157



14 y =
15 216
16 >> y+10
17 ans =
18 226

On the other hand, x = x + 2 makes no sense mathematically but within MATLAB syntax
(as is the case with most other programming languages), this simply means calculate x+2
(which is on the right hand side of the = sign) using the value already in the box labelled
x (which is 3), then redefine the value in that same box to take this new value, so the box
labelled x is now assigned the value 5.

1 >> x=3
2 x =
3 3
4 >> x=x+2
5 x =
6 5
7 >> x=3*x
8 x =
9 15

A.4 Naming Variables

There are certain rules with regards to what names can be used for the variables:

• Names can be of any length (within the bounds of reason of course to avoid confusion).

• Names are case sensitive, so a and A are two different variable names.

• Names must contain no spaces, underscores can be used instead. For example, Bad
Name is not a viable variable name but GoodName and Also_A_Good_Name are both
valid.

• Names must contain no operators or symbols, with the exception of the underscore,
so do not use ! ? . , ; + - * / & # % $.

• Names can contain numbers as long as they are not the first character. For example
1Forrest1 is not a viable variable name but OneForrest1 or Obi1Kenobi are both
viable.

• Names cannot be the same as already existing functions, for instance, a variable
cannot be given the name sin since there is already a built-in function with that same
name, however, one could use Sin since variable names are case sensitive (although
this particular example is not recommended since it may cause confusion).
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1 >> P_1=1
2 P_1 =
3 1
4 >> P_2=P_1+2
5 P_2 =
6 3
7 >> PP_3=P_1+p_2
8 Undefined function or variable 'p_2'.
9 >> PP_3=P_1+P_2

10 PP_3 =
11 4

Typing whos x in the command window will give the properties of x, namely its size (in a
matrix sense), storage allocation, class and attributes, but not its value. Typing whos on
its own will give a list of all the variables that have been used along with their properties,
alternatively, these can also be found in the Workspace.

A.5 Scripts & Functions

Within the command window, nothing can be edited once it has been executed which is
inconvenient if the code is longer than a single line. In that case, it is best to use the Editor.
By default, the Editor can be opened by clicking on New Script, this is a window in which
any length of code can be written, saved and then executed with the Run button. If any
changes need to be made then the editor window will allow that with ease, once changes are
made, the code can be run again.

A function is very similar to a script but the difference between them is that a function
can take in several inputs and produce several outputs and must always have the format:

1 function [output1,output2,...]=Function_Name(input1,input2,...)
2 Body of the code
3 end

The function cannot always be executed with the Run button but will often need to be
called in the Command Window to allow for the inputs to be placed.

The name of the function follows the same rules as the variable names mentioned before.
One of the most important technicalities that has to be addressed is that the functions and
scripts that are used must be in the same as folder as is stated in the directory.

When writing functions, or scripts of any kind, there are two important characteristics that
need to be considered:
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• Commentary: When writing codes, it is important to provide some comments on
what is being done to give context and to allow for accessibility and reproducibility.
This can be done by using % at the beginning of the line. This makes MATLAB ignore
everything that comes after it, allowing for commentary of bits of code that need
context. This is generally good practice in writing codes since the user can make
comments about inputs, outputs, procedures, etc. without affecting the execution of
the code.

• Suppression: On MATLAB, any line of code that is written will produce an output
(many other coding languages do not unless prompted to do so). So in functions,
performing an action will always produce an output whether it is needed or not. This
is where semicolon ; can be used. The semi-colon suppresses the output, this means
that if there are several calculations to be made, sometimes the intermediate stages
do not need to be seen, only the final answer, in this case the semicolon allows the
calculation to be done but not printed out in the command window.

\ Example of function

Consider a cube with side length L (in m) and mass M (in kg), then the object will
have density

ρ = M

L3 .

The following code calculates this density with the inputs being the mass M and length
L with the output being the density rho:

1 function [rho]=Calculate_Density(M,L)
2

3 % M: Mass of cube in kg
4 % L: Side length of cube in m
5

6 rho = M/(Lˆ3);
7

8 end

This function, which is called Calculate_Density, has two inputs, namely M and L,
and one output, namely rho. Notice that the list of inputs must always be in round
brackets (...) while the outputs should be in square brackets [...].
To use this function, just type the name of the function in the command window with
the inputs and outputs in exactly the same order in which they appear in the function
and using the same set of brackets as well, i.e. (...) for inputs and [...] for outputs.

1 >> [rho] = Calculate_Density(100,20)
2 rho =
3 0.0125

Expanding on this, suppose that a new function is desired where the user will input
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the mass in pounds and the length in inches but the desired density should still be in
kg m−2. A few more lines can be added in that case.

1 function [rho]=Calculate_Density_Imperial(M,L)
2

3 % M: Mass of cube in lbs
4 % L: Side length of cube in inches
5

6 M = M/2.20462; % Converts lbs to kg
7 L = L/39.3701; % Converts inches to m
8

9 rho = M/(Lˆ3);
10

11 end

Note that here, the same variable name has been used and then redefined. So initially,
M will be input in pounds, say M=50, then at line 6, the same variable name is redefined,
so the new mass will be M = 50

2.20462 = 22.6796, but the same name is used for both.
Similarly for L when it is converted from inches to meters.
In this case, the function can be executed with a mass of 50lbs and a side length of
10in to give:

1 >> [rho] = Calculate_Density_Imperial(50,10)
2 rho =
3 1.3840e+03

One of the major differences in using scripts and functions is the assignment of variables
and their declaration. In a script, if a variable C was given the value 3 (so C=3 was in the
script) then this value of C will be declared globally, meaning that it can be used in the
command window and it will still take the same value. However in functions, the variables
are declared locally, so if in a function the variable C was given the value 3, this will only
hold within the function itself and no where outside it.

A.6 Exersises

, Excersise 1: Metric Cone

Write a MATLAB function that takes inputs h and r and outputs the volume of a cone
(in cubic meters) with height h in meters and radius r in meters.
Test the code on a cone with height 5m, radius 3m (which should give a volume of
47.1238898m3.
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� Solution 1

1 function [V]=Cone_Vol1(h,r)
2

3 % This function caculates the volume of a cone in mˆ3
4

5 % Inputs:
6 % h: Height of the cone in m
7 % r: Radius of the cone in m
8

9 % Output:
10 % V: Volume of the cone in mˆ3
11

12 V=pi*(rˆ2)*h/3;
13

14 end

Code test with h = 5 and r = 3:

1 >> [V]=Cone_Vol1(5,3)
2 V =
3 47.129

, Excersise 2: Imperial Cone

Write a MATLAB function that takes inputs h and r and outputs the volume of a cone
(in cubic meters) with height h in inches and diameter d in yards.
Test the code on a cone with height 10in, diameter 1yd (which should give a volume of
0.0556m3.
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� Solution 2

1 function [V]=Cone_Vol2(h,d)
2

3 % This function caculates the volume of a cone in mˆ3
4

5 % Inputs:
6 % h: Height of the cone in inches
7 % d: Diamater of the cone in yards
8

9 % Convert h from inches to metres
10 h = h*0.0254;
11

12 % Convert d from yards to metres
13 d = d*0.9144;
14

15 % Radius of cone base is half the diameter
16 r = d/2;
17

18 % Output:
19 % V: Volume of the cone in mˆ3
20

21 V=pi*(rˆ2)*h/3;
22

23 end

Code test with h = 10 and d = 1:

1 >> [V]=Cone_Vol2(10,1)
2 V =
3 0.0556
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B Arrays in MATLAB

MATLAB is one of the most versatile programming languages when it comes to working
with vectors and matrices, hence the name MATLAB, particularly MATrix LABoratory. In
MATLAB, vectors essentially represent lists and matrices represent tables.

B.1 Vectors

To form a vector, use square brackets and separate the terms using commas to form a row
vector or semicolons to form a column vector.

1 >> v=[1,2,3,4]
2 v =
3 1 2 3 4
4 >> u=[1;2;3;4]
5 u =
6 1
7 2
8 3
9 4

An algebraic sequence (a sequence where the consecutive terms differ by a fixed value) can
be formed into a vector by using colons as v=a:n:b. This forms a vector v where the first
term is a, then next term is a+n, then a+2*n, etc. until b is reached. If the sequence goes
beyond b, then b is ignored and the last term before b will be the last term of the sequence.
Note that v=a:b will produce a row vector from a to b in steps of 1.

1 >> u=[1:1:10]
2 u =
3 1 2 3 4 5 6 7 8 9 10
4 >> v=[20:3:30]
5 v =
6 20 23 26 29
7 >> w=[100:-20:-40]
8 w =
9 100 80 60 40 20 0 -20 -40

Some useful operations that can be applied to vectors are: For a vector v:
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• abs(v) takes the absolute value of all the terms of the vector v.

• v' takes the transpose of the vector v, namely vT, so it changes v from a row vector
to a column vector and vice versa.

• length(v) finds how many terms there are in the vector v.

• max(v) finds the maximum value in the vector v while min(v) finds the minimum
value.

• [a,b]=max(v) produces two outputs, a which is the maximum value in the vector v
and b which is its location in v, similarly with [a,b]=min(v). (Note that in MATLAB,
array positions start from 1, unlike Python which starts from 0.)

• sum(v) takes the sum of all the terms in the vector v.

• mean(v) takes the mean of all the terms in the vector v.

• median(v) takes the median of all the terms in the vector v.

• sort(v) orders the terms of v in ascending order.

• sort(v,'descend') orders the terms of v in descending order.

• norm(v) finds the magnitude of the vector v. Recall that for a vector
v = (v1, v2, . . . , vN ), the magnitude of the vector v is given by:

|v| =

√√√√ N∑
n=1

|vn|2 =
√

v2
1 + v2

2 + · · · + v2
N .

• norm(v,p) finds the p-norm of the vector v. Recall that for a vector v = (v1, v2, . . . , vN )
and a positive integer p, the p-norm of v, denoted ||v||p is given by

||v||p = p

√√√√ N∑
n=1

|vn|p = p

√
vp

1 + vp
2 + · · · + vp

N .

Note that norm(v) is the default 2-norm whereas norm(V,inf) is the sup-norm1 (also
known as the Chebyshev norm or infinity norm).

1Recall that for a vector v, the sup-norm, denoted ||v||∞ is the maximum absolute term in the vector,
i.e. for a vector v = (v1, v2, . . . , vN ),

||v||∞ = max
n=1,2,...,N

|vn|.
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1 >> v=[2,-8,6,-2,-9,4]
2 v =
3 2 -8 6 -2 -9 4
4 >> abs(v)
5 ans =
6 2 8 6 2 9 4
7 >> v'
8 ans =
9 2

10 -8
11 6
12 -2
13 -9
14 4
15 >> (v')'
16 ans =
17 2 -8 6 -2 -9 4
18 >> length(v)
19 ans =
20 6
21 >> max(v)
22 ans =
23 6
24 >> [a,b]=max(v)
25 a =
26 6
27 b =
28 3
29 >> min(v)
30 ans =
31 -9
32 >> [a,b]=min(v)
33 a =
34 -9
35 b =
36 5
37 >> sum(v)
38 ans =
39 -7
40 >> mean(v)
41 ans =
42 -1.1667
43 >> median(v)
44 ans =
45 0
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46 >> sort(v)
47 ans =
48 -9 -8 -2 2 4 6
49 >> sort(v,'descend')
50 ans =
51 6 4 2 -2 -8 -9
52 >> norm(v)
53 ans =
54 14.3175
55 >> norm(v,1)
56 ans =
57 31
58 >> norm(v,inf)
59 ans =
60 9

B.2 Matrices

To form matrices, the same theme follows as with vectors where a comma indicates the next
term on the same row and semicolons move to the next row. Be careful to ensure that all
the rows have the same number of terms, similarly with the columns.

1 >> M=[1,2,3;4,5,6;7,8,9]
2 M =
3 1 2 3
4 4 5 6
5 7 8 9
6 >> N=[1,2,3,4,5;6,7,8,9,10]
7 N =
8 1 2 3 4 5
9 6 7 8 9 10

10 >> P=[1,2,3;4,5,6;7,8]
11 Error using vertcat
12 Dimensions of arrays being concatenated are not consistent.

There are some operations that translate from vectors to matrices, for example, for a matrix
M:

• abs(M) takes the absolute value of all the terms of the matrix M.

• M' takes the transpose of the matrix M.

Other functions as not as intuitive, for example, length(M) gives only one output which is
either the number of rows or the number of columns, whichever is bigger. Whereas size(M)
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gives two outputs with the first being the number of rows of M and the second is the number
of columns of M.

Some matrix functions are done column-wise, for example, max(M) does not give the maximum
value that appears in the matrix, instead it produces a row vector of maxima where the first
term is maximum value of all the terms in the first column, the second is the maximum of
the second column and so on. This same column-wise approach holds for other functions like
min(M), sum(M), mean(M) and sort(M); MATLAB works with the matrix as a collection
of column vectors and applies these functions to each column separately. To find the
maximum/minimum/sum of all th terms in the entire matrix, then the function will need
to be used twice, so the maximum element in the whole matrix can be found by using
max(max(M)).

Note that [a,b]=max(M) will give two outputs, the first output a is the vector max(M) as
described above and the second output b is the vector of their locations. Similarly for
[a,b]=min(M).

Matrix norms are slightly more involved, in terms of their mathematical definition, than
vector norms. For a matrix M of size m × n and a positive integer p, the matrix p-norm
imposed by the vector p-norm is given by

||M ||p = sup
x∈Cn

||Mx||p
||x||p

Calculating these explicitly can be very difficult since it requires using all possible vectors
x ∈ Cn, however, the most useful norms have some closed forms:

• ||M ||1 is the maximum absolute column sum;
• ||M ||∞ is the maximum absolute row sum;
• ||M ||2 is the Spectral Radius of M (more specifically, it is the square root of the

largest eigenvalue of the matrix MHM where MH is the Hermitian of M , or the
complex conjugate transpose).

There are other norms that are not imposed by vector norms, like the Frobenius Norm
which is the square root of the sum of the squares of the absolute valaue of all the terms,
i.e.

||M ||F =

√√√√ m∑
i=1

n∑
j=1

|mij |2.

All these norms still use the same syntax as vector norms, i.e. using norm(M,1), norm(M,2),
norm(M,inf) and norm(M,'Fro') (with norm(M) being the default 2-norm). This is why
it is imperative to be mindful of the context since the same operation can have different
meanings depending on whether the input was a vector or a matrix.

1 >> M=[-4,5;2,9;-6,10]
2 M =
3 -4 5
4 2 9
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5 -6 10
6 >> abs(M)
7 M =
8 4 5
9 2 9

10 6 10
11 >> M'
12 ans =
13 -4 2 -6
14 5 9 10
15 >> size(M)
16 ans =
17 3 2
18 >> length(M)
19 ans =
20 3
21 >> max(M)
22 ans =
23 2 10
24 >> max(max(M))
25 ans =
26 10
27 >> [a,b]=max(M)
28 a =
29 2 10
30 b =
31 2 3
32 >> min(M)
33 ans =
34 -6 5
35 >> min(min(M))
36 ans =
37 -6
38 >> [a,b]=min(M)
39 a =
40 -6 5
41 b =
42 3 1
43 >> sum(M)
44 ans =
45 -8 24
46 >> sum(sum(M))
47 ans =
48 16
49 >> mean(M)
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50 ans =
51 -2.6667 8.0000
52 >> median(M)
53 ans =
54 -4 9
55 >> sort(M)
56 ans =
57 -6 5
58 -4 9
59 2 10
60 >> sort(M,'descend')
61 ans =
62 2 10
63 -4 9
64 -6 5
65 >> norm(M)
66 ans =
67 15.1099
68 >> norm(M,1)
69 ans =
70 24
71 >> norm(M,inf)
72 ans =
73 16
74 >> norm(M,'Fro')
75 ans =
76 16.1864

B.3 Referencing Terms in Arrays

Elements of a vector (row or column) can be referred to by putting the index of the desired
element in brackets after the vector’s name. For example, v(4) is the 4th element in the
vector v.

ñ MATLAB Indexing

Note that in MATLAB, indexing starts from 1, not from 0 like Python.

If the last element of a vector is desired where its size may not be known, then the index
end can be used.

1 >> u=[9;7;0;1]
2 u =
3 9
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4 7
5 0
6 1
7 >> u(1)
8 ans =
9 9

10 >> u(4)
11 ans =
12 1
13 >> u(end)
14 ans =
15 1
16 >> u(6)
17 Index exceeds array bounds.

For matrices, there are two indices, the first denotes the row number and the second the
column number: 

(1, 1) (1, 2) (1, 3) . . .
(2, 1) (2, 2) (2, 3) . . .
(3, 1) (3, 2) (3, 3) . . .

...
...

... . . .


So M(2,3) will output the element of M that is in row 2 and column 3. MATLAB also has
the ability to refer to terms in matrices by using one index only. For instance, if a matrix M
is of size 3 × 4, then M(10) would refer to the “10th element”. Under usual circumstances,
this is meaningless unless M is a vector, however, in this case, MATLAB can refer to the
10th element where the elements start from 1 and work their way down columns as such:(1) (4) (7) (10)

(2) (5) (8) (11)
(3) (6) (9) (12)


Therefore, the 10th element of M would be the element in the 1st row and 4th column for
the 3 × 4 matrix. Using this referencing system is certainly not recommended since it can
cause issues with different sized matrices.

MATLAB can also refer to whole rows or whole columns, this is done by using :, for example
M(:,3) will produce the 3rd column whereas M(1,:) will produce the 1st row.

1 >> M=[2,3,1,4;1,6,3,1;4,1,2,8]
2 M =
3 2 3 1 4
4 1 6 3 1
5 4 1 2 8
6 >> M(2,3)
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7 ans =
8 3
9 >> M(3,1)

10 ans =
11 4
12 >> M(end,3)
13 ans =
14 2
15 >> M(end,end)
16 ans =
17 8
18 >> M(:,2)
19 ans =
20 3
21 6
22 1
23 >> M(3,:)
24 ans =
25 4 1 2 8
26 >> M(:,end)
27 ans =
28 4
29 1
30 8
31 >> M(2)
32 ans =
33 1
34 >> M(4)
35 ans =
36 3
37 >> M(12)
38 ans =
39 8

B.4 Matrix Operations

Addition and subtraction of matrices (and vectors) follows the usual mathematical rules,
namely, both matrices need to be of the same size and all the terms are added elementwise,
i.e. the first term is added to the first term, the second to the second, etc.

1 >> A=[1,3,7;5,2,6;2,3,2]
2 A =
3 1 3 7
4 5 2 6
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5 2 3 2
6 >> B=[2,3,1;1,6,3;4,1,2]
7 B =
8 2 3 1
9 1 6 3

10 4 1 2
11 >> A+B
12 ans =
13 3 6 8
14 6 8 9
15 6 4 4

Matrices and vectors can be multiplied or divided by a scalar value using the * and /
operations.

1 >> 2*A
2 ans =
3 2 6 14
4 10 4 12
5 4 6 4
6 >> B/2
7 ans =
8 1.00 1.50 0.50
9 0.50 3.00 1.50

10 2.00 0.50 1.00

Matrix multiplication is carried out using the * operator. Recall that for two matrices A, of
size m × n, and B, of size p × q, the matrix product AB is only possible if n = p (i.e. the
number of columns of A is equal to the number of rows of B) and the resulting matrix AB
will then be of size m × q.

1 >> A*B
2 ans =
3 33 28 24
4 36 33 23
5 15 26 15

Elementwise multiplication and division of matrices (also known as the Hadamard Op-
erations) is also a possibility in MATLAB. So for matrices A and B of the same size, the
elementwise product (denoted mathematically as A ◦ B) produces a matrix that is of the
same size as A and B where the first element is the product of the first element of A and
the first element of B, the second element is the product of the second element of A and the
second element of B and so on. This is done using a dot . before the operations, in other
words, the elementwise product A ◦ B is written as A.*B, similarly for elementwise division
using ./ and elementwise exponentiation using .ˆ. Bear in mind this is only possible if the
matrices/vectors are of the same size, just as in addition and multiplication.
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1 >> A.*B
2 ans =
3 2 9 7
4 5 12 18
5 8 3 4
6 >> A./B
7 ans =
8 0.50 1.00 7.00
9 5.00 0.33 2.00

10 0.50 3.00 1.00
11 >> A.ˆ2
12 ans =
13 1 9 49
14 25 4 36
15 4 9 4
16 >> Aˆ2
17 ans =
18 30 30 39
19 27 37 59
20 21 18 36

There are some special matrices and matrix forms built into MATLAB such as:

• []: empty vector/matrix which contains no terms, therefore has size 0 × 0 and is
usually used as a placeholder.

• zeros(a,b): forms a matrix of zeros with size a × b.

• ones(a,b): forms a matrix of ones with size a × b.

• eye(a,b): forms an identity matrix (ones on the main diagonal, zeros otherwise) of
size a × b.

• rand(a,b): forms a matrix of size a × b where all the elements are randomly chosen
from a normal distribution whose entries lie between 0 and 1.

• randi([M,N],a,b): forms a matrix of size a × b where all the elements are randomly
chosen integers from a normal distribution whose entries lie between M and N.

• diag(v): forms a square matrix whose diagonal entries are the elements of the vector
v.

There are also some matrix operations that are very useful such as:

• inv(A): find the inverse of the matrix A.

• det(A): find the determinant of the matrix A.

• trace(A): find the trace of the matrix A (which is the sum of the diagonal entries).

174



B.5 Substitution & Concatenation

Sometimes, vectors and matrices need to be augmented, either by adding, removing or
changing some terms.

For both vectors and matrices, individual values can be substituted and redefined by referring
to its index. For example, consider the vector v and suppose that its second element is to
be changed, this can be done by using v(2)= to assign a new value that will overwrite the
original value.

1 >> v=[1,3,7,5]
2 v =
3 1 3 7 5
4 >> v(2)
5 ans =
6 3
7 >> v(2)=8
8 v =
9 1 8 7 5

10 >> v(4)=0
11 v =
12 1 8 7 0

The same syntax can be used to redefine an element in terms of itself or in terms of others,
like defining the second element as twice its original value or setting an element to be the
sum of some other elements.

1 >> v(2)=10*v(2)
2 v =
3 1 80 7 0
4 >> v(1)=v(3)
5 v =
6 7 80 7 0
7 >> v(4)=v(1)+v(2)+v(3)
8 v =
9 7 80 7 94

The same can be done with matrices as well where this replacement can either be done by
elements, rows or columns.

1 >> M=[2,1;3,6]
2 M =
3 2 1
4 3 6
5 >> M(1,2)
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6 ans =
7 1
8 >> M(1,2)=4
9 M =

10 2 4
11 3 6
12 >> M(2,2)=0
13 M =
14 2 4
15 3 0
16 >> M(1,:)
17 ans =
18 2 4
19 >> M(1,:)=[9,1]
20 M =
21 9 1
22 3 6
23 >> M(:,2)
24 ans =
25 1
26 6
27 >> M(:,2)=[4;0]
28 M =
29 9 4
30 3 0

Matrices and vectors can also be concatenated or cut, that simply means that terms can be
added or removed, this is done by using the comma or semi-colon depending on the situation.
Not only can terms be added, but whole rows and columns can be added as well but it is
critical that the terms are added in a consistent fashion, meaning that if a new row is to
be added, then it must be of the same size as all the other rows otherwise it will not make
sense. To remove rows or columns, then simply assign an empty vector, namely [], to the
desired location.

1 >> A=[1,7]
2 A =
3 1 7
4 >> A=[A,4] % Add 4 to the end
5 A =
6 1 7 4
7 >> A=[8,A] % Add 8 to the start
8 A =
9 8 1 7 4

10 >> A=[A;[0,5,7,9]] % Add a new row
11 A =
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12 8 1 7 4
13 0 5 7 9
14 >> A=[A,[0;1]] % Add a new column
15 A =
16 8 1 7 4 0
17 0 5 7 9 1
18 >> A(:,3)=[] % Remove third column
19 A =
20 8 1 4 0
21 0 5 9 1
22 >> A(1,:)=[] % Remove first row
23 A =
24 0 5 9 1
25 >> A(end)=[] % Remove last term
26 A =
27 0 5 9

B.6 Finding Terms

Sometimes, finding some terms is desired, say if the user needs to find all the values in a
list that are greater than 5, or less than −1, or equal to 2. In this case, the comparative
operators should be used which are:

Operation MATLAB Syntax

Less than <
Less than or equal to <=

Equal to ==
Greater than >

Greater than or equal to >=
Not equal to ~=

These operators need to be used in conjunction with the find function. So for a given vector
v, if the terms greater than 5 need to be found, then use find(v>5), this will produce a
vector of indices that denote the locations of the values that greater than 5. If there are no
such values that satisfy the condition, then an empty vector will be produced, namely [].
This can be very useful if, say, all the values greater than 5 need to be multiplied by 10, or
all the values that are less than −1 need to be changed to 0, or all the values that are equal
to 2 need to be removed.

1 >> v=[1,2,-5,12,-3,2]
2 v =
3 1 2 -5 12 -3 2
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4 >> i=find(v>5)
5 ans =
6 4
7 >> v(i)
8 ans =
9 12

10 >> v(i)=10*v(i)
11 v =
12 1 2 -5 120 -3 2
13 >> j=find(v<-1)
14 ans =
15 3 5
16 >> v(j)
17 ans =
18 -5 -3
19 >> v(j)=0
20 v =
21 1 2 0 120 0 2
22 >> k=find(v==2)
23 ans =
24 2 6
25 >> v(k)=[]
26 v =
27 1 0 120 0

When finding terms in matrices, MATLAB tends to provide the location in the single index
form rather than in the dual form. In other words, if a matrix is of size 3 × 3 and MATLAB
needs to refer to the (2, 3) element (second row, third column), it would display the index as
the 7th element. This is an important distinction that needs to be made.

1 >> M=[2,0,5;-1,2,9;-6,1,-8]
2 M =
3 2 0 5
4 -1 2 9
5 -6 1 -8
6 >> m=find(M>5)
7 m =
8 8
9 >> M(m)

10 and =
11 9
12 >> M(m)=M(m)*10
13 M =
14 2 0 5
15 -1 2 90
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16 -6 1 -8
17 >> n=find(M<0)
18 n =
19 2
20 3
21 9
22 >> M(n)
23 ans =
24 -1
25 -6
26 -9
27 >> M(n)=0
28 M =
29 2 0 5
30 0 2 90
31 0 1 0

An alternative way of finding terms would be to dispense with the find command altogether.
This will produce a binary matrix showing the locations of the terms that satisfy the condition
(with 1 being true and 0 being false).

1 >> A=[1,4,6,9,2;7,3,1,6,0]
2 A =
3 1 4 6 9 2
4 7 3 1 6 0
5 >> find(A>5)
6 ans =
7 2
8 5
9 7

10 8
11 >> A>5
12 ans =
13 2×5 logical array
14 0 0 1 1 0
15 1 0 0 1 0
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B.7 Exercises

, Exersise 1: Matrix Calculations

A =
(

1 2
5 8

)
; B =

 4 0 −4
−1 0 1
2 1 3

 ; C =
(

1 0 4
2 −2 6

)

u =
(

1
8

)
; v =

0
3
4


Using MATLAB, write a command/script to produce:

• The matrix AC.

• Element (2,3) of the matrix CB.

• Third element of the matrix uTC.

• Element (1,2) of the matrix uvT.

• Trace of B2.

• Maximum and minimum terms in Bv.

• 2-norm of v.

• Frobenius norm of B.

• The determinant of B.

• The inverse of 134(CTC + I) where I is the identity matrix.

• The eigenvalues and eigenvectors of vuTC.
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� Solution 1
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1 >> A=[1,2;5,8];
2 >> B=[4,0,-4;-1,0,1;2,1,3];
3 >> C=[1,0,4;2,-2,6];
4 >> u=[1;8];
5 >> v=[0;3;4];
6 >> A*C
7 ans =
8 5 -4 16
9 21 -16 68

10 >> D=C*B
11 D =
12 12 4 8
13 22 6 8
14 >> D(2,3)
15 ans =
16 8
17 >> E=u'*C
18 E =
19 17 -16 52
20 >> E(3)
21 ans =
22 52
23 >> F=u*v'
24 F =
25 0 3 4
26 0 24 32
27 >> F(1,2)
28 ans =
29 3
30 >> trace(B*B)
31 ans =
32 11
33 >> G=B*v
34 G =
35 -16
36 4
37 15
38 >> max(G)
39 ans =
40 15
41 >> min(G)
42 ans =
43 -16
44 >> norm(v,2)
45 ans =
46 5
47 >> norm(B,'Fro')
48 ans =
49 6.9282
50 >> det(B)
51 ans =
52 0
53 >> H=134*(C'*C+eye(3))
54 H =
55 804 -536 2144
56 -536 670 -1608
57 2144 -1608 7102
58 >> inv(H)
59 ans =
60 0.0067 0.0011 -0.0018
61 0.0011 0.0035 0.0004
62 -0.0018 0.0004 0.0008
63 >> J=v*u'*C
64 J =
65 0 0 0
66 51 -48 156
67 68 -64 208
68 >> [E,V]=eig(J)
69 E =
70 0 0 0.0000
71 0.6000 0.9558 -0.9558
72 0.8000 0.2941 -0.2941
73 v =
74 160 0 0
75 0 0 0
76 0 0 0
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C Loops

Loops are some of the most important features in any programming language and they fall
under three types: if, while and for loops.

C.1 if Loops

An if command executes a loop if a certain condition is satisfied. This requires the use of
comparative operators which are:

Operation MATLAB Syntax

Less than <
Less than or equal to <=

Equal to ==
Greater than >

Greater than or equal to >=
Not equal to ~=

An if loops must have the following structure:

1 if compare <=> compare with
2

3 do something
4

5 elseif compare <=> compare with
6

7 do something else
8

9 else
10

11 do something if none of the above conditions have been met
12

13 end
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\ if Loop Example

Suppose a function is to be written which takes a number N as an input then in the
command window, displays “The Good” if it is positive, “The Bad” if it is negative
and “The Ugly” if it is zero1.

1 function Good_Bad_Ugly(N)
2

3 if N>0 % First check if the input N is positive
4

5 disp('The Good') % If N is positive, display 'The Good'
6

7 elseif N<0 % If N is not positive, check if it is negative
8

9 disp('The Bad') % If N is negative, display 'The Bad'
10

11 elseif N==0 % If N is neither positive nor negative, check
12 % if it zero
13

14 disp('The Ugly') % If N is zero, display 'The Ugly'
15

16 end
17

18 end

The disp command outputs the variables stated within the brackets, if the argument
is single quotation marks, namely '...', then it will be displayed verbatim. Note that
here, the line will not start with ans = since it is was only asked to display and not
specify variables. This function can be run within the command window as follows:

1 >> Good_Bad_Ugly(3)
2 The Good
3 >> Good_Bad_Ugly(-5)
4 The Bad
5 >> Good_Bad_Ugly(0)
6 The Ugly

In if loops, it is always a good idea to have a few elseif commands in order to have
all the cases covered, this is because sometimes, MATLAB can misunderstand some
inputs. For instance, suppose that the input is the complex number 1 − 2i:

1 >> Good_Bad_Ugly(1-2i)
2 The Good

This does not make sense since the number 1 − 2i is neither positive nor negative, nor
zero for that matter. In this case, MATLAB takes the real part only without being
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prompted to do so, and prints the output and since the real part is 1, the output will
be The Good. In order to accommodate for this, an extra condition can be added in
the form of another if loop that considers this and displays “The Complex” if the
number is complex.

1 function Good_Bad_Ugly(N)
2

3 if imag(N)~=0 % First, check if N has a non-zero imaginary
4 % part
5

6 disp('The Complex') % If N does have a non-zero imaginary part,
7 % display 'The Complex'
8

9 else % Otherwise, run the code as before
10

11 if N>0
12

13 disp('The Good')
14

15 elseif N<0
16

17 disp('The Bad')
18

19 elseif N==0
20

21 disp('The Ugly')
22

23 end
24

25 end
26

27 end

In this case, if the input as 1 − 2i, then the output will be The Imaginary.

It is important to note that in if loops, the code will quit the loop after the first time the
if condition is satisfied and will not check the other conditions.

\ if Loop Ordering

Suppose a function is to be written which takes an input N and displays “Multiple of
2” if it is a multiple of 2, “Multiple of 3” if it is a multiple of 3 and “Too high to count”
otherwise. This function will require the use of the mod syntax; for numbers N and b,

1In reference to the 1966 film “The Good, the Bad and the Ugly.”
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mod(N,b) will produce 0 if N is a multiple of b.

1 function Mult(N)
2

3 if mod(N,2)==0 % Check if N is a multiple of 2
4

5 disp('Multiple of 2')
6

7 elseif mod(N,3)==0 % Check if N is a multiple of 3
8

9 disp('Multiple of 3')
10

11 else
12

13 disp('Too high to count')
14

15 end
16

17 end

Run this code with the inputs 10, 15, 19 and 24:

1 >> Mult(10)
2 Multiple of 2
3 >> Mult(15)
4 Multiple of 3
5 >> Mult(19)
6 Too high to count
7 >> Mult(24)
8 Multiple of 2

For the inputs 10, 15 and 19, the results are as expected however with 24, only one
output is produced, suggesting that 24 is a multiple of 2 only. The reason this is
produced is because the if loop checked the first condition and since it was satisfied,
it executed the code block underneath and quit the whole loop, not running through
the others. That is why it is very important to be aware of the ordering of the if and
elseif commands.

C.2 while Loops

The while loop is somewhat similar to the if loop in the sense that values of two terms
are being compared but here, the loop will keep repeating until the condition is no longer
satisfied.
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\ while Loop Example

Suppose a function is to be written that takes two inputs, N and d and keeps subtracting
d from N until it can no longer do so without becoming negative, the function should
then output the last positive integer after this repeating operation. This code is the
equivalent of finding the remainder of dividing a number N by d (or taking N (mod d)).
For example, if N = 9 and d = 4, then N − d = 5, N − 2d = 1, N − 3d = −3, then the
function would take the inputs (N, d) = (9, 4) and outputs 1.

1 function [r]=Remainder(N,d)
2

3 M=N; % Start with the number M being equal to N
4

5 while M-d>=0 % As long as M-d is non-negative, run the loop
6

7 M=M-d; % Since M-d is non-negative, find M-d
8 % and let M be equal to this new value,
9 % this keeps repeating until M-d<0

10

11 end
12

13 r=M; % Set the remainder r to be this final value M
14

15 end

This can be used in the command window as follows (note that here, because there is
only one output, then it does not need to be explicitly stated in square brackets):

1 >> [r]=Remainder(9,4)
2 r =
3 1
4 >> [r]=Remainder(10,2)
5 r =
6 0
7 >> Remainder(14515,135)
8 ans =
9 70

10 >> Remainder(1e12,42578)
11 ans =
12 20554

Suppose now that this code is to be modified so that it can also output the number
of times d can be subtracted from N . For example, as before, if (N, d) = (9, 4), the
remainder is 1 and the number of times d must be subtracted from N to obtain this
remainder is 2, this is the equivalent of finding the number of times the while loop
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actually ran. This is a very common procedure and the way to tackle this is by use of
a “counter”. This is a variable that starts with the value 0 and every time the while
loop is run, 1 is added to it. This modification can be done as follows.

1 function [r,counter]=Remainder(N,d)
2

3 M=N; % Start with the number M being equal to N
4

5 counter=0; % Start with the counter being 0
6

7 while M-d>=0 % As long as M-d is non-negative, run the loop
8

9 M=M-d; % Since M-d is non-negative, find M-d
10 % and let M be equal to this new value
11

12 counter=counter+1; % Add 1 to the counter every time
13 % the while loop is run
14 end
15

16 r=M; % Set the remainder r to be this final value M
17

18 end

This can be used in the command window as follows (in this case, since there are two
outputs, they both have to be stated, but they don’t need to be of the same name, only
the same order):
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1 >> [r,counter]=Remainder(9,4)
2 r =
3 1
4 counter =
5 2
6 >> [r,c]=Remainder(10,2)
7 r =
8 0
9 c =

10 5
11 >> [R,C]=Remainder(14515,135)
12 R =
13 70
14 C =
15 107
16 >> [r,c]=Remainder(1e12,42578)
17 r =
18 20554
19 c =
20 23486307

\ Caution 1: Collatz Conjecture

In mathematics, there is a famous algorithm known as the Collatz Conjecture, the steps
of the algorithm are as follows:

1. Pick any positive integer.
2. i. If the number is even, divide by 2.

ii. If the number is odd, multiply by 3 and add 1.
3. Repeat Step 2.

For instance, if the input is the number 10, the sequence of numbers will be as follows:

10 −−→
÷2

5 −−−→
×3+1

16 −−→
÷2

8 −−→
÷2

4 −−→
÷2

2 −−→
÷2

1

Similarly, if the input is 21:

21 −−−→
×3+1

64 −−→
÷2

32 −−→
÷2

16 −−→
÷2

8 −−→
÷2

4 −−→
÷2

2 −−→
÷2

1

Both number sequences end up at 1 from two different starting numbers of 10 and 21.
(The algorithm is stopped at 1 since if the algorithm is carried on after reaching 1,
then a loop will be formed going 4, 2, 1, 4, 2, 1, . . . .) The Collatz Conjecture states
that regardless of the starting value, this sequence will always reach a 4-2-1 loop. This
statement has been put forward in 1937 and has not yet been proven or disproven but
has been computed for numbers larger than 1017, all the numbers end at the 4-2-1 loop.
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The while loop can be used in conjunction with the if loop in order to make a function
that outputs the number of steps it takes to get to 1. This code can be checked by
having an input of 10 and the output should be 6 since the algorithm required 6 steps
before reaching 1, similarly, if the input is 21, then the output should be 7 and these
can be used as test cases.
In writing codes, it is helpful to start with a pseudocode:

1. Read the input number.
2. As long as the number is greater than 1, do the following:

i. If the number is even, divide by 2.
ii. If the number is odd, multiply by 3 and add 1.

3. Repeat Step 2 until 1 is reached.

From this pseudocode, it is clear that Step 2 can be represented by an if loop. Steps
2 and 3 require the number to be greater than 1, since it is unknown when that will
happen, the while loop can be used. Now, the pseudocode can be translated into
MATLAB syntax with an input value of a and an output value N which is the number
of staeps it takes to get to 1.

1 function [N]=Collatz(a)
2

3 N=0; % Start with N=0
4

5 while a>1 % Perform the code block as long as the number
6 % is bigger than 1
7

8 if mod(a,2)==0 % Check if the number is even
9

10 a=a/2; % If it is, redefine a as a/2
11

12 else % Otherwise, if a is odd
13

14 a=3*a+1; % Redefine a as 3a+1
15

16 end
17

18 N=N+1; % Every time the code block is run, add 1 to N
19

20 end
21

22 end

This code can be checked using the test cases:
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1 >> Collatz(10)
2 ans =
3 6
4 >> Collatz(21)
5 ans =
6 7
7 >> Collatz(1000)
8 ans =
9 111

The function Collatz should only be able to take integer inputs. A custom error
message can be made to ensure that; the following can be added in Line 2:

1 if mod(a,1)~=0
2 error('a must be an integer')
3 end

C.3 Multiple Conditions for if & while Loops

Occasionally, multiple conditions may need to be satisfied when running if or while loops,
this can be done with the && for conjunctive conditions (equivalent to and) and || for
disjunctive conditions (equivalent to or).

\ Collatz Isolation

For the function Collatz in Caution 1, the code should only be able to take any
positive integer. An exclusion was introduced to produce an error message if the input
was not an integer. Suppose that another condition is to be added that would produce
the same error message if the input value is non-positive or not real. This can be done
using the or syntax, which is ||.

1 if imag(a)~=0 || mod(a,1)~=0 || a<=0 || imag(a)~=0
2 error('a must be an integer')
3 end

C.4 for Loops

A for loop is different compared to the while and if loops since it does not require
comparison, instead, it runs through a series of terms that have been predefined.
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\ for Loop Example 1

Suppose a simple for loop is needed that takes an input value N and adds all the
positive integers from 1 to N . So if N = 10, then the function would output the sum
of the numbers from 1 to 10, namely 55. This can be written as follows:

1 function [Sum]=Summation(N)
2

3 Sum=0;
4

5 for i=1:1:N
6

7 Sum=Sum+i;
8

9 end
10

11 end

This simple code starts with a Sum=0, then the variable i runs from 1 to N and adds
itself onto Sum, the final result would be the sum of all the positive integers form 1 to
N2.

\ for Loop Example 2

Suppose a for loop is desired that takes a vector v as an input and outputs the vector
u whose elements are the squares of v3.
The vector v will be a part of the input but the vector u needs to be initialised, meaning
that u has to be predefined in some way. Since the size of u will be the same as v,
then the vector u can be initialised as a vector of zeros that is the same size as v, this
can be done using u=zeros(size(v)). The code can then be written by replacing the
appropriate term in the list.

1 function [u]=Square(v)
2

3 u=zeros(size(v));
4

5 for i=1:1:N
6

7 u(i)=v(i)ˆ2;
8

9 end
10

11 end

2Bear in mind that this is a contrived example for the sake of demonstration. This exact procedure can be
done in one single command sum(1:1:10).
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Alternatively, if the size of u is not known, then it can be initialised as an empty array
[] and terms can be concatenated to it.

1 function [u]=Square2(v)
2

3 u=[];
4

5 for i=1:1:N
6

7 u=[u,v(i)ˆ2];
8

9 end
10

11 end

C.5 Exercises

, Excersise 1

Write a MATLAB function called Fib that takes an input N and produces a value F
that is the N th term of the Fibonacci sequence starting from 1,3 (recall that a Fibonacci
sequence is a sequence where any term is the sum of the previous two terms). For
example, if N = 5, then the first 5 terms of this Fibonacci sequence are (1, 3, 4, 7, 11),
meaning that the output should be F = 11. Use the following test cases to verify that
the code produces the correct results:

• N = 10: F = 123;
• N = 20: F = 15127;
• N = 50: F = 28143753123.

3Just as before, this is intended to be a contrived example to show the working of a for loop. This procedure
can be done in a single command as u=v.ˆ2 for elementwise exponentiation.
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� Solution 1

1 function [F]=Fib(N)
2

3 S=zeros(1,N); % Initialise the sequence S as a list of N zeros
4

5 S(1)=1; % Redefine the first term of S to be equal to 1
6

7 S(2)=3; % Redefine the second term of S to be equal to 3
8

9 for n=3:1:N % Starting from the third term onwards
10

11 S(n)=S(n-1)+S(n-2); % Let the nth term of S be the sum of the
12 % previous two terms
13

14 end
15

16 F=S(end); % Let F be the last term in the sequence S,
17 % alteratively, F=S(N) can be used since it is known that
18 % N is the last term
19

20 end

, Exersise 2

Write a MATLAB function called Fib2 that takes an input M and produces values c
and G where G is the largest term of the Fibonacci sequence starting from 2,5 such that
G < M and the number of terms in the sequence up to that point is c. For example, if
M = 60, start a Fibonacci sequence with the 2,5 until a number above M is reached and
count the number terms. So if M = 60, then the sequence is (2, 5, 7, 12, 19, 31, 50, 81),
meaning that G = 50 (since it is the largest term in the sequence that is less than M)
and c = 6 (since it takes 6 steps to get to 50). Use the following test cases to verify
that the code produces the correct results:

• M = 100: G = 81, c = 9;
• M = 1000: G = 898, c = 14;
• M = 109: G = 638162747, c = 42.

194



� Solution 2

1 function [c,G]=Fib2(M)
2

3 S=[2,5]; % Since, in principle, the number of terms is not known,
4 % then define S as the seuqnece starting with 2 and 5
5

6 while S(end)<M % Run the while loop as long as the last term of the
7 % sequence is less than M
8

9 S=[S S(end)+S(end-1)]; % Redefine S in terms of itself; start
10 % with the sequnce S and append an extra
11 % term at the end that is the sum of the
12 % last term and the one before it
13

14 end
15

16 G=S(end-1); % G will be the second to last term (since the last one
17 % is bigger than M)
18

19 c=length(S); % c is simply the length of S
20

21 end
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D Plotting in MATLAB

D.1 Forming Lists for Plotting

Suppose the function x3 is to be plotted. First of all, a range of x values is needed, so if
the function needs to be plotted in the interval [−2, 2], then a vector needs to be formed
that spans this particular domain, the more points there are, the smoother the function will
be. This can be in done by using, say, x=-2:1:2 which produces a vector x with 5 points,
namely x=[-2 -1 0 1 2].

Secondly, the values on the y-axis need to be formed. For every x value, the value on the
y axis will be at x3, this can be done using elementwise exponentiation as y=x.ˆ3. In this
case, the x and y vectors will be x=[-2 -1 0 1 2] and y=[-8 -1 0 1 8].

Now the plotting can commence. The plot function takes two arguments, the first is the set
of coordinates on the horizontal axis and the second is the corresponding set of coordinates
on the vertical axis. The plot function then plots the first against the second to form a
set of points and connects them with lines. In other words, plot(x,y) draws points at the
coordinates (x(1), y(1)) = (−2, −8), (x(2), y(2)) = (−1, −1), (x(3), y(3)) = (0, 0), etc. and
draws a line that connects all these points in the order they appear in.

1 >> x=-2:1:2;
2 >> y=x.ˆ3;
3 >> plot(x,y)

196



Clearly, 5 points is not enough to plot a function accurately, so the domain vector x must
be made finer by choosing smaller increments by saying something like x=-2:0.1:2 (in this
case, x=[-5 -4.9 -4.8 -4.7 ... 4.7 4.8 4.9 5]). A very convenient way of achieving
this is by using the linspace function where linspace(a,b) forms a vector between a and
b with 100 equally spaced points. If a different mesh is required, then add an extra argument
n as linspace(a,b,n), this forms a vector between a and b consisting of n equally spaced
points. Therefore, the range of x values can be refined as x=linspace(-2,2).

1 >> x=linspace(-2,2);
2 >> y=x.ˆ3;
3 >> plot(x,y)
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Notice that the semicolons are placed since the output does not need to be seen and it is
therefore suppressed, otherwise MATLAB will output all 100 terms of x and y which not
necessary.

D.2 Line Properties

The plot function has many additional options that can change the plotting colour,
shape, style, line widths and many more (these can be referred to by simply typing
help plot into the command window). Some of these options can be incorporated
into a plot by adding them into the plot function itself as additional inputs as
plot(x,y,'Color','r','LineStyle','-','LineWidth',2).

Some of the available colours are:

Colour 'Color' Syntax

red 'r'
blue 'b'
green 'g'
cyan 'c'

magenta 'm'
yellow 'y'
black 'k'
white 'w'

Some of the available line styles are:
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Line Style 'LineStyle' Syntax

Solid '-'
Dashed '--'
Dotted ':'
Chain '-.'

The colours and line styles can be combined into one, so if a blue solid line is needed, then it
can simply be done by using '-b' and the plotting command will be plot(x,y,'-b').

D.3 Multiple Plots

It would stand to reason that if two different functions are to be plotted on the same figure
space, say y = x2 as a red solid line and z = x3 as a blue dashed line for x ∈ [−5, 5], then
the following commands can be executed:

1 >> x=linspace(-5,5);
2 >> y=x.ˆ2;
3 >> z=x.ˆ3;
4 >> plot(x,y,'-r')
5 >> plot(x,z,'--b')

Unfortunately, MATLAB has a habit of overwriting plots every time the plot command is
used, so in this case MATLAB would plot the graph of y then remove it and plot the graph
of z. In order to avoid that, typing hold on before any plot command allows plotting more
than one plot in the same figure space as well allowing some augmentation. This can be
reverted by hold off.

1 >> hold on
2 >> x=linspace(-5,5);
3 >> y=x.ˆ2;
4 >> z=x.ˆ3;
5 >> plot(x,y,'-r')
6 >> plot(x,z,'--b')
7 >> hold off

D.3.1 Legends

When there is more than one line plotted in the same figure space, it is useful to have a legend
to distinguish between the different plots. So if the functions y and z are plotted as above, then
a legend can be added that labels them by simply using legend('Function y','Function
z'). This labels the first plot with Function y and the second with Function z. Remember,
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Figure D.1

quotation marks need to be inserted so they are displayed verbatim, otherwise MATLAB
will produce an error since there are no variable with the names Function y or Function
z.
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D.4 Figure Properties

Some useful figure functions are:

• clf: Clears the figure space.
• figure: Opens a new figure window.
• figure(n): Goes to figure window number n (and creates one if it is not open to begin

with) and plots within that window.

The figures themselves can be augmented by introducing titles, grid lines and labelling the
x- and y-axes, all these can be achieved as long as the hold on command is active:

• Title: title('Put title here'), the title must be in quotation marks.
• Grid: grid on and grid off.
• x-axis: xlabel('Label for x axis').
• y-axis: ylabel('Label for y axis').

MATLAB usually adjusts the axes so that the graphs fit but sometimes, the axes need to be
readjusted according the user’s preference, this can be done by using axis([left right
down up] where left is the leftmost point, right is the rightmost point, etc.

D.5 Subplots

Plotting multiple functions is very useful only if the axes can be maintained but if they are
different, then the information can be quite distorted when interpreted graphically. In this
case, subplots can be used to display more than one plot on the same figure space but on
different sections. The command subplot(a,b,n) generates a grid of size a × b (a rows and
b columns) and starts plotting in the nth location where the top left is 1 and continues across
the rows.

Suppose that for x ∈ [0, 10], four functions are to be plotted: y = x2 on the top left, z = x3

on the top right, w = sin(x) on the bottom left and u = ex on the bottom right. This means
that a 2 × 2 grid is needed so the first two terms in subplot are 2. The function y has to be
plotted after subplot(2,2,1) while z is to be plotted after subplot(2,2,2) and so on.

1 >> x=linspace(0,10);
2 >> y=x.ˆ2;
3 >> z=x.ˆ3;
4 >> w=sin(x);
5 >> u=exp(x);
6 >> subplot(2,2,1)
7 >> plot(x,y)
8 >> subplot(2,2,2)
9 >> plot(x,z)

10 >> subplot(2,2,3)
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11 >> plot(x,w)
12 >> subplot(2,2,4)
13 >> plot(x,u)

One issue in this case is that all the subplots will behave independently, so turning on the
grid in one subplot will not do the same for all the rest. Therefore, operations such as grid
on and hold on need to be done for each of the subplots individually.

D.6 Aesthetics

Fonts in figures can usually be an issue since the default setting may not be to the user’s
liking. As seen in the figures above, the font on the axes is quite small which could make
it difficult to read especially if the plots are to be in a report or dissertation. In that case,
a special command needs to be run after hold on and before any plotting can commence.
The command set(gca,'FontSize',20,'FontName','Times') sets the fontsize to 20 and
the font to Times New Roman globally on all axes, legends and titles.

On MATLAB, the mathematical symbols will be displayed as regular text instead of
mathematical symbols (like “x” instead of “x”). This can be adjusted by using LaTeX
syntax by using dollar signs around the mathematical symbols. For example, the x- and
y-axes can be labelled with “x” and “y” by using xlabel('$x$','Interpreter','Latex')
and ylabel('$y$','Interpreter','Latex'). The same can be done in the title as
title('Plot of $x$ Against $y$','Interpreter','Latex').

The legend entries need slightly more work; if two functions y and z are plotted, then
they can be labelled in maths typesetting by first defining legend in terms of a placeholder
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variable as Leg=legend('Function $y$','Function $z$') then prescribing the interpreter
as set(Legend,'Interpreter'). MATLAB usually places the legend on the top right corner
by default but this can be modified by the 'Location' argument and change it to East,
West, NorthEast, SouthWest and so on, meaning that the new prescription for the legend
would be set(Legend,'Interpreter','Location','SouthWest').

Remember, this modification of font shapes, sizes and the different styles is only for aesthetic
reasons and serves no purpose otherwise.

\ Lots of Plots

Suppose that the following need to be plotted:

1. The function x(t) = cos(t) for t ∈ [0, 10] as a blue solid line of thickness 1.
2. The function y(t) = e0.2t for t ∈ [0, 10] as a red chain of thickness 2.
3. The function z(t) = esin(t) for t ∈ [0, 10] as a black dashed line of thickness 3.
4. The legend appears in the bottom right corner and labels x(t) as “cos(t)”, y(t) as

“Function y(t)” and z(t) as “Last”.
5. The title of the figure should be “Some Random Functions”.
6. The horizontal axis labelled as “t”.
7. The vertical axis labelled as “Functions”.
8. The horizontal axis ranges from 0 to 10 and the vertical axis ranges from −2 to 8.
9. Axis lines are drawn to represent the horizontal and vertical axes.

Each of these can be executed separately by the following commands:

0. t=linspace(0,10);
1. x=cos(t); plot(t,x,'-b','LineWidth',1)
2. y=exp(0.2*t); plot(t,y,'-.r','LineWidth',2)
3. z=exp(sin(t)); plot(t,z,'--k','LineWidth',3)
4. Leg=legend('$\cos(t)$','Function $y(t)$','Last');

set(Leg,'Interpreter','Latex','Location','SouthEast')
5. title('Some Random Functions','Interpreter','Latex')
6. xlabel($t$,'Interpreter','Latex')
7. ylabel('Functions','Interpreter','Latex')
8. axis([0 10 -2 8])
9. plot([0 10],[0 0],'-k'); plot([0 0],[-2 8],'-k')

A MATLAB script can be written to execute all these in order:
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1 clf % Clears the figure before plotting
2

3 hold on % Allows more than one plot in the same figure
4

5 grid on % Produces a grid
6

7 set(gca,'FontSize',20,'FontName','Times') % Sets the font golobally
8

9 t=linspace(0,10); % Horizontal axis values
10

11 x=cos(t); % Vector of values for the x function
12 y=exp(0.2*t); % Vector of values for the y function
13 z=exp(sin(t)); % Vector of values for the z function
14

15 plot(t,x,'-b','LineWidth',1) % Plots t against x
16 plot(t,y,'-.r','LineWidth',2) % Plots t against y
17 plot(t,z,'--k','LineWidth',3) % Plots t against z
18

19 title('Some Random Functions','Interpreter','Latex') % Title
20

21 xlabel('$t$','Interpreter','Latex') % Horizontal axis label
22 ylabel('Functions','Interpreter','Latex') % Vertical axis label
23

24 axis([0 10 -2 8]) % Sets the axes
25 plot([0 10],[0 0],'-k') % Plots the horizontal axis
26 plot([0 0],[-2 8],'-k') % Plots the vertical axis
27

28 Leg=legend('$\cos(t)$','Function $y(t)$','Last'); % Sets the legend
29

30 set(Leg,'Interpreter','Latex','Location','SouthEast'); % Sets the font, interpreter and location of the legend
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All these commands can be executed in the command window rather than writing them
in a script but if a mistake is made, then it cannot be undone and the entire stream of
commands needs to be redone once again. Using a script on the other hand will allow
for easy alteration.

D.7 Discrete Plots

The plot function does not just plot functions, all it needs are two vectors of the same
length and it can plot them against one another. So if the graph is to be plotted as a series of
points (discrete plot) rather than coordinates connected with a line, then the change in the
plot function is quite straight forward, simply replace 'LineStyle' with 'MarkerStyle'
and 'LineWidth' with 'MarkerSize'. This will use discrete points rather than connecting
them with lines. The different marker styles are:

Marker Style 'MarkerStyle' Syntax

Dot · '.'
Cross × 'x'

Asterisk ∗ '*'
Circle ◦ 'o'

Crosshair + '+'
Square □ 's'

Diamond ⋄ 'd'
Pentagram ⋆ 'p'

Upward Triangle △ 'ˆ'
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Marker Style 'MarkerStyle' Syntax

Downward Triangle ▽ 'v'
Rightward Triangle ▷ '>'
Leftward Triangle ◁ '<'

The colours work in the same way. These discrete plots can be combined with the line plot
all in one command, for example, to plot a function with a red dashed line connecting circles,
the plot command will be plot(x,y,'--or').

\ Collatz Conjecture Plot

Consider to the Collatz conjecture from Section C.2, suppose that the number of steps
it takes to reach 1 is to be plotted against the starting values, say from 1 to N where
N will be the input. This will require the use of many of the tools developed so far.
First of all, a function that takes in a starting value and outputs the number of steps is
needed, which that has already been done in the code Collatz. Since the inputs will
be all the numbers from 1 to N , a for loop will be suitable for the job. Finally, the
plot function with markers will be employed since connecting the points with lines
will not make sense in this particular context.
In order for the plot function to work, it needs two vectors of the same length. For this
particular example, the first vector is the list of numbers from 1 to N , which will be
labelled X and will be on the x-axis, and the second is the vector of the number of steps
for a starting value to decrease to 1 and this is labelled Y. The terms in the vector Y
will have to be calculated individually by using the Collatz function. Of course, since
the size of Y is the same size a X, it can be initialised by using Y=zeros(size(X)), the
terms can then be substituted after they have been calculated. The code to execute
this plotting procedure is as follows:
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1 function Plot_Collatz(N)
2

3 X=1:1:N; % List of starting values from 1 to N
4

5 Y=zeros(size(X)); % Initialise the vector Y
6

7 for i=X
8

9 [y]=Collatz(i); % Run the Collatz algorithm for the starting
10 % value i
11

12 Y(i)=y; % Record the the number of steps in the i-th
13 % element of the vector Y
14

15 end
16

17 clf
18 hold on
19 grid on
20 set(gca,'FontSize',20,'FontName','Times')
21

22 plot(X,Y,'.b','MarkerSize',10)
23

24 title(strcat('Steps of the Collatz Conjecture for Starting Points 1 to',' ',num2str(N)),'Interpreter','Latex')
25

26 xlabel('Starting Value','Interpreter','Latex')
27 ylabel('Number of Steps','Interpreter','Latex')
28

29 end

The code can now be run in the command window using Plot_Collatz(1000) will
give the following plot:
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There are a few things that need to be observed in the above code:

• In Line 4, the for loop starts with i=X, this means that the values of i would
run through all the values of the vector X in order. So the for loop does not need
to take terms from a uniform set but it can be from any set of values and those
will be taken in the order they appear.

• Line 6 runs the Collatz function for the input value i to produce a value y and
this is then recorded in the vector Y in the ith location in Line 8, hence Y(i)=y.
Of course there will be no issues there since the size of Y is known and has already
been initialised in Line 3 as a vector of zeros of the same size as X, the values are
then replaced by the desired terms.

• Notice that here, the main function Plot_Collatz (also known as the top level
function) refers to another function, namely Collatz. This code should be
saved as a separate .m file and has to be in the same directory as Plot_Collatz,
otherwise the code will not work. An alternative would be to put the Collatz
function after the end of Plot_collatz.
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1 function Plot_Collatz(N)
2

3 Body of Plot_Collatz
4

5 end
6

7 function [n]=Collatz(a)
8

9 Body of Collatz
10

11 end

• The Collatz function requires a single input, but in some cases, there could
be many inputs and many outputs, in that case when calling the function, the
sequence of inputs and outputs must be in exactly the same order as it appears
in the function itself.

D.8 Plot Cheat Sheet

MATLAB Command Purpose

clf Clear figure space
figure Opens a new figure space

figure(n) Plots in figure space n
hold on Allows more than one plot to be drawn on

the same figure
hold off Cancels hold on
grid on Turns on the plot grid
grid off Turns off the plot grid

plot([a,b],[c,d]) Plots a straight line from point (a,c) to (b,d)
set(gca,'FontSize',20) Sets the global font size to 20

set(gca,'FontName','Times') Sets the global font to Times
axis([left right down up]) Sets the axes where the x-axis goes from

left to right and the y-axis from down to
up

title('Plot') Adds the title “Plot” to the figure
xlabel('x') Labels the x-axis with “x”

xlabel('$x$','Interpreter','Latex') Labels the x-axis with “x”
Leg=legend('Plot 1','Plot 2',...) Gives the legend a handle “Leg” for further

modification and labels the first plotted line
as “Plot 1”, the second as “Plot 2”, etc.

set(Leg,'Interpreter','Latex') Renders the legend in LaTeX, just like the
labels
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MATLAB Command Purpose

x=linspace(a,b) Generates a vector x with 100 points from a
to b

x=linspace(a,b,n) Generates a vector x with n points from a to
b

plot(x,y) Plots the vector x against the vector y as
long as they are of the same size

plot(x,y,'-b') Plots x against y with a blue line
(continuous)

plot(x,y,'-b','LineWidth',2) Plots x against y with a blue line of
thickness 2

plot(x,y,'xk') Plots x against y with black crosses
(discrete)

plot(x,y,'xk','MarkerSize',10) Plots x against y with black crosses of size 10
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E Reading & Writing Data

Reading and writing data files can be important for importing data for analysis on MATLAB
and exporting data for further processing elsewhere.

E.1 Writing Into Data Files

Data can be exported from MATLAB into a .dat or .txt file, both of which can be opened
with Notepad.

\ Writing Data

Suppose that a list of values of x from 0 to 100 need to be exported along with a
corresponding list of x2, sin(x) and e−x as seen here:

x x2 sin(x) ex

1 1 0.84147 0.36788
2 4 0.90930 0.13534
...

...
...

...
99 9801 −0.9992 1.0112 × 10−43

100 10000 −0.5063 3.7200 × 10−44

First, define each of these columns.

1 >> x=[1:1:100]'; % Column vector of values from 1 to 100
2

3 >> c1=x.ˆ2; % Column of xˆ2 terms
4

5 >> c2=sin(x); % Column of sin(x) terms
6

7 >> c3=exp(x); % Column of eˆx terms
8

9 >> M=[x,c1,c2,c3]; % Form a matrix out of the columns

Now that the matrix is ready to be exported, a file needs to be opened with the
desired name, say “Data_Write.dat” (.txt would also work). First, the file itself
needs to be created in order to write the data into, this can be done by using
file_name=fopen('Data_Write.dat','w'). The 'w' indicates that MATLAB needs
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to write the data into this file. The data can then be written into the the file using the
fprintf command as fprintf(file_name,'%f %f %f %f \r\n',M')
The % sign determines the specification of the output and here, %f indicates that the
output should be in the form of a floating point number. There are four columns so
four specifiers need to be declared (hence %f appearing four times). The \r\n syntax
indicates that MATLAB needs to move to the next line, otherwise, all the values will
be printed on a single line (\r\\n needs to be used when opening using Microsoft
Notepad, otherwise \n would suffice). The matrix is printed as M' instead of M since
Notepad works on the reverse dimensions, so the rows on MATLAB are columns on
Notepad and vice versa (for some obscure reason).
After writing all the data, the file needs to be closed so the data is not removed or
overwritten using fclose(file_name).
Without context, this data is meaningless so an additional row can be added before
writing the data as a title for every column as fprintf(file_name,'x xˆ2 sin(x)
exp(x) \r\n'). All these can be combined into the following executable section:

1 x=[1:1:100]'; % Column vector of values from 1 to 100
2

3 c1=x.ˆ2; % Column of xˆ2 terms
4 c2=sin(x); % Column of sin(x) terms
5 c3=exp(x); % Column of eˆx terms
6

7 M=[x,c1,c2,c3]; % Form a matrix out of the columns
8

9 my_file=fopen('Data_Write.dat','w'); % Open the file 'Data_Write.dat',
10 % also works with 'Data_Write.txt'
11

12 fprintf(my_file,'x xˆ2 sin(x) eˆx \r\n');
13 fprintf(my_file,'%f %f %f %f \r\n',M');
14

15 fclose(my_file);
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E.1.1 Output Formats

When writing data, it is often times important to present the data in a certain form or with
certain spacings. For example, sin(x) is better presented as a floating point and ex is better
presented in scientific notation. These can be done by changing the format after the % sign
as follows:
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Syntax Display Example

%f Floating point 0.5 → 0.50000
%e Scientific notation pi → 3.1415e+00
%g Floating Point with no trailing 0’s 0.5000 → 0.5
%i Integer pi → 3

ñ Note

There are many others that print numbers as strings (%s) or in hexadecimal notation
(%x).

E.1.2 Alignment

The way in which the data is spaced out is important since it allows the data to be read
more easily. By default, using %f will print the data as a floating point with six decimal
places, one space will be added before the next item is printed. This can be changed to
%15.10f which will print the data as a floating point but will dedicate 15 spaces to write
the value to 10 decimal places.

\ Writing Better Data

The same code can be used as before with the alignment and decimal modifications.

1 >> x=[1:1:100]';
2

3 >> c1=x.ˆ2;
4 >> c2=sin(x);
5 >> c3=exp(x);
6

7 >> M=[x,c1,c2,c3];
8

9 >> my_file=fopen('Data_Write.dat','w');
10

11 >> fprintf(my_file,'%5s %5s %15s %15s \r\n','x','xˆ2','sin(x)','exp(x)');
12

13 >> fprintf(my_file,'%5i %5i %15.10f %15.10e \r\n',M');
14

15 >> fclose(my_file);
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E.2 Reading From Data Files

Reading data from a .dat or .txt files is similar to writing.
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\ Reading Data

Suppose that there is a data file called “Data_Read.dat” (or .txt) that has three
columns of unlabelled data.

First, the file needs to be opened with fopen but in order to prepare it for reading,
use the augmentation 'r' (instead of 'w' for writing). The format has to be specified,
in this case, it would be '%f %f %f' since there are three terms that need to be read
which are all placed into a row and separated by a space. The size of the data itself
also needs to be specified as well, and since there are three columns, that could be
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defined as [3 Inf] if the number of rows is unknown. The commands to read the data
can be written as follows:

1 my_file=fopen('Data_Read.dat','r');
2

3 formatSpec = '%f %f %f';
4

5 Size_Data= [3 Inf];
6

7 M=fscanf(my_file,formatSpec,Size_Data);
8

9 M=M';
10

11 fclose(my_file);

This will produce an array M that contains all the data.

E.3 Reading & Writing Data with Excel

Writing data into Microsoft Excel is much simpler than .dat or .txt since spacing and
formatting are built into excel. The difference is using writematrix and readmatrix
instead of fprintf and fscanf and the file extension should be .xlsx and does not have to
be opened and closed.

\ Reading & Writing with Excel

Suppose the data as before needs to be written into Excel, this can be done as follows:

1 x=[1:1:100]';
2

3 c1=x.ˆ2;
4

5 c2=sin(x);
6

7 c3=exp(x);
8

9 M=[x,c1,c2,c3];
10

11 writematrix(M,'Data_Excel.xlsx');
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The same data can be read using Data=readmatrix('Data_Excel.xlsx').
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F Gaussian Elimination Method

The Gaussian Elimination Method is an algorithm that transforms the linear system
Ax = b where A ∈ CN×N and b ∈ CN into an equivalent upper triangular system Ux = g
after N − 1 steps, where U ∈ CN×N is an upper triangular matrix and g ∈ CN . This uses
Elementary Row Operations (swapping rows, multiplying a row by a constant, adding
two rows), after which point, the system Ux = g can solved by the backward substitution.
Note that this method is possible when the elementary row operations are performed on
both A and b simultaneously, so if rows i and j are swapped in A, the rows i and j must
also be swapped in b, simialry for the other operations.

The Gaussian elimination method can be performed as follows (the superscripts in brackets
will be the step number):

\ Parallel Example

The algorithm will be explained and an example will be done in parallel to explain the
steps with the matrix system Ax = b where

A =

 2 −1 1
−1 1 2
1 2 −1

 and b =

1
1
2

 .

1. Establish the starting matrix: If a11 ̸= 0, then set A(1) = A and b(1) = b as

A(1) =



a
(1)
11 a

(1)
12 . . . a

(1)
1j . . . a

(1)
1N

a
(1)
21 a

(1)
22 . . . a

(1)
2j . . . a

(1)
2N

...
... . . . ... . . . ...

a
(1)
j1 a

(1)
j2 . . . a

(1)
jj . . . a

(1)
jN

...
... . . . ... . . . ...

a
(1)
N1 a

(1)
N2 . . . a

(1)
Nj . . . a

(1)
NN


∈ RN×N where a

(1)
11 ̸= 0

and b(1) =



b
(1)
1

b
(1)
2
...

b
(1)
j
...

b
(1)
N


.
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If a11 = 0, then swap the first row with any other row whose first term is not zero and
the result will be the starting matrix A(1).

\ A(1)

A(1) = A =

 2 −1 1
−1 1 2
1 2 −1

 and b(1) = b =

1
1
2

 .

2. Form the multiplier vector: The desired outcome is to have the matrix A be upper
triangular, i.e. all the terms below the diagonal should be 0. To achieve this, introduce
a vector m1 of multipliers, whose ith entry is given by

mi1 = a
(1)
i1

a
(1)
11

for all i = 1, 2, . . . , N,

hence the reason why the assumption a
(1)
11 ̸= 0 must be imposed. Essentially, the vector

m1 is the first column of A divided the the first element of A.

\ m1

m1 = 1
a

(1)
11

a
(1)
11

a
(1)
21

a
(1)
31

 =

 1
−1

2
1
2



3. Elimination terms in the first column: For j = 2, 3, . . . , N , multiply row 1 by
−mj1 and add it to row j to give the new row j:

a
(1)
11 a

(1)
12 . . . a

(1)
1j . . . a

(1)
1N

a
(1)
21 − m21a

(1)
11 a

(1)
22 − m21a

(1)
12 . . . a

(1)
2j − m21a

(1)
1j . . . a

(1)
2N − m21a

(1)
1N

...
... . . . ... . . . ...

a
(1)
j1 − mj1a

(1)
11 a

(1)
j2 − mj1a

(1)
12 . . . a

(1)
jj − mj1a

(1)
1j . . . a

(1)
jN − mj1a

(1)
1N

...
... . . . ... . . . ...

a
(1)
N1 − mN1a

(1)
11 a

(1)
N2 − mN1a

(1)
12 . . . a

(1)
Nj − mN1a

(1)
1j . . . a

(1)
NN − mN1a

(1)
1N


.

\ Row j Operations  2 −1 1
−1 1 2
1 2 −1


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−−−−−−−−−−−→
r2→−(− 1

2 )r1+r2

 2 −1 1
−
(
−1

2

)
(2) − 1 −

(
−1

2

)
(−1) + 1 −

(
−1

2

)
(1) + 2

1 2 −1



=

2 −1 1
0 1

2
5
2

1 2 −1



−−−−−−−−−−→
r3→−( 1

2 )r1+r3

 2 −1 1
0 1

2
5
2

−
(

1
2

)
(2) + 1 −

(
1
2

)
(−1) + 2 −

(
1
2

)
(1) − 1



=

2 −1 1
0 1

2
5
2

0 5
2 −3

2


Notice that by the definition of mj1, the first element in every row must be equal to 0,
therefore, this set of operation makes all the terms in the first column equal to 0 except the
first. Define this new matrix as the second term in the iteration:

a
(1)
11 a

(1)
12 . . . a

(1)
1j . . . a

(1)
1n

0 a
(1)
22 − m21a

(1)
12 . . . a

(1)
2j − m21a

(1)
1j . . . a

(1)
2n − m21a

(1)
1n

...
... . . . ... . . . ...

0 a
(1)
j2 − mj1a

(1)
12 . . . a

(1)
jj − mj1a

(1)
1j . . . a

(1)
jn − mj1a

(1)
1n

...
... . . . ... . . . ...

0 a
(1)
n2 − mn1a

(1)
12 . . . a

(1)
nj − mn1a

(1)
1j . . . a

(1)
nn − mn1a

(1)
1n



=⇒



a
(2)
11 a

(2)
12 . . . a

(2)
1j . . . a

(2)
1n

a
(2)
21 a

(2)
22 . . . a

(2)
2j . . . a

(2)
2n

...
... . . . ... . . . ...

a
(2)
j1 a

(2)
j2 . . . a

(2)
jj . . . a

(2)
jn

...
... . . . ... . . . ...

a
(2)
n1 a

(2)
n2 . . . a

(2)
nj . . . a

(2)
nn


= A(2)

where for all i, j = 2, 3, . . . , N

a
(2)
11 = a

(1)
11 ; a

(2)
1i = a

(1)
1i ; a

(2)
i1 = 0 ; a

(2)
ij = a

(1)
ij − mi1a

(1)
1j
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\ A(2)

A(2) =

2 −1 1
0 1

2
5
2

0 5
2 −3

2


4. Modification of the right hand side: The vector b has to also undergo the same

operations as A, i.e. for j = 2, . . . , N , let row j of b(1) be row 1 multiplied by −mj1
plus row j and the final vector is the vector b(2).

\ b(1)

b(1) =

1
1
2

 −−−−−−−−−−−−−−−−→
r2 → −

(
−1

2

)
r1 + r2

r3 → −
(

1
2

)
r1 + r3


1

−
(
−1

2

)
(1) + 1

−
(

1
2

)
(1) + 2

 =

1
3
2
3
2

 = b(2).

5. Matrix representation of elimination: This whole procedure can be written as
A(2) = M (1)A(1) and b(2) = M (1)b(1) where

M (1) =


1 0 0 . . . 0

−m21 1 0 . . . 0
−m31 0 1 . . . 0

...
...

... . . . ...
−mn1 0 0 . . . 1

 .

\ M (1)

M (1) =

 1 0 0
1
2 1 0

−1
2 0 1


To check:

M (1)A(1) =

 1 0 0
1
2 1 0

−1
2 0 1


 2 −1 1

−1 1 2
1 2 −1

 =

2 −1 1
0 1

2
5
2

0 5
2 −3

2

 = A(2)

M (1)b(1) =

 1 0 0
1
2 1 0

−1
2 0 1


1

1
2

 =

1
3
2
3
2

 = b(2)

6. Repeat for other columns: The process must now be repeated for the rest of the
rows, specifically, those that have non-zero pivot points, i.e. the first point in a row
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that is non-zero. This process can be done more simply by generating the M matrices
in the same way as before without going through the starting steps. This process
should be reapeated until the last row is reached.

\ Multiplier Matrices

The matrix M (2) can be generated in the same way as M (1), so

M (2) =

1 0 0
0 1 0
0 −5 1

 .

To check:

M (2)A(2) =

1 0 0
0 1 0
0 −5 1


2 −1 1

0 1
2

5
2

0 5
2 −3

2

 =

2 −1 1
0 1

2
5
2

0 0 −14

 = A(3)

M (2)b(2) =

1 0 0
0 1 0
0 −5 1


1

3
2
3
2

 =

 1
3
2

−6

 = b(3)

7. Solve using backwards substitution: After repeating for all other columns (a total
of N − 1 times), the final matrix A(N) will be an upper triangular matrix with non-zero
terms on the diagonal and the system can then be solved by backwards substitution.

\ Backwards Substitution

A(1)x = b(1) =⇒ A(2)x = b(2) =⇒ A(3)x = b(3)

=⇒

2 −1 1
0 1

2
5
2

0 0 −14


x1

x2
x3

 =

 1
3
2

−6

 =⇒
2x1 − x2 + x3 = 1

1
2x2 + 5

2x3 = 3
2

−14x3 = −6

=⇒ x = 1
7

5
6
3

 .

The total number of operations in every step is given in the table below (the “steps” here refer
to the matrix manipulation step and not exactly to the step numbers of the algorithm):

Step Multiplications Additions Divisions

1 (N − 1)2 (N − 1)2 N − 1
2 (N − 2)2 (N − 2)2 N − 2
3 (N − 3)2 (N − 3)2 N − 3
...

...
...

...
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Step Multiplications Additions Divisions

N − 2 4 4 2
N − 1 1 1 1

This means that the total number of multiplications is

1 + 4 + · · · + (N − 3)2 + (N − 2)2 + (N − 1)2 =
N−1∑
n=1

n2 = N(N − 1)(2N − 1)
6 ,

similarly for the additions. Whereas the total number of divisions is

1 + 2 + · · · + (N − 3) + (N − 2) + (N − 1) =
N−1∑
n=1

n = N(N − 1)
2 .

Therefore the total number of operations is

N(N − 1)(2N − 1)
6 + N(N − 1)(2N − 1)

6 + N(N − 1)
2 = 2

3N3 − 1
2N2 − 1

6N.

This means that for large N , the Gaussian elimination algorithm requires O
(

2
3N3

)
operations

when A is a non-sparse matrix. This procedure is computationally expensive even for
moderate sized matrices, this also assumes that the pivot points are non-zero, or more
specifically, that the matrix has non-zero determinant. As an illustration of this computational
complexity, if N = 106 (which not atypical), then for a computer with the computing power
of 1 Gigaflops per second, an N ×N system will need 21 years to find a solution. A lot of more
modern computational techniques are based on attempting to reduce this computational
complexity, either by eliminating terms in some suitable way or chnaging the matrix in a
more pallatable form.

Overall, every step of this process can be represented by a matrix transformation M (n). This
means that in order to convert the matrix A into an upper triangular matrix U , the matrix
transformations M (1), M (2), . . . , M (N−1) have to be applied reverse order as

U = M (N−1)M (N−2) . . . M (1)A.

This can be written as

U = MA where M = M (N−1)M (N−2) . . . M (1). (F.1)

Notice that every matrix M (n) is lower triangular and this fact will be used later on in
?@sec-LU.
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G Matrix Decompositions

G.1 Orthogonality & QR Factorisation

Intuitively, the concept of orthogonality is crucial for defining the “amount of information”
in a set of vectors; although this is also associated with the concept of linear independence,
the “most informative” linearly independent vectors are those that are also orthogonal.

Recall that for a set of vectors q1, q2, . . . , qM ∈ RN where M ≤ N , the vectors are Orthog-
onal if ⟨qm, qn⟩ = 0 for all m ̸= n. The set of vectors is called Orthonormal if

⟨qm, qn⟩ = δmn =
{

0 if m ̸= n

1 if m = n.

If N = M , then the vectors form a linearly independent basis of RN .

A square matrix Q is called Orthogonal if all its columns are orthonormal to one another.
Some of the properties of orthogonal matrices are:

• An orthogonal matrix Q satisfies Q−1 = QT, therefore QTQ = QQT = I;
• The determinant of an orthogonal matrix is 1 or −1;
• The product of two orthogonal matrices is orthogonal.
• Given a matrix Q1 ∈ RM×K with K < M and with orthonormal columns, there exists

a matrix Q2 ∈ RM×(M−K) such that Q = [Q1, Q2] is orthogonal. In other words, for a
“tall” rectangular matrix with orthonormal columns, there exist a set of vectors that
can be concatenated with the matrix to form an orthogonal square matrix.

• Orthogonal matrices preserve the 2-norm of vectors and matrices. In other words, if
Q ∈ RN×N is an orthogonal matrix, then for every x ∈ RN and A ∈ RN×M :

∥Qx∥2 = ∥x∥2 ; ∥QA∥2 = ∥A∥2.

There are two particularly relevant classes of orthogonal matrices:

• The Householder Reflection Matrix (named after Alston Scott Householder) is a
reflection matrix on a plane that contains the origin. The reflection matrix is given by

P = I − 2vvT

where v is the unit vector that is normal to the hyperplane in which the reflection has
been performed. The matrix P is in fact symmetric and orthogonal (i.e. P −1 = P T =
P ). Reflection transformations appear in many numerical linear algebra algorithms
and their main use is to transform a vector x ∈ RN to another vector y ∈ RN with the
same magnitude (meaning that for given vectors x, y ∈ RN with ∥x∥2 = ∥y∥2, there
exists a reflection matrix P such that Px = y).
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• The Givens Rotation Matrix (named after James Wallace Givens) represents
a rotation in the plane that can be spanned by two vectors. The matrix of
transformation is denoted G(i, j; θ) where the vector G(i, j; θ)x is simply the
vector x rotated θ radians anti-clockwise on a plane that is parallel to the
(i, j)-plane. The matrix G(i, j; θ) is essentially an identity matrix with the (i, i)
and (j, j) terms replaced by cos(θ), the (i, j) term replaced by sin(θ) and the
(j, i) term replaced by − sin(θ). For example, in R5, the matrix G(2, 4; θ) is
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Figure G.1: Photo of (from the left): Jim Wilkinson, Wallace Givens, George Forsythe,
Alston Householder, Peter Henrici, Fritz Bauer

Since both reflection and rotation matrices are orthogonal matrix transformations, a sequence
of reflections and rotations can be represented by the matrix QT (which would also be
orthogonal). To this end, any matrix A ∈ RM×N with M ≥ N can be transformed by
QT ∈ RM×M to give a block matrix with an upper triangular matrix occupying the first N
rows with M − N zero rows below it, i.e.

QTA =
[
R1
0

]

where R1 ∈ RN×N is an upper triangular square matrix. Equivalently, A can be written
as A = QR where Q is the orthogonal transformation matrix and R is a block rectangular
matrix consisting of a square lower triangular matrix and a block zero matrix. This type of
decomposition is called the QR Factorisation. The full QR factorisation can be visually
represented as follows:

There is a much more concise form of the QR factorisation where only the first several
columns of Q are considered since the rest will be multiplied by 0 anyway, this gives an
“economy version” of the QR factorisation written as A = Q1R1 which be visually represented
as follows:
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Figure G.2

Figure G.3
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The QR decomposition of a matrix can be performed on any matrix (square or rectangular).
The following sections will show how this can be done using reflections and rotations.

G.1.1 QR Decomposition Using Reflections

The following will explain how the QR decomposition can be performed using reflection
matrices on a square matrix A ∈ RN×N . Denote the nth column of the matrix A by an, this
means A can be written as

A =


...

...
...

a1 a2 . . . aN
...

...
...

 .

The vector en will denote the nth canonical basis vector, i.e. the vector with all its entries
being equal to 0 except the element in location n which is equal to 1.

\ Paralell Example

This process will also be applied in parallel to the following matrix

A =

−1 1 1
1 1 −1
1 1 1

 .

In this case,

a1 =

−1
1
1

 , a2 =

1
1
1

 and a3 =

 1
−1
1

 .

First, find a reflection matrix that transforms the first column of A into (α, 0, . . . , 0)T where
α = ∥a1∥2. Let u = a1 − αe1 and v = u

∥u∥2
, then the first reflection matrix is

P1 = I − 2vvT.

This can be verified by checking that all the terms in the first column of the matrix A2 = P1A
are zero except for the first term.

\ First Reflection Matrix

The 2-norm of the first column of A is α =
√

3, then

u = a1 − αe1 =

−1
1
1

−
√

3

1
0
0

 =

−1 −
√

3
1
1



v = u

∥u∥
= 1√

6 + 2
√

3

−1 −
√

3
1
1

 .
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P1 = I − 2vvT =

1 0 0
0 1 0
0 0 1

− 2
6 + 2

√
3

−1 −
√

3
1
1

(−1 −
√

3 1 1
)

=

1 0 0
0 1 0
0 0 1

− 1
3 +

√
3

4 + 2
√

3 −1 −
√

3 −1 −
√

3
−1 −

√
3 1 1

−1 −
√

3 1 1



= 1
3 +

√
3

−1 −
√

3 1 +
√

3 1 +
√

3
1 +

√
3 2 +

√
3 −1

1 +
√

3 −1 2 +
√

3


The matrix P1 can be simplified to give

P1 = 1
6

−2
√

3 2
√

3 2
√

3
2
√

3 3 +
√

3 −3 +
√

3
2
√

3 −3 +
√

3 3 +
√

3


To verify that this matrix is valid, consider the product A2 = P1A:

A2 = P1A = 1
6

−2
√

3 2
√

3 2
√

3
2
√

3 3 +
√

3 −3 +
√

3
2
√

3 −3 +
√

3 3 +
√

3

 =

−1 1 1
1 1 −1
1 1 1



= 1
3

3
√

3
√

3 −
√

3
0 2

√
3 −3 +

√
3

0 2
√

3 3 +
√

3

 ,

indeed, all the terms in the first column are 0 except for the first.

Repeat the same process for the (N − 1) × (N − 1) bottom right submatrix of A2 then once
the new matrix P2 is obtained (of size (N − 1) × (N − 1)), place it at the bottom right of
the N × N identity. When this process is repeated a total of N − 1 times, the result will be
an upper triangular matrix.

\ Second Reflection Matrix

Consider the matrix

A2 = 1
3

3
√

3
√

3 −
√

3
0 2

√
3 −3 +

√
3

0 2
√

3 3 +
√

3

 .

Let B be the bottom right 2 × 2 submatrix of A2,

230



Figure G.4

Repeat the same process as before with the matrix B: The 2-norm of the first column
of B is β = 2

√
6

3 . Then

u = b1 − βe1 =
(

2
√

3
3

2
√

3
3

)
− 2

√
6

3

(
1
0

)
= 2

√
3

3

(
1 −

√
2

1

)

v = u

∥u∥
= 1√

4 − 2
√

2

(
1 −

√
2

1

)

P̃2 = I − 2vvT =
(

1 0
0 1

)
− 2

4 − 2
√

2

(
1 −

√
2

1

)(
1 −

√
2 1

)

=
(

1 0
0 1

)
− 1

2 −
√

2

(
3 − 2

√
2 1 −

√
2

1 −
√

2 1

)
=
(√

2
2

√
2

2√
2

2 −
√

2
2

)
.

Consider the product P̃2B:

P̃2B =
(√

2
2

√
2

2√
2

2 −
√

2
2

)(
2
√

3
3

−3+
√

3
3

2
√

3
3

3+
√

3
3

)
=
(

2
√

6
3

√
6

3
0 1

)

which does change the matrix B into upper triangular form.
Let the matrix P2 be the identity matrix with the bottom 2 × 2 submatrix replaced
with P̃2, i.e.

P2 =

1 0 0
0

√
2

2

√
2

2
0

√
2

2 −
√

2
2

 = 1
2

2 0 0
0

√
2

√
2

0
√

2 −
√

2

 .

The product P2A2 should be lower triangular, indeed

P2A2 = 1
6

2 0 0
0

√
2

√
2

0
√

2 −
√

2


3

√
3

√
3 −

√
3

0 2
√

3 −3 +
√

3
0 2

√
3 3 +

√
3

 = 1
6

6
√

3 2
√

3 −2
√

3
0 4

√
6 2

√
6

0 0 −6
√

2

 .

This sequence of steps will generate N − 1 reflection matrices denoted P1, P2, . . . PN−1 which
when applied to A in reverse order (i.e. the product is PN−1 . . . P2P1A), must give an upper
triangular matrix R. Since Pn are orthogonal for all n = 1, 2, . . . , N − 1, then their product
will also be orthogonal.
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Let P = PN−1 . . . P2P1, then R = PA meaning that A = P −1R. Since P is orthogonal, then
P −1 = P T which will be equal to Q in the QR factorisation.

\ Final QR Decomposition

The matrices in question are

P1 = 1
6

−2
√

3 2
√

3 2
√

3
2
√

3 3 +
√

3 −3 +
√

3
2
√

3 −3 +
√

3 3 +
√

3

 , P2 = 1
2

2 0 0
0

√
2

√
2

0
√

2 −
√

2


The matrix product P2P1A should give the matrix R which is upper triangular, indeed

R = P2P1A = 1
6

6
√

3 2
√

3 −2
√

3
0 4

√
6 2

√
6

0 0 −6
√

2

 .

Let

P = P2P1 = 1
12

2 0 0
0

√
2

√
2

0
√

2 −
√

2


−2

√
3 2

√
3 2

√
3

2
√

3 3 +
√

3 −3 +
√

3
2
√

3 −3 +
√

3 3 +
√

3



=

−
√

3
3

√
3

3

√
3

3√
6

3

√
6

6

√
6

6
0

√
2

2 −
√

2
2

 .

Therefore

Q = P −1 = P T =

−
√

3
3

√
6

3 0√
3

3

√
6

6

√
2

2√
3

3

√
6

6 −
√

2
2

 ,

hence giving the QR decomposition of A as−1 1 1
1 1 −1
1 1 1


︸ ︷︷ ︸

A

=

−
√

3
3

√
6

3 0√
3

3

√
6

6

√
2

2√
3

3

√
6

6 −
√

2
2


︸ ︷︷ ︸

Q


√

3
√

3
3 −

√
3

3
0 2

√
6

3

√
6

3
0 0 −

√
2


︸ ︷︷ ︸

R

G.1.2 QR Decomposition Using Rotations

The following will explain how the QR decomposition can be performed using rotation
matrices on a square matrix A ∈ RN×N .
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\ Parallel Example

This process will also be applied in parallel to the following matrix

A =

−1 1 1
1 1 −1
1 1 1

 .

The rotation matrices should make all the terms in the lower triangular part of the matrix
equal to zero. Starting with the lower left most element aN1, this element can be eliminated
by using the rotation matrix G(1, N ; θ) where θ = arctan

(
−aN1

a11

)
. When applied to A, this

should eliminate the term aN1.

\ First Rotation Matrix

For the matrix

A =

−1 1 1
1 1 −1
1 1 1

 .

The angle θ will be θ = arctan
(
−a31

a11

)
= arctan (1) = π

4 . Therefore the rotation matrix
will be

G1 = G

(
1, 3; π

4

)
=

cos
(

π
4
)

0 − sin
(

π
4
)

0 1 0
sin
(

π
4
)

0 cos
(

π
4
)
 =


√

2
2 0 −

√
2

2
0 1 0√
2

2 0
√

2
2

 .

This can be verified by considering the product A2 = G1A:

A2 = G1A =


√

2
2 0

√
2

2
0 1 0

−
√

2
2 0

√
2

2


−1 1 1

1 1 −1
1 1 1

 =

−
√

2 0 0
1 1 −1
0

√
2

√
2


which does eliminate a31.

This process can be repeated for all other terms in the lower triangular section to reduce A
into an upper triangular matrix. In these cases, to eliminate the element in position (m, n),
the angle θ = arctan

(
−amn

ann

)
and the rotation matrix is G(n, m; θ).

\ Second & Third Rotation Matrices

Repeat the same process as above to the matrix A2 to eliminate the term in position
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(2,1): θ2 = arctan
(
−a21

a11

)
= arctan

(
1√
2

)
and G2 = G(1, 2; θ2) is

G2 = G(1, 2; θ2) =

cos(θ2) − sin(θ2) 0
sin(θ2) cos(θ2) 0

0 0 1

 =


√

6
3 −

√
3

3 0√
3

3

√
6

3 0
0 0 1

 .

Applying G2 to A2 should eliminate the (2,1) element, indeed

A3 = G2A2 =

−
√

3 −
√

3
3

√
3

3
0

√
6

3 −
√

6
3

0
√

2
√

2

 .

Finally, the term in position (2,3) needs to be eliminated: θ3 = arctan
(
−a32

a22

)
=

arctan
(√

3
)

and G3 = G(2, 3; θ3) is

G3 = G(2, 3; θ3) =

1 0 0
0 cos(θ3) − sin(θ3)
0 sin(θ3) cos(θ3)

 = 1
2

1 0 0
0 1

√
3

0 −
√

3 1

 .

Applying G3 to A3 should eliminate the (3,2) element, indeed

G3A3 = 1
2

1 0 0
0 1

√
3

0 −
√

3 1


−

√
3 −

√
3

3

√
3

3
0

√
6

3 −
√

6
3

0
√

2
√

2

 = 1
3

−3
√

3 −
√

3
√

3
0 2

√
6

√
6

0 0 3
√

2

 .

This process will generate a sequence of at most 1
2N(N − 1) rotation matrices (since this

is the number of terms that need to be eliminated). Suppose that M rotation matrices
are needed where M ∈

{
1, 2, . . . , 1

2N(N − 1)
}

, then when these are applied to A in reverse
order (the product GM GM−1 . . . G2G1A), then the result should be the upper triangular
matrix R. Let G = GM GM−1 . . . G2G1, then R = GA. Since all the rotation matrices are
orthogonal, then their product must also be orthogonal, therefore if Q = G−1 = GT, then
A = QR, hence giving the QR decomposition of A.

\ Final QR Decomposition

The matrices in question are

G1 =


√

2
2 0

√
2

2
0 1 0

−
√

2
2 0

√
2

2

 , G2 =


√

6
3 −

√
3

3 0√
3

3

√
6

3 0
0 0 1

 and G3 =

1 0 0
0 1

2

√
3

2
0 −

√
3

2
1
2

 .
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The product of the rotation matrices is

G = G3G2G1 =


√

3
3 −

√
3

3 −
√

3
3√

6
3

√
6

6

√
6

6
0

√
2

2 −
√

2
2

 .

Therefore

Q = G−1 = GT =


√

3
3

√
6

3 0
−

√
3

3

√
6

6

√
2

2
−

√
3

3

√
6

6 −
√

2
2


hence giving the QR decomposition of A as−1 1 1

1 1 −1
1 1 1


︸ ︷︷ ︸

A

=


√

3
3

√
6

3 0
−

√
3

3

√
6

6

√
2

2
−

√
3

3

√
6

6 −
√

2
2


︸ ︷︷ ︸

Q

−
√

3 −
√

3
3

√
3

3
0 2

√
6

3

√
6

3
0 0

√
2


︸ ︷︷ ︸

R

.

Generally, the QR decomposition of a matrix is unique up to sign differences (as seen from
the examples above where some of the rows and columns have different signs but in the end,
the result will be the same).

G.1.3 QR Decomposition in MATLAB

In MATLAB, the QR decomposition can be done with the qr function.

1 >> A=[4,6,1;0,1,-1;0,1,2]
2 A =
3 4 6 1
4 0 1 -1
5 0 1 2
6 >> [Q,R]=qr(A)
7 Q =
8 1.0000 0 0
9 0 -0.7071 -0.7071

10 0 -0.7071 0.7071
11 R =
12 4.0000 6.0000 1.0000
13 0 -1.4142 -0.7071
14 0 0 2.1213

If the matrix is rectangular, then the economy version of the QR decomposition can be
found using qr(A,"econ").
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G.2 Eigenvalue Decomposition

For a matrix A ∈ CN×N , the value λ ∈ C and non-zero vector v ∈ CN are known as the
Eigenvalue and Eigenvector , respectively, if they satisfy the relationship Av = λv. These
can be written in eigenpair notation as {λ; v}.

In MATLAB, to find the eigenvalues and eigenvectors of a matrix A, use [V,E]=eig(A).
This will produce a matrix V whose columns are the eigenvectors of A and a diagonal matrix
E whose entries are the corresponding eigenvalues where the (n, n) element of E is the
eigenvalue that corresponds to the eigenvector in column n of V. However, if only eig(A) is
run without specifying the outputs, MATLAB will produce a column vector of eigenvalues
only.

1 >> A=[-2,-4,2;-2,1,2;4,2,5]
2 A =
3 -2 -4 2
4 -2 1 2
5 4 2 5
6 >> eig(A)
7 ans =
8 -5
9 3

10 6
11 >> [V,E]=eig(A)
12 v =
13 0.8165 0.5345 0.0584
14 0.4082 -0.8018 0.3505
15 -0.4082 -0.2672 0.9347
16

17 E =
18 -5 0 0
19 0 3 0
20 0 0 6

Therefore, the matrix A has the following eigenpairs−5 ;

 0.8165
0.4082

−0.4082


 ,

3 ;

 0.5345
−0.8018
−0.2672


 ,

6 ;

0.0584
0.3505
0.9347


 .

Notice that the eigenvectors are not represented in the most pleasant form, the reason is
that MATLAB normalises eigenvectors by default, meaning that the magnitude of every
eigenvector is 1. In order to convert this to a more palatable form, the columns should be
individually multiplied or divided by any scalar value1. The easiest way to do this is to, first

1Remember that any scalar multiple of an eigenvector is still an eigenvector.
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of all, divide every individual column by its minimum value, then any other manipulations
can be carried out afterwards.

1 >> v1=V(:,1)/min(V(:,1))
2 ans =
3 -2
4 -1
5 1
6 >> v2=V(:,2)/min(V(:,2))
7 ans =
8 -0.6667
9 1.0000

10 0.3333
11 >> v2=3*v2
12 ans =
13 -2
14 3
15 1
16 >> v3=V(:,3)/min(V(:,3))
17 ans =
18 1
19 6
20 16

This produces a far more appealing set of eigenpairs:−5 ;

−2
−1
1


 ,

3 ;

−2
3
1


 ,

6 ;

 1
6
16


 .

G.2.1 Eigendecomposition

Suppose that the matrix A ∈ CN×N has N linearly independent eigenvectors v1, v2, . . . , vN

with their associated eigenvalues λ1, λ2, . . . , λN . Let V be the matrix whose columns are
the eigenvectors of A and let Λ be the diagonal matrix whose entries are the corresponding
eigenvalues (in the same way that MATLAB produces the matrices E and V). In other words,
if the matrix A has the eigenpairs

{λ1; v1} , {λ2; v2} , . . . {λN ; vN } ,

then the matrices V and Λ are

V =


...

...
...

v1 v2 . . . vN
...

...
...

 and Λ =


λ1

λ2
. . .

λN

 .
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The matrix A can then be written as A = V ΛV −1 and this is called the Eigendecomposition
of A. If V is an orthogonal matrix (as MATLAB produces it), then the eigendecomposition
of A is A = V ΛV T.

This particular decomposition of matrices is useful when the matrix A acts as a repeated
transformation in a vector space. For example, suppose that the vector y can be found
by applying the matrix transformation A on the vector x 100 times, this means that
y = A100x. Under usual circumstances, calculating A100 is incredibly cumbersome but if the
eigendecomposition of A is used, then the problem can be reduced into taking the power of
a diagonal matrix instead. Indeed,

y = A100x

y = AA . . . A︸ ︷︷ ︸
100 times

x

y =
(
V ΛV −1

) (
V ΛV −1

)
. . .
(
V ΛV −1

)
︸ ︷︷ ︸

100 times

x

y = V ΛV −1V ΛV −1V ΛV −1x

y = V Λ100V −1x.

Therefore, instead of calculating A100, the matrix Λ100 can be calculated instead which will
be much easier since Λ is a diagonal matrix (remember that the power of a diagonal matrix
is just the power of its individual terms). If V is orthogonal, then the calculation will be
simpler since the matrix V does not need to be inverted, only its transpose taken.

Luckily, MATLAB can perform this decomposition as seen with the eig command.

G.3 Singular Value Decomposition (SVD)

What happens if a square matrix A does not have a full system of eigenvectors? What
happens if A is a rectangular matrix? In cases like this, some of the previous decompositions
can fail, however there is one more way in which these issues can be resolved and it is by
using the Singular Value Decomposition.

For A ∈ RM×N , orthogonal matrices U ∈ RM×M and V ∈ RN×N can always be found
such that AV = UΣ where Σ ∈ RM×N is a diagonal matrix that can be written as
Σ = diag(σ1, σ2, . . . , σp) where p = min {M, N} whose entries are positive and arranged in
descending order, i.e.

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

Since V is an orthogonal matrix, then A can be written as A = UΣV T, this form is called
the Singular Value Decomposition (SVD) of A. If M > N , this can be illustrated as
follows:
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The scalar values σi are called the Singular Values of A, the columns of U are called Left
Singular Vectors and the columns of V are called Right Singular Vectors. In a vector
sense, the SVD of A given by A = UΣV T can be written as Avi = σiui for all i = 1, 2, . . . , p
(where ui and vi are the columns of U and V respectively).

Properties of the SVD

• The SVD of a matrix A ∈ CM×N requires O (MNp) computations (where p =
min {M, N}).

• The singular values are also useful when calculating the 2-norm of a matrix. Recall
that for a matrix A ∈ CM×N , the 2-norm of A can be written in terms of the spectral
radius of AHA as

∥A∥2 =
√

ρ(AHA)

where the spectral radius is the largest eigenvalue in absolute value. This can also be
written in terms of the singular values as

∥A∥2 =
√

σmax(A)

where σmax(A) represents the largest singular value of matrix A, which (as per the the
way in which the singular values have been arranged) is going to be σ1.

• If A ∈ RN×N , then the eigenvalues of AAT and ATA are equal to the squares of the
singular values of A, indeed, if A = UΣV T, then

AAT =
(
UΣV T

) (
UΣV T

)T
= UΣV TV ΣTUT = UΣ2UT

ATA =
(
UΣV T

)T (
UΣV T

)
= V ΣTUTUΣV T = V Σ2V T

since Σ is a diagonal square matrix.
• Let r, s ∈ N and τ ∈ R, suppose that the singular values σ1, σ2, . . . , σp of A satisfy

σ1 ≥ σ2 ≥ · · · ≥ σs > τ ≥ σs+1 ≥ · · · ≥ σr > σr+1 = σr+2 = · · · = σp = 0.

Then r is the Rank of A and s is the τ -rank of A. In fact, if τ = εM (the machine
precision), then s is called the Numerical Rank of A.
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• Specific singular vectors span specific subspaces defined in connection to A. For
instance, if the rank of A is r, then Avi = 0 for all i = r + 1, . . . , N . As a consequence,
the vectors vr+1, vr+2, . . . , vN span the null-space of A, denoted by

null(A) =
{

x ∈ RN : Ax = 0
}

.

• If A = UΣV T, then A can be rewritten as

A =
r∑

i=1
Ei

where Ei = σiuivi
T is a rank-1 matrix. It can be seen that

∥Ei∥ = ∥σiuiv
T
i ∥2 = σi.

Since the norm of a matrix is a measure of the “magnitude” of a matrix, it can be said
that A is made up of very specific elementary rank-1 matrices, in such a way that E1
is the most “influential” one.

The singular value decomposition of the matrix A ∈ RM×N can be done by following these
steps:

\ Parallel Example

These steps will be applied in parallel to the matrix

A =
(

3 2 2
2 3 −2

)
.

1. Calculate the eigenpairs of AAT and ATA.

\ Eigenpairs

The eigenpairs of AAT are{
25;
(

1
1

)}
and

{
9;
(

−1
1

)}
.

Similarly, the eigenpairs of ATA are25;

1
1
0


 ,

9;

 1
−1
4


 and

0;

−2
2
1


 .

2. Normalise the eigenvectors by dividing by their 2-norm (this will in fact be the default
output from MATLAB’s eig function).
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\ Normalise Eigenvectors

The normalised eigenpairs of AAT are{
25; 1√

2

(
1
1

)}
and

{
9; 1√

2

(
−1
1

)}
.

Similarly, the normalised eigenpairs of ATA are25; 1√
2

1
1
0


 ,

9; 1√
18

 1
−1
4


 and

0; 1
3

−2
2
1


 .

3. The matrix of singular values Σ must be of the same size as A, i.e. Σ ∈ RM×N , where
the diagonal terms are the square roots of the eigenvalues of AAT and ATA (only the
ones that are shared by the two matrix products) arranged in descending order. There
will only be p diagonal terms where p = min {M, N}.

\ Terms of Σ

The matrix Σ must be of size 2 × 3. The eigenvalues of AAT and ATA are 25 and 9.
Therefore the matrix Σ and is given by

Σ =
(√

25 0 0
0

√
9 0

)
=
(

5 0 0
0 3 0

)
.

4. The matrix U ∈ RM×M will be the matrix whose columns are the normalised eigenvec-
tors of ATA arranged in the same order as the values appear in Σ. Note that if v is a
normalised eigenvector, then −v will also be a normalised eigenvector, therefore this
will give rise to 2M possible cases for U (which will be narrowed down later).

\ Matrix U

The normalised eigenpairs of ATA are{
25; 1√

2

(
1
1

)}
and

{
9; 1√

2

(
−1
1

)}
.

If u1 is the first normalised eigenvector and u2 is the second normalised eigenvector
(i.e. u1 = (1 , 1)T and u2 = (−1 , 1)T), then the matrix U ∈ R2×2 can take one of four
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possible forms

U1 =

u1 u2

 = 1√
2

(
1 −1
1 1

)
, U2 =

u1 −u2

 = 1√
2

(
1 1
1 −1

)

U3 =

−u1 u2

 = 1√
2

(
−1 −1
−1 1

)
, U4 =

−u1 −u2

 = 1√
2

(
−1 1
−1 −1

)
.

5. The matrix V ∈ RN×N will be the matrix whose columns are the normalised eigen-
vectors of AAT arranged in the same order as the values appear in Σ. Just as before,
there will technically be 2N choices of V . In this case, one choice of U or V should be
fixed.

\ Matrix V

The normalised eigenpairs of ATA are25; 1√
2

1
1
0


 ,

9; 1√
18

 1
−1
4


 and

0; 1
3

−2
2
1


 .

Since V has a larger size than U , fix V as the matrix whose columns are the normalised
eigenvectors of AAT with no sign changes. This can be accommodated for later on by
picking an appropriate choice for U . Then

V =


1√
2

1√
18 −2

3
1√
2 − 1√

18
2
3

0 4√
18

1
3

 .

6. The correct choice for the matrix U can be found in one of two ways:

• Trial & Error: Perform the multiplication UΣV T for the different choices of U until
the correct one is found that gives A. Alternatively, U can be fixed and the different
choices for V can be investigated.

\ Trial & Error

Consider the product UΣV T for the different choices of U and see which one gives the
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matrix A:

U1ΣV T =
(

2 3 −2
3 2 2

)
̸= A

U2ΣV T =
(

3 2 2
2 3 −2

)
= A

U3ΣV T =
(

−3 −2 −2
−2 −3 2

)
̸= A

U4ΣV T =
(

−2 −3 2
−3 −2 −2

)
̸= A

Therefore the correct choice for U is U2.

• Pseudo-Inversion: First, consider the expression A = UΣV T, multiplying both sides
by V on the right gives AV = UΣ (since V is orthogonal meaning that V TV = I).
Since Σ is rectangular in general, it does not have an inverse but it does have a
Pseudo-Inverse2. Since Σ is a diagonal matrix, then the pseudo-inverse will also be
a diagonal matrix with the diagonal entries being the reciprocals of the singular values.
For example, if

Σ =

σ1 0 0 0
0 σ2 0 0
0 0 σ3 0

 ,

then the pseudo-inverse of Σ is

Σ+ =


1

σ1
0 0

0 1
σ2

0
0 0 1

σ3
0 0 0

 .

Similarly if

Σ =


σ1 0 0
0 σ2 0
0 0 σ3
0 0 0

 ,

then the pseudo-inverse of Σ is

Σ− =


1

σ1
0 0 0

0 1
σ2

0 0
0 0 1

σ3
0

 .

Therefore multiplying both sides of AV = UΣ by Σ+ on the right will give the desired
expression for U which is U = AV Σ+.

2For a matrix B ∈ CM×N with M < N , then the pseudo-inverse is the matrix B+ ∈ CN×M such that
BB+ = I ∈ RM×M . Similarly, if B ∈ CM×N with M > N , the pseudo-inverse is the matrix B− ∈ CN×M

such that B−B = I ∈ RN×N . Note that if a matrix is square and invertible, then the pseudo-inverse is
the inverse.
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\ Pseudo-Inverse

The pseudo-inverse of Σ ∈ R2×3 is Σ+ ∈ R3×2 where its diagonal terms are the
reciprocals of those in Σ, i.e.

Σ =
(

5 0 0
0 3 0

)
=⇒ Σ+ =

1
5 0
0 1

3
0 0

 .

This can be verified by showing that ΣΣ+ = I. To find U , calculate

U = AV Σ+ =
(

3 2 2
2 3 −2

)
1√
2

1√
18 −2

3
1√
2 − 1√

18
2
3

0 4√
18

1
3


1

5 0
0 1

3
0 0

 = 1√
2

(
1 1
1 −1

)
.

7. This finally gives all the matrices required for the SVD of A.

\ SVD of A

(
3 2 2
2 3 −2

)
︸ ︷︷ ︸

A

=
( 1√

2
1√
2

1√
2 − 1√

2

)
︸ ︷︷ ︸

U

(
5 0 0
0 3 0

)
︸ ︷︷ ︸

Σ


1√
2

1√
2 0

1√
18 − 1√

18
4√
18

−2
3

2
3

1
3


︸ ︷︷ ︸

V T

.

Note that if the SVD of a matrix A is known, it can also be useful in finding pseudo inverse
of A:

A = UΣV T

⇒
×V

AV = UΣV TV

⇒
V −1=V T

AV = UΣ

⇒
×Σ+

AV Σ+ = UΣΣ+

⇒
ΣΣ+=I

AV Σ+ = U

⇒
×UT

AV Σ+UT = UT

⇒
UUT=I

AV Σ+UT = I.

Therefore, the matrix A+ = V Σ+UT is the pseudo-inverse of A.
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\ Pseudo-Inverse of A

Find the pseudo-inverse of A where

A =
(

3 2 2
2 3 −2

)
.

The SVD of A is

A =
( 1√

2
1√
2

1√
2 − 1√

2

)
︸ ︷︷ ︸

U

(
5 0 0
0 3 0

)
︸ ︷︷ ︸

Σ


1√
2

1√
2 0

1√
18 − 1√

18
4√
18

−2
3

2
3

1
3


︸ ︷︷ ︸

V T

.

The pseudo-inverse of A is

A+ = V Σ+UT =


1√
2

1√
18 −2

3
1√
2 − 1√

18
2
3

0 4√
18

1
3


1

5 0
0 1

3
0 0

( 1√
2

1√
2

1√
2 − 1√

2

)
= 1

45

 7 2
2 7
10 −10

 .

G.3.0.1 SVD in MATLAB

In MATLAB, the SVD of a matrix can be found with the SVD command.

1 >> A=[3, 2, 2; 2, 3, -2]
2 A =
3 3 2 2
4 2 3 -2
5 >> [U,S,V]=svd(A)
6 U =
7 -0.7071 0.7071
8 -0.7071 -0.7071
9 S =

10 5.0000 0 0
11 0 3.0000 0
12 V =
13 -0.7071 0.2357 -0.6667
14 -0.7071 -0.2357 0.6667
15 -0.0000 0.9428 0.3333
16 >> U*S*V'-A % Check is A=USV'
17 ans =
18 1.0e-14 *
19 0 0 -0.0222
20 -0.0222 -0.1332 0.0666
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Notice that sometimes, due to round-off error, U*S*V'-A may not exactly be equal to the
zero matrix, but it is still close enough to it.
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H Data Fitting

H.1 Linear Regression

Linear Regression, or Linear Least Squares (LS), problems originally arose from the
need to fit a mathematical model to given observations; typically, to reduce the influence
of errors in the observations. It is desirable to use a greater number of measurements than
the number of unknown parameters in the model (more equations than unknowns), hence
leading to an overdetermined system of equations. In other words, given b ∈ RM and
A ∈ RM×N with M > N , a solution x ∈ RN needs to be found such that Ax is the “best’ ’
approximation to b.

For instance, consider a set of M data points (or measurements) (ti, yi) for i = 1, 2, . . . , M .
The idea behind linear regression is to find a parameter vector x ∈ RN such that the linear
function y given by

y(t) = f(x, t) =
N∑

j=1
xjφj(t)

can approximate the data in the best possible way, by reducing the error between the
measurement (ti, yi) and the approximation (ti, y(ti)).

There are M equations represented by the M measurements and N unknowns, which are
the terms of x. Replacing the measurements into the equation for y gives an overdetermined
system

yi =
N∑

j=1
xjφj(ti) for i = 1, . . . , M.

This system can be written in matrix form as Ax = b where the elements of A are aij = φj(ti)
and the elements of b are bi = yi. The “best’ ’ way to fit the data can be different depending
upon the discipline, but the one of the simplest and most statistically motivated choice is
to find a vector x where the square of the distance between the points is reduced as much
as possible, i.e. reduce the value of (y(ti) − yi)2. More formally, this can be written as a
minimisation problem to find

min
x

∥r∥2 where r = b − Ax is the residual

and the linear least squares solution is

x̃ = argmin
x

∥Ax − b∥2.

Sometimes the solution x may not be unique (if the rank of A is less than N), in that case,
the solution will be the one with the smallest 2-norm.
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\ Hooke’s Law

Hooke’s law states that the length l of an extension of a spring is directly proportional
to the force F applied, specifically the extension can be written in terms of the force as
l = e + kF where e is the equilibrium position and k is the spring stiffness, both of
which are constants to be determined. Assume that an experiment was conducted and
the following data was obtained

F 1 2 3 4 5

l 7.97 10.2 14.2 16.0 21.2

Therefore, a system of 5 equations in 2 unknowns is

7.97 = e + k

10.2 = e + 2k

14.2 = e + 3k

16.0 = e + 4k

21.2 = e + 5k.

This system can be written in matrix form as
1 1
1 2
1 3
1 4
1 5


(

e
k

)
=


7.97
10.2
14.2
16.0
21.2

 .

This is an example of ***Inverse Problem} in which the parameters need to be found
from the given data.

This minimisation problem can also be solved using the QR decomposition of the matrix A.
Suppose that the matrix A can be written as A = QR where Q is an orthogonal matrix and
R is upper triangular, then

Ax − b = QRx − b since A = QR = Q(Rx − QTb) since Q−1 = QT.

Thus the 2-norm of the residual r = Ax − b is

∥r∥2 = ∥Ax − b∥2

= ∥Q(Rx − QTb)∥2

= ∥Rx − QTb∥2 since Q is orthogonal, then ∥Qv∥2 = ∥v∥2.

As already noted, in many problems of estimating N parameters in a process with M
experimental data points, the number of observations is usually larger than the number of
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parameters, i.e. M ≥ N . The problem of minimising ∥Rx − QTb∥2 may be solved directly
as follows: let c = QTb, so that

Rx−QTb = Rx−c =



r11 r12 . . . r1N

0 r22 . . . r2N
...

... . . . ...
0 0 . . . rNN

0 0 . . . 0
...

... . . . ...
0 0 . . . 0




x1
x2
...

xN

−



c1
c2
...

cN

cN+1
...

cM


=



r11x1 + r12x2 + · · · + r1N xN − c1
r22x2 + · · · + r2N xN − c2

...
rNN xN − cN

−cN+1
...

−cM


.

This vector can be written as d + f where

d =



d1
d2
...

dN

0
...
0


with di = −ci +

N∑
j=i

rijxj and f = −



0
0
...
0

cN+1
...

cM


.

Also note that the vector d can be written as Rx − c̃ where c̃ is the first N rows of c.

It can be seen that the vectors d and f are orthogonal (since d · f = 0), therefore

∥r∥2 = ∥d∥2 + ∥f∥2.

ñ Note

Recall that for two vectors x and y, the Triangle Inequality states that ∥x + y∥ ≤
∥x∥ + ∥y∥ and the equality holds when x and y are orthogonal.

Since only the vector d depends on x, then in order to minimise ∥r∥2, a choice for x is
needed such that ∥d∥2 = 0, meaning that d must be the zero vector (by the rules of norms).
Therefore, if d = 0, then

Rx = c̃ =⇒ x = R−1c̃ =


r11 r12 . . . r1N

0 r22 . . . r2N
...

... . . . ...
0 0 . . . rNN


−1

c1
c2
...

cN


which will be the best least squares fit. The residual ∥r∥2 will then be equal to ∥f∥2 which
will be an estimate for how good the best is.
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H.2 Lines of Best Fit Using polyfit

Sometimes when experimental data is given, a lines of best fit is needed to see which lines
would best fit the data.

Suppose there is data stored in an Excel file called Data.xlsx consisting of two columns that
will be labelled x and y and the line of best fit needs to be found. The polyfit function
can fit a polynomial function to this data, so if a linear function y = ax + b needs to be
fitted, then p=polyfit(x,y,1) will produce two outputs which are the coefficients a and b
respectively. The fitted data can then be plotted using the polyval command. All in all,
the function below will read data, plot the raw data and the line of best fit:

1 function Line_Best_Fit
2

3 Data = xlsread('Data.xlsx');
4

5 x = Data(:,1);
6 y = Data(:,2);
7

8 clf
9 hold on

10 grid on
11 plot(x,y,'.k')
12

13 p = polyfit(x,y,1);
14

15 X = linspace(min(x),max(x));
16

17 Y = polyval(p,X);
18

19 plot(X,Y,'-r')
20

21 end

The degree of the polynomial can be changed until the appropriate fitting is found. For this
data, it seems that a degree three polynomial would be most appropriate
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Figure H.1: polyfit(x,y,1) gives y = 7.2484x + 17.7404

Figure H.2: polyfit(x,y,3) gives y = 0.1100x3 + 0.3920x2 + 0.5854x + 4.5430
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I Eigenvalue Problems

Given a square matrix A ∈ CN×N , the Eigenvalue Problem consists of finding a scalar
λ ∈ C and a vector v ̸= 0 such that Av = λv. Any such λ is called an Eigenvalue of A,
while v is the associated Eigenvector . For any matrix A and its eigenvalue λ, the associated
eigenvector is not unique; in fact, any multiple of an eigenvector is still an eigenvector. The
eigenvalue/eigenvector pair will be written in Eigenpair notation as {λ; v} .

In order to calculate the eigenvalues of a matrix A ∈ CN×N , consider the polynomial

p(λ) = det(A − λI).

This will be a polynomial of degree N , in fact, any root of the polynomial p(λ) is an eigenvalue
of A and vice versa. Note that if the highest order coefficient of p is equal to 1, then the
polynomial is known as the Characteristic Polynomial of A. More generally, for any
matrix A ∈ CN×N , the characteristic polynomial is given by P (λ) = (−1)N det(A − λI).
This means that the matrix A of size N × N must have N eigenvalues (not necessarily
unique). Also, if A is a real matrix, the polynomial p(λ) will have real coefficients and
therefore (by the Fundamental Theorem of Algebra), any complex eigenvalues will appear in
complex conjugate pairs. If A is a diagonal or triangular matrix, then the eigenvalues are
simply the diagonal terms. After the eigenvalues have been found, the eigenvectors can be
calculated by finding a general form of the vector v that satisfies (A − λI)v = 0.

If the eigenvector v is known, the eigenvalue λ can be recovered by using the Rayleigh
Quotient

λ = vHAv

∥v∥2
2

where vH = vT is the Hermitian of v (the complex conjugate transpose).

\ Caution

Let
A =

(
0 −1
1 0

)
.

To find the eigenvalues, first consider the polynomial

p(λ) = det(A − λI) = det
((

0 −1
1 0

)
− λ

(
1 0
0 1

))
= det

(
−λ −1
1 −λ

)
= λ2 + 1.

This polynomial has two roots, λ1 = i and λ2 = −i, hence giving the two eigenvalues of
A.
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To calculate the eigenvectors, consider the eigenvalues separately, then for each eigen-
value, find the vector v = (V1 V2)T that satisfies (A − λI)v = 0:

• λ1 = i:

(A − λ1I)v = 0 =⇒
(

−i −1
1 −i

)(
V1
V2

)
=
(

0
0

)
=⇒ −iV1 − V2 = 0

V1 − iV2 = 0

which gives two equations in two unknowns. However, notice that if the first
equation is multiplied by i, the second equation will be obtained and therefore, the
problem is underdetermined (i.e. one equation in two unknowns). This must always
be the case, finding an eigenvector must always result in an underdetermined
system. In this case, solving one equation would suffice. Solving the second
equation will give V1 in terms of V2 as V1 = iV2. Therefore the eigenvector v will
be

v =
(

V1
V2

)
=
(

iV2
V2

)
=
(

i
1

)
V2.

Now any value of V2 can be chosen (except 0), and the result will be the eigenvector
(this also shows why any multiple of an eigenvector is also an eigenvector), in this
case, choose V2 = 1. This gives the first eigenpair{

i ;
(

i
1

)}
.

• λ2 = −i:

(A − λ2I)v = 0 =⇒
(

i −1
1 i

)(
V1
V2

)
=
(

0
0

)
=⇒ iV1 − V2 = 0

V1 + iV2 = 0

which gives one equations in two unknowns (since the first equation multiplied
by −i gives the second). Solving the second equation will give V1 in terms of V2
as V1 = −iV2. Therefore the eigenvector v will be

v =
(

V1
V2

)
=
(

−iV2
V2

)
=
(

−i
1

)
V2.

For the sake of simplicity, choose V2 = i (once again, any non-zero value of V2
can be chosen). This gives the second eigenpair{

−i ;
(

1
i

)}
.

Therefore, the matrix has the eigenpairs{
i ;
(

i
1

)}
,

{
−i ;

(
1
i

)}
.
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This can be verified by showing that Av = λv for each eigenpair:

Av1 =
(

0 −1
1 0

)(
i
1

)
=
(

−1
i

)
= i

(
i
1

)
= λ1v1

Av2 =
(

0 −1
1 0

)(
1
i

)
=
(

−i
1

)
= −i

(
1
i

)
= λ2v2.

For a matrix A ∈ CN×N , there will always be N eigenvalues (not necessarily distinct). If an
eigenvalue is repeated, then the same eigenvalue will have multiple eigenvectors however, it
is possible that there might not necessarily be a total of N eigenvectors.

If the matrix A has a complete set of eigenvectors (meaning it has N distinct eigenvectors),
then A is said to be Diagonalisable, i.e. there exists a non-singular matrix V ∈ CN×N

whose columns are the eigenvectors of A and a diagonal matrix Λ ∈ CN×N whose entries are
the eigenvalues of A, such that A = V ΛV −1. Note that the order in which the eigenvalues
and eigenvectors are placed in columns should be the same in both matrices, in other words,
if the matrix A has N eigenpairs given by {λ1; v1} , {λ2; v2} , . . . , {λN ; vN }, then

Λ =


λ1

λ2
. . .

λN

 , V =


...

...
...

v1 v2 · · · vN
...

...
...

 .

\ Caution

From the example above, the matrices Λ and V are

Λ =
(

i 0
0 −i

)
, V =

(
i 1
1 i

)
.

The matrix A is diagonalisable since the product V ΛV −1V should give A, indeed

V ΛV −1 =
(

i 1
1 i

)(
i 0
0 −i

)(
i 1
1 i

)−1

= 1
i2 − 1

(
i 1
1 i

)(
i 0
0 −i

)(
i −1

−1 i

)

= −1
2

(
i 1
1 i

)(
−1 −i
i 1

)
= 1

2

(
0 2

−2 0

)
=
(

0 −1
1 0

)
= A.

Note that the existence of a complete system of eigenvectors is helpful in representing a linear
transformation (or equivalently a square matrix) of a Euclidean space, such as RN , as a
simple dilation or scaling (i.e. a multiplication by a suitable factor along each coordinate axis)
in a suitable system of coordinates, obtained from the original one by a volume-preserving
linear map.
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If the matrix A is Hermitian, meaning that AH = A, (this happens to be the case in many
important applications, then the eigenvalue problem is much simpler since the following
properties hold:

• All eigenvalues are of A are real (since A is real and all eigenvalues are also real, then
all eigenvectors can also be chosen to be real as well, usually by multiplying by an
appropriate factor);

• The eigenvectors corresponding to distinct eigenvalues are orthogonal (in fact, the
eigenvectors of A can be chosen to be orthonormal);

• The matrix A is always diagonalisable.

ñ Note

For example, in the numerical approximation of solutions of boundary value problems
for second-order differential equations describing “conservative” physical processes,
i.e. those where there is no dissipation of energy or it is very weak and can be neglected
in the first instance.

!!! Let {λ; v} be an eigenpair of A, i.e. Av = λv, then

Av = λv

⇒
vH×

vHAv = λvHv

⇒
AH=A

vHAHv = λvHv

⇒
(Av)H=vHAH

(Av)Hv = λvHv

⇒
Av=λv

(λv)Hv = λvHv

⇒
(αu)H=ᾱuH

λ̄vHv = λvHv

⇒
uHu=∥u∥2

2

λ̄∥v∥2
2 = λ∥v∥2

2

⇒
÷∥v∥2

2 since v ̸=0
λ̄ = λ =⇒ λ ∈ R.

Let {λ; v} and {µ; u} be real eigenpairs of A where λ ̸= µ, i.e. Av = λv and Au = µv.
Then

Au = µu

⇒
vT×

vTAu = µvTu

⇒
(Av)T=vTAT

(Av)Tu = µvTu

⇒
Av=λv

λvTu = µvTu

=⇒ (λ − µ)vTu = 0
⇒

λ̸=µ
vTu = 0 =⇒ u and v are orthogonal.
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Let V be the matrix whose columns are v1, v2, . . . , vN which are the distinct eigenvectors of
A. Since all the eigenvectors of A are orthogonal, then ⟨vi, vj⟩ = δij for all i, j = 1, 2, . . . , N .
This means that V must be an orthogonal matrix, i.e. V TV = I. Moreover, since A = V ΛV −1

and V −1 = V T, then A = V ΛV T. Therefore the diagonal matrix of eigenvalues Λ is equal
to Λ = V TAV , more specifically vi

TAvj = δijλi. !!!

Therefore, if a matrix A is real and symmetric, then the eigenvectors v1, v2, . . . , vN must
satisfy

vi
Tvj = δij =

{
1 i = j

0 i ̸= j
and vi

TAvj = δijλi =
{

λi i = j

0 i ̸= j
for all i, j = 1, 2, . . . , N.

Since v1, v2, . . . vN is a set of N linearly independent vectors in RN , then they must span
RN . Therefore, any vector x ∈ RN with ∥x∥2 = 1 can be written as a linear combination of
v1, v2, . . . , vN , specifically

x =
N∑

j=1
ajvj where aj ∈ R for all j = 1, 2, . . . , N.

Therefore

1 = ∥x∥ = xTx =
N∑

j=1
a2

j and xTAx =
N∑

j=1
λja2

j .

\ Fibonacci Sequence

There are many applications of the eigenvalue decomposition. A simple one involves
the analysis of the Fibonacci numbers. Consider the sequence {Fn}n∈N which satisfies

F0 = 0 ; F1 = 1 ; Fn+1 = Fn + Fn−1 , n ≥ 1.

It is known that the ratio Fn+1
Fn

→ φ = 1+
√

5
2 as n → ∞. To show that in a different

way using eigenvalue decomposition, consider the vector

un =
(

Fn+1
Fn

)
.

This vector can form the recurrence relation

un = Aun−1 where A =
(

1 1
1 0

)
and u0 =

(
1
0

)
.

The vector un can then be written in terms of u0 by repeated substitution:

un = Aun−1 = A2un−2 = · · · = An−2n2 = An−1n1 = Anu0.

Therefore un = Anu0 but doing this requires calculating the nth power of the matrix
A which may be difficult to do.
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In order to circumvent calculating An explicitly, consider the eigenpairs of A which are
(noting that the eigenvectors of A are orthogonal since A is symmetric){

1 +
√

5
2 ;

(
1 +

√
5

2

)}
;
{

1 −
√

5
2 ;

(
1 −

√
5

2

)}
.

For the sake of convenience, define λ± = 1±
√

5
2 , then the eigenpairs can be rewritten as{

λ+ ;
(

2λ+
2

)}
;
{

λ− ;
(

2λ−
2

)}
.

Since any multiple of an eigenvector is still an eignevctrors, then both eigenvectors can
be divided by 2 to give {

λ+ ;
(

λ+
1

)}
;
{

λ− ;
(

λ−
1

)}
.

Let Λ be the diagonal matrix whose entries are the eigenvalues of A and let V be the
matrix whose columns are the eigenvectors, i.e.

Λ =
(

λ+ 0
0 λ−

)
and V =

(
λ+ λ−
1 1

)
.

Since the eigenvectors are distinct, then A is diagonalisable and can be written as
A = V ΛV −1.
This can be verified as follows:

V ΛV −1 =
(

λ+ λ−
1 1

)(
λ+ 0
0 λ−

)(
λ+ λ−
1 1

)−1

= 1
λ+ − λ−

(
λ+ λ−
1 1

)(
λ+ 0
0 λ−

)(
1 −λ−

−1 λ+

)

= 1
λ+ − λ−

(
λ2

+ λ2
−

λ+ λ−

)(
1 −λ−

−1 λ+

)

= 1
λ+ − λ−

(
λ2

+ − λ2
− −λ2

+λ− + λ2
−λ+

λ+ − λ− −λ+λ− + λ−λ+

)

= 1
λ+ − λ−

(
(λ+ + λ−) (λ+ − λ−) λ+λ− (λ− − λ+)

λ+ − λ− 0

)

=
(

λ+ + λ− −λ+λ−
1 0

)

=
(

1+
√

5
2 + 1−

√
5

2 −
(

1+
√

5
2

) (
1−

√
5

2

)
1 0

)
=
(

1 1
1 0

)
= A.

Now consider matrix A2:

A2 = AA =
(
V ΛV −1

) (
V ΛV −1

)
= V Λ2V −1.
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Since Λ is a diagonal matrix, then Λ2 is also a diagonal matrix whose terms are the
squares of Λ, i.e.

Λ2 =
(

λ+ 0
0 λ−

)2

=
(

λ2
+ 0
0 λ2

−

)
.

Similarly, the higher powers can be done in the same way, therefore

An = V

(
λn

+ 0
0 λn

−

)
V −1 for all n ≥ 1.

This shows a way in which the matrix powers can be calculated easily. Returning to
un = Anu0:

un = Anu0 = V

(
λn

+ 0
0 λn

−

)
V −1

(
1
0

)
=
(

λ+ λ−
1 1

)(
λn

+ 0
0 λn

−

)(
λ+ λ−
1 1

)−1(
1
0

)

=⇒ un =

λn+1
+ −λn+1

−
λ+−λ−
λn

+−λn
−

λ+−λ−

 .

Therefore
Fn+1
Fn

=
λn+1

+ −λn+1
−

λ+−λ−
λn

+−λn
−

λ+−λ−

=
λn+1

+ − λn+1
−

λn
+ − λn

−
.

Since 0 < |λ−| < 1, then λn
− tends to 0 as n tends to infinity. Therefore, passing the

limit as n tends to infinity gives

lim
n→∞

Fn+1
Fn

= lim
n→∞

λn+1
+ − λn+1

−
λn

+ − λn
−

= lim
n→∞

λn+1
+
λn

+
= lim

n→∞
λ+ = λ+ = 1 +

√
5

2

which is indeed the Golden Ratio.
In performing this procedure, there is one important caveat. The matrix V must be
inverted which is simple in the 2 × 2 case but can be computationally expensive for
much larger sizes. This, again, can be circumvented by ensuring that V is an orthogonal
matrix. Recall that since A is Hermitian, all its eigenvectors, and hence all the columns
of V , must be orthogonal. In order to make V an orthogonal matrix, the 2-norm of
each of its columns must be equal to 1, this can be done by dividing each column by
its norm (which is feasible since any multiple of an eigenvector is still an eigenvector).
To normalise the vectors, divide them by their 2-norm:∥∥∥∥∥

(
1 ±

√
5

2

)∥∥∥∥∥
2

2
=
(
1 ±

√
5
)2

+ 22 = 10 ± 2
√

5

Therefore, after normalisation, eigenpairs will be{
λ+; c+

(
λ+
1

)}
;
{

λ−; c−

(
λ−
1

)}
where c± = 2√

10 ± 2
√

5
.
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This means that the eigenvalue decomposition of A is A = Ṽ ΛṼ −1 where

Ṽ =
(

c+λ+ c−λ−
c+ c−

)
and Λ =

(
λ+ 0
0 λ−

)
.

The most important fact about the matrix Ṽ is that it is an orthogonal matrix (meaning
all its columns are orthonormal). Therefore

Ṽ −1 = Ṽ T =
(

c+λ+ c+
c−λ− c−

)
.

The normalisation procedure is computationally cheap and so is matrix transposition,
much more so than matrix inversion. The same matrix power can be used as before:

un = Anu0 = Ṽ

(
λn

+ 0
0 λn

−

)
Ṽ −1u0 =

(
c+λ+ c−λ−

c+ c−

)(
λn

+ 0
0 λn

−

)(
c+λ+ c+
c−λ− c−

)(
1
0

)

=⇒ un =
√

5
(

c+c−λn+1
+ − c+c−λn+1

−
c+c−λn

+ − c+c−λn
−

)
= c+c−

√
5
(

λn+1
+ − λn+1

−
λn

+ − λn
−

)
.

Therefore
Fn+1
Fn

=
c+c−

√
5
(
λn+1

+ − λn+1
−

)
c+c−

√
5
(
λn

+ − λn
−
) =

λn+1
+ − λn+1

−
λn

+ − λn
−

which is the same result as before. The eigenvalue decomposition is useful in this case
but for larger matrices, normalisation needs to be done on the eigenvectors in order to
avoid inverting matrices.

I.1 Calculating Eigenvalues Using the Power Method

For a diagonalisable matrix A, the Power Method is a process used to calculate the smallest
and largest eigenvalues (in absolute value) as well as their associated eigenvectors.

Let A ∈ RN×N be a real diagonalisable matrix, then A = V ΛV −1 where Λ ∈ RN×N is the
diagonal matrix whose terms are the eigenvalues of A and V ∈ RN×N is the matrix whose
columns are the eigenvectors of A corresponding to Λ.

For now, suppose, suppose that A is real and symmetric, then all the eigenvalues are real
and all the eigenvectors are orthogonal, furthermore, the eigenvectors can be chosen to be
orthonormal in order to make V an orthogonal matrix. Suppose that the eigenvalues of A
are ordered in such a way that

|λ1| ≥ |λ2| ≥ · · · ≥ |λN |, (I.1)

in this case, the largest eigenvalue in magnitude is called the Dominant Eigenvalue, which
is λ1 in this case.
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The Power Method can be summarised as follows: Start with an arbitrary unit vector q(0)

that has a non-zero component in the direction of v1 (i.e. ∥q(0)∥2 = 1 and
(
q(0)

)T
v1 ̸= 0),

then starting from k = 1:

• Calculate z(k) = Aq(k−1);
• Update q(k) = z(k)

∥z(k)∥2
(meaning that q(k) is still a unit vector);

• Update α(k) = (q(k))T
Aq(k);

• Update k → k + 1 and repeat until∣∣∣α(k) − α(k−1)
∣∣∣ ≤ τ

∣∣∣α(k)
∣∣∣

where τ is the desired tolerance.

The final value of α will be the eigenvalue of A which has the largest magnitude. This result
can be stated more formally as follows:

Theorem I.1 (Power Method). Let A ∈ RN×N be symmetric with the eigenvalues
λ1, λ2, . . . , λN and their corresponding eigenvectors v1, v2, . . . , vN such that

|λ1| ≥ |λ2| ≥ · · · ≥ |λN |.

Consider a unit vector q(0) such that (q(0))T
v1 ≠ 0 (i.e. q(0) has a component in the direction

of v1). Then the sequence of vectors

q(k) = Aq(k−1)

∥Aq(k−1)∥2

converges to v1 and
α(k) = (q(k))T

Aq(k)

converges to λ1 as k tends to ∞.

Proof. Since A is real and symmetric, then the eigenvectors v1, v2, . . . , vN can be chosen in
such a way that they form an orthonormal basis of RN , therefore the unit vector q(0) can be
written as a linear combination of v1, v2, . . . , vN as

q(0) = 1
γ(0)

N∑
i=1

βivi where γ(0) =

√√√√ N∑
i=1

β2
i .

(The division by γ(0) is to ensure that the vector q(0) is a unit vector.)

It can be proven, by induction (as detailed in Appendix ??), that

q(k) = Aq(k−1)

∥Aq(k−1)∥2
= 1

γ(k)

N∑
i=1

βiλ
k
i vi where γ(k) =

√√√√ N∑
i=1

β2
i λ2k

i .
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This can be rewritten by isolating the first term in the sum as

q(k) = β1λk
1

γ(k)

(
v1 +

N∑
i=2

βi

β1

λk
i

λk
1

vi

)
with γ(k) =

√√√√β2
1λ2k

1

(
1 +

N∑
i=2

β2
i

β2
1

λ2k
i

λ2k
1

)
.

Since, by the way the eigenvalues have been arranged, it was assumed that λ1 is the largest
eigenvalue in absolute value, then

∣∣∣ λi
λ1

∣∣∣ < 1 for all i, and therefore
∣∣∣∣λk

i

λk
1

∣∣∣∣ tends to 0 as k tends

to ∞. Meaning that as k tends to ∞, then γ(k) → β1λk
1 and hence q(k) → v1. Now consider

the expression for α(k) = (q(k))T
Aq(k), passing the limit as k tends to ∞ gives

lim
k→∞

α(k) = lim
k→∞

[
(q(k))T

Aq(k)
]

= v1
TAv1 = λ1

since A is diagonalisable and ∥v1∥2 = 1.

The power method can be generalised in several ways:

• Inverse Power Method: A possible generalization involves applying the method
to the inverse of the matrix A (provided A is non-singular). Since the eigenvalues
of A−1 are the reciprocals of those of A, the power method in that case gives an
approximation to the eigenvalue of A of minimum modulus. This is called the Inverse
Power Method which can be formally stated as follows: Given an initial unit vector
x(0), let y(0) = x(0)

∥x(0)∥2
. Then, for k ≥ 1, compute

x(k) = A−1y(k−1) ; y(k) = x(k)

∥x(k)∥2
; µ(k) = (y(k))T

A−1y(k).

If A has N linearly independent eigenvectors and the minimum eigenvalue is distinct
from all the others, then

lim
k→∞

µ(k) = 1
λN

if the eigenvalues are arranged by size as before. This means that (µ(k))−1 tends to λN

as k tends to ∞. Effectively, at every step k, a linear system of the form Ax(k) = y(k−1)

needs to be solved. It is therefore convenient to find the LU decomposition of A then
solving the system since this would require solving two triangular systems at each
iteration.

• Power Method with Shift: Another generalization of the power method involves
approximating the (unknown) eigenvalue of A nearest to a given number σ (either real
or complex). Let λσ denote such eigenvalue and define the shifted matrix Aσ = A − σI
whose eigenvalues are λ(Aσ) = λ(A) − σ. In order to approximate σ, we can first
approximate the eigenvalue of minimum length of Aσ, say λn(Aσ), by applying the
inverse power method to A−σI, and then compute λσ = λn(Aσ)+σ. This technique is
known as the Power Method with Shift and the number σ is called the Shift. Obviously,
the inverse power method (without shift) is recovered by simply setting σ = 0.
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• QR Method: All the eigenvalues of A can be calculate at once by using the QR Method
which is based on the QR decomposition of A. Initialise the iteration with A(0) = A,
then for k ≥ 1, calculate the QR decomposition of A(k−1) as A(k−1) = Q(k−1)R(k−1)

and the next iteration of A will be A(k) = R(k−1)Q(k−1). It can be proven that A(k)

converges to an upper triangular matrix as k tends to ∞. Also

A(k) = QT A(k−1)Q = Q−1A(k−1)Q

which means that, for all k, A(k−1) has same eigenvalues as A(0) = A, meaning that
the diagonal entries of A(k) get closer and closer to the required eigenvalues of A as k
tends to ∞.
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J Numerical Solutions of Non-Linear
Equations

An important task in numerical analysis is that of finding the root x of a function f : R → R,
i.e. finding the point(s) x ∈ R such that f(x) = 0 (equivalently, in higher-dimensions, the
root of a function f : RM → RN is a vector/point x ∈ RM such that f(x) = 0). It is
important to realise that for many real-life industrial problems (such as the discretisations
of domains for partial differential equations), the system be very large, having a system of
10000 parameters or even higher is not uncommon.

Throughout this section, the exact roots of non-linear functions will be denoted x∗ or x∗.
Numerical algorithms for the approximation of x∗ or x∗ are usually iterative and the aim is
to generate a sequence of values xk or xk such that

lim
k→∞

xk = x∗ or lim
k→∞

xk = x∗.

J.1 One-Dimensional Root-Finding Algorithm

In general, a non-linear function may have several roots and to find a root, an algorithm
would require an initial guess x0 which guides the solution procedure. Finding such a guess
is usually difficult and requires some a priori knowledge.

Any method for solving a problem of the form f(x) = 0 (or indeed f(x) = 0) should have
the following properties:

1. It should be “easy” to use, preferably using only information on f , not on its derivatives;
2. It should be fast and be able to find a root to a specified tolerance. More specifically,

a sequence {xk}k∈N generated by a numerical method is said to converge to x∗ with
order p if there exists a constant C > 0 such that for a large enough k0 ∈ N,

|xk+1 − x∗|
|xk − x∗|p

≤ C for all k ≥ k0.

3. It should be reliable, i.e. it should converge to a root close to an initial guess and not
diverge or become chaotic. The convergence of iterative methods for root-finding of a
non-linear equation depends, in general, on the initial guess x0. The method is called:

• Locally Convergent if the convergence holds for any starting guess x0 that belongs to a
suitable neighbourhood of the root x∗;

• Globally Convergent if the convergence holds for any choice of x0.
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There is no ideal method, so more practical algorithms use a combination of methods to find
the roots.

J.2 Bisection Method

For k ≥ 0:

1. Find an interval [ak, bk] over which f changes sign (i.e. f(ak) < 0 < f(bk) or f(ak) >
0 > f(bk)) and set ck = ak+bk

2 and define xk+1 = ck;
2. The function f must change sign over one of the two intervals [ak, ck] or [ck, bk];
3. i. If f changes sign in the interval [ak, ck], then let ak+1 = ak and bk+1 = ck;

ii. If f changes sign in the interval [ck, bk], then let ak+1 = ck and bk+1 = bk;
4. Update k → k + 1 and repeat steps 1-3 until |bk − ak| < τ for some tolerance τ ;
5. The sequence of values {xk} will converge to the exact root x∗.

Advantages of the Bisection method:

• No information about the derivative of f is needed.
• For the right choices of a and b, convergence is guaranteed, making it very reliable.
• The more iterations there are, the more accurate the solution will be (not susceptible

to numerical errors).
• Iterations are easy to do since they require finding the average only.

Disadvantages of the Bisection method:

• The convergence is very slow, linear at best. This means that if xk is an estimate for
the exact root x∗ of f and ek = x∗ − xk is the error, then if ek is small, the error at
the next iteration will be |ek+1| ≈ K|ek| where K ∈ (0, 1) is a constant (usually for
the bisection method K = 0.5).

• Two initial guesses are needed (the values of a and b) in order to specify the bracketing
interval, additionally, the function must change sign over this interval.

• The function has to be real and continuous.
• Relies on sign changes, meaning it cannot find repeated roots (like the root of f(x) =

x2).
• The method does not work for systems of equations.
• The roots have to be reasonably far away from another another in order to ensure

convergence to one root or the other.

J.3 Secant Method

For k ≥ 0:

1. Consider the value of f at the two points xk and xk+1;
2. Draw a straight line through the two points (xk, f(xk)) and (xk+1, f(xk+1));
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3. This line has a root at

xk+2 = xkf(xk+1) − xk+1f(xk)
f(xk+1) − f(xk) ;

4. Update k → k + 1 and repeat steps 1-3 for the points xk+1 and xk+2;
5. Continue to produce a set of approximations xk to the root x∗ until either

|f(xk)| < τ or |xk+1 − xk| < τ

where τ is some specified tolerance.

Advantages of the Secant method:

• No information about the derivative of f is needed.
• Converges super-linearly fashion, i.e. if ek = x∗ − xk, then |ek+1| ≈ K|ek|φ where

K ∈ (0, 1) and φ is the golden ratio.
• Requires only one function evaluation per iteration, making it computationally inex-

pensive.

Disadvantages of the Secant Method:

• It may not always converge if the initial values are not close enough to the root.
• The method may not converge if the root is near a turning point (i.e. if the function is

differentiable and there is a point in ξ ∈ [x0, x1] such that f(ξ) = 0, then the method
may not converge).

• There is no guaranteed error bound.

J.4 Newton-Raphson Method (NR)

For k ≥ 0:

1. Evaluate f(x) and f ′(x) at xk;
2. Approximate f by a line of slope f ′(xk) through the point (xk, f(xk));
3. This line has a root at

xk+1 = xk − f(xk)
f ′(xk) ;

4. Update k → k + 1 and repeat steps 1-3 until either

|f(xk)| < τ or |xk+1 − xk| < τ.

Advantages of the NR:

• The method is quadratically convergent, i.e. if ek = x∗ − xk, then |ek+1| ≈ K|ek|2.
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ñ Note

To show this rate of convergence, consider the expression for the iteration:

xk+1 = xk − f(xk)
f ′(xk)

⇒
−x∗

xk+1 − x∗ = xk − x∗ − f(xk)
f ′(xk)

⇒
×−1

x∗ − xk+1 = x∗ − xk + f(xk)
f ′(xk)

⇒
f(x∗)=0

x∗ − xk+1 = x∗ − xk + f(xk) − f (x∗)
f ′(xk)

=⇒ x∗ − xk+1 = 1
f ′(xk)

[
f(xk) + f ′(xk) (x∗ − xk) − f (x∗)

]
.

Recall that by Taylor’s Theorem1, the term in the square brackets can be written as

[
f(xk) + f ′(xk)(x∗ − xk) − f(x∗)

]
= −1

2f”(ξ)(x∗ − xk)2

where ξ is a point between xk and x∗. Therefore

|ek+1| = |x∗ − xk+1| =
∣∣∣∣ 1
f ′(xk)

[
f(xk) + f ′(xk) (x∗ − xk) − f (x∗)

]∣∣∣∣
≤
∣∣∣∣ 1
f ′(xk)

[
−1

2f ′′(ξ)(x∗ − xk)2
]∣∣∣∣

= 1
2

∣∣∣∣ f ′′(ξ)
f ′(xk)

∣∣∣∣ |en|2.

Therefore the NR converges quadratically. Obviously, some analysis is needed to make
this statement precise, but roughly speaking it shows that provided f, f ′ and f” are
continuous near x∗, f ′(x∗) ̸= 0 and x0 is close enough to x∗, then Newton’s method
converges quadratically.

• The method converges locally very quickly.
• Can be generalised to higher dimensions and to sets of equations.

Disadvantages of the NR:

• The function has to be differentiable, meaning it might be difficult to implement if the
function was obtained from a set of measurements.

1For a function f : R → R, Taylor’s theorem states that for two points x, y ∈ R which are close to one
another:

f(y) ∼ f(x) + f ′(x)(y − x) + 1
2!f

′′(ξ)(y − x)2 for some ξ between x and y.
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• The initial value has to be reasonably close to the root, otherwise the method will not
converge.

• If the gradient at the initial point is 0 or close to 0, then the method will not converge.

Note that the NR is a generalisation of the Secant method. Indeed, the general iteration
step for the secant method is

xk+1 = xk−1f(xk) − xkf(xk−1)
f(xk) − f(xk−1) .

The right hand side can be rearranged to give

xk+1 = xk − xk − xk−1
f(xk) − f(xk−1)f(xk) (J.1)

which is a simple approximation to the iteration

xk+1 = xk − 1
f ′(xk)f(xk) (J.2)

which is well-known as NR. The Secant method Equation J.1 is therefore an approximate
version of NR which makes use of evaluations of the function f and does not require
evaluations of the derivative of f . The disadvantage of the Secant method is that it converges
more slowly than NR (although both methods are faster than linear).

Python has an in-built root-finding algorithm called Brent’s Method (from Brent, R. P.,
Algorithms for Minimization Without Derivatives. Englewood Cliffs, NJ: Prentice-Hall, 1973.
Ch. 3-4.), also sometimes referred to as the van Wijngaarden-Dekker-Brent Method. This is
a more reliable version of the Secant method since it uses a combination of inverse quadratic
extrapolation, root bracketing, interval bisection and inverse quadratic interpolation.

J.5 Solving Systems of Non-Linear Equations Numerically

Methods for solving non-linear systems of equations can be derived as generalisations of the
scalar case. Consider the system of equations given by f(x) = 0 where f : RN → RN is a
given vector-valued function of the N variables x1, x2 . . . , xN .

For example, if the function f is given by

f(x) =
(

x2
1 + x2

2 − 1
x1 − x2

)
,

then the root-finding algorithm would need to find x1 and x2 such that

x2
1 + x2

2 − 1 = 0 and x1 − x2 = 0.

In this case, the first equation is a unit circle and the second is a straight line. Therefore the
solution is where the circle and the line intersect, and it can easily be seen that the solutions
are ±

(
1√
2 , 1√

2

)
.

267



To write down NR for a system f(x) = 0, first write down the “obvious” generalisation of
the scalar case Equation J.2, i.e.

xn+1 = xn − J(xn)−1f(xn) (J.3)

where the role of the reciprocal of the derivative of f is replaced by the inverse of the
Jacobian matrix J(x) which is given by

J(x) =
(

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)

(where fi is the ith component of f for i = 1, 2). More generally for a function f : RN → RN ,
the Jacobian is given by

J(x) =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xN

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xN...

... . . . ...
∂fN
∂x1

∂fN
∂x2

. . . ∂fN
∂xN

 (x)

where fi is the ith component of f for i = 1, 2, . . . , N . This can be written in element form
as

J(x)ij = ∂fi

∂xj
(x) for all i, j = 1, 2, . . . , N.

More realistically, Equation Equation J.3 should be written as xk+1 = xk + dk where the
Newton correction dk is a vector that can be computed by solving the system of N linear
equations J(xk)dk = −f(xk). This means that each step of NR requires the solution of an
N -dimensional linear system where the matrix J(x) and right hand side f(xk) have to be
recomputed at every step (note that the inverse of the Jacobian is not normally computed
since it is not needed, all that is needed is the solution of a single linear system with coefficient
matrix J(xk), which can be done without actually computing the inverse of J(xk)).

J.6 Minimisation Problems

Closely related to the idea of root-finding is the question of minimising a function g : RN → R.
Such a problem can take one of two forms:

1. Unconstrained optimisation which minimises g(x);
2. Constrained optimisation minimises g(x) with an additional condition. For example,

the value of x needs to be found such that the function g attains its minimum provided
that h(x) = 0 or h(x) ≥ 0.

An example of a constrained minimisation problem could be to minimise the cost of producing
a product in a factory subject to keeping the pollution caused in this production as low as
possible.

There are two kinds of minimum points, global} and local}: Given a function g : RN → R
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• A global minimum is a point x∗ such that g(x∗) ≤ g(x) for all x ∈ RN , i.e.

g(x∗) = min
x∈RN

g(x).

• A local minimum is a point x∗ such that g(x∗) ≤ g(x) for all x in a small neighbourhood
of x∗. A necessary condition for a local minimum (for a sufficiently smooth function)
is that ∇g(x∗) = 0 where ∇ is the gradient operator given by

∇ ≡


∂

∂x1
∂

∂x2...
∂

∂xN

 .

Many algorithms are available for finding local minima but the global minimum is
much more difficult since g(x∗) must be smaller than all x in the entire domain of g.
Finding the global minimum of a general function g is not a simple task. Only recently
have effective algorithms developed, these include Simulated Annealing and Genetic
Algorithms. These algorithms are used mostly in bioinformatic industries for tasks
such as protein design, and by the power generating industry to schedule the on-off
times of its power stations.

J.7 Method of Steepest Descent

The simplest way to find a local minimum is the Method of Steepest Decent. This method
starts from the realisation that for a function g : RN → R and a point x0 ∈ RN , the function
g decreases most rapidly in the direction −∇g(x0).

ñ Note

Indeed, consider the unit direction d̂ where
d
dt

{
g(x0 + td̂)

}∣∣∣∣
t=0

is minimised.

By using the chain rule, this implies that

∇g(x0 + td̂) · d̂
∣∣∣
t=0

is minimised.

Therefore, this implies that ∇g(x0) · d̂ should be “as negative as possible”. By the
Cauchy-Schwarz inequality2,

∇g(x0) · d̂ ≤ ∥∇g(x0)∥2∥d̂∥2 = ∥∇g(x0)∥2 since d̂ is a unit vector.

In order for the equality to hold, d̂ should be a scalar multiple of ∇g(x0), i.e. d̂ =
λ∇g(x0) for some λ ∈ R. In this case, since d̂ is a unit vector and it is intended to
minimise, then

d̂ = − ∇g(x0)
∥∇g(x0)∥
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meaning that the direction of steepest descent is −∇g(x0). Note that in order to
maximise the function g, the direction of steepest ascen} is

d̂ = ∇g(x0)
∥∇g(x0)∥ .

The method of steepest descent can be described as follows: For a starting point x0 ∈ RN

and k ≥ 0:

• Let xk+1 = xk − t∇g(xk);
• Find the expression for g(xk+1) in terms of t;
• Find the value of t which minimises g(xk+1);
• Update k → k + 1 and repeat Steps 1-3 until g(xk) cannot be reduced further. One

possible stopping criterion would be

|g(xk+1) − g(xk)| < τ

for some tolerance τ > 0.

Note that Step 3 is a one-dimensional minimisation problem. It involves minimising a
function of a single variable t. This is conceptually an easy thing to do; just go downhill in
one direction until it is not possible to go any further. There are many methods of doing
this including the Bisection and the (faster) Golden Search Method.

The method of steepest descent is conceptually easy to understand and implement, however,
the algorithm needs to calculate ∇g at every step. The method can also be slow since the
sequence of search directions are are always orthogonal to one another, meaning that the
algorithm can often times make repeated searches in every direction since it will follow a
perpendicular zigzag pattern.

\ Caution

Consider the function g : R2 → R where

g(x, y) = (x − y)2 + (x2 + y2 − 1)2.

The method of steepest descent is shown below with four different calculations from
different starting points.

2Recall that for vectors u and v, the Cauchy-Schwarz inequality states that

|⟨u, v⟩| ≤ ∥u∥2∥v∥2

where in this case, the inner product is simply the dot product. Note that equality hold only when u and
v are linearly dependent.
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J.8 Variants of the Newton-Raphson Method

A special case of the NR for a system of equations would be to take the vector-valued
function f to be equal to gradient of a function g, i.e. f = ∇g. This means that the NR can
be used in order to implement the steepest descent method. In this case, if f = ∇g, then the
Jacobian will in fact become the Hessian matrix. For instance, if f(x, y, z) = ∇g(x, y, z),
then

f(x) =


∂g
∂x
∂g
∂y
∂g
∂z

 (x) and H = J(x) =


∂2g
∂x2

∂2g
∂x∂y

∂2g
∂x∂z

∂2g
∂y∂x

∂2g
∂y2

∂2g
∂y∂z

∂2g
∂z∂x

∂2g
∂z∂y

∂2g
∂z2

 (x).

In general, the elements of the Hessian matrix/Jacobian (which is symmetric) are given by

H = J(x)ij = ∂2gi

∂xi ∂xj
for all i, j = 1, 2 . . . , N.

Therefore, NR for f = ∇g is

xk+1 = xk + dk with dk satisfying Hkdk = −∇g(xk)
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where Hk = J(xk) is the Hessian matrix. Many methods attempt to approximate this by
using the iteration

xk+1 = xk + tkH−1
k dk

where tn is a stepsize, dn is the approximate search direction (usually dn ≈ −∇g(xn)) and
H−1

k is the inverse of the Hessian matrix, or at least an approximation to the Hessian. Note
that the steepest descent method is one example of this general form where tk is the result
of a line search, dk = −∇g(xk) and Hk is the identity.

J.9 Applications of Minimisation Methods

• The minimisation of large systems: An interesting example of this arises in elliptic
partial differential equations (for example problems in elasticity or electrostatics),
where the solution minimises a function related to the energy of the system. Compli-
cated engineering structures are designed by finding the local minima of a possible
configuration as this represents a stable operating structure.

• Solving symmetric, positive definite linear systems: For the linear system given
by Ax = b where A is a symmetric positive definite matrix, an approach to do this is
by minimising the function

g(x) = 1
2xTAx − bTx.

This is the basis of the celebrated Conjugate Gradient method. There are also variants
for non-symmetric matrices.

• Solving non-linear systems: For a non-linear system of the form

f(x) = 0 =⇒


f1
f2
...

fN

 (x) =


0
0
...
0

 ,

a solution x∗ would need to be found by minimising the function

g(x) = ∥f(x)∥2
2 =

N∑
n=1

|fn(x)|2

or more generally

g(x) =
N∑

n=1
αn|fn(x)|2

where αn > 0 are suitably chosen weights. However, in order to solving the system
f(x) = 0 requires finding the global minimum of g and unconstrained minimisation
algorithms will only find a local minimum. If the initial guess for the solution is good
enough, then the “local” minimum of g near the initial guess will also be a “global”
minimum.
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