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Abstract 

This project explores four approximate methods for solving ordinary differential equations 

(ODEs): Picard's method, Power series, Frobenius method, and asymptotic methods. 

Through an examples-driven approach, the underlying theory, strengths, and limitations of 

each technique are investigated. Unusual examples, where standard techniques fail or 

produce incorrect solutions, provide insights into the limitations of methods and potential 

research directions. By applying these methods to real-world problems, we derive valuable 

insights about the natural world. The project also explores the possibility of extending these 

methods to systems of differential equations and partial differential equations. The 

comparison and interplay between the methods reveal unique perspectives when solving the 

same equation, deepening our understanding of approximate methods for ODEs and 

highlighting possible research directions in this field. 
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Chapter 1 Introduction 

Differential equations are ubiquitous in the realm of mathematics, serving as the 

foundation for modelling various real-world phenomena across diverse fields such as 

physics, biology, economics, and engineering (Zill, 2012). The study of these equations not 

only aids in understanding the underlying mechanics of these phenomena but also 

encourages the development of new solutions and techniques that advance scientific 

knowledge (Braun, 2014). Among the different types of differential equations, ordinary 

differential equations (ODEs) are the most basic yet essential form, often representing the 

starting point for more complex investigations. However, finding analytical solutions to 

ODEs is often challenging or, in some cases, entirely unfeasible (Ablowitz & Fokas, 2003). 

Consequently, the development of approximate methods for solving ODEs is of critical 

significance, allowing researchers to gain insights into the properties and behaviour of 

various mathematical models. This project explores into a comprehensive exploration of 

some widely used approximate techniques for solving ODEs, namely Picard's method, power 

series method, Frobenius method, and asymptotic methods. Our investigation follows an 

example-driven approach that incorporate the introduction of the theory and philosophy 

underpinning each method, along with their application to standard examples. This 

approach offers a solid foundation for understanding the strengths and weaknesses of each 

method, as well as the contexts in which they are most effective (Simmons & Krantz, 2007). 

Furthermore, we examine unusual examples in which standard techniques may fail or 

produce incorrect solutions. Investigating these cases offers valuable insights into the 

limitations and capabilities of each method while bring to light on potential research 

directions that arise from the study of these unusual examples. To underscore the real-world 

significance of these methods, we apply them to practical problems found in various 

scientific disciplines, such as physics and biology. By doing so, we aim to derive interesting 

facts and insights about the natural world using the techniques developed in this project. As 

the project progresses, we will explore the possibility of extending these methods to systems 

of differential equations and approximate methods for solving partial differential equations 
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(PDEs). Additionally, we will investigate whether employing different techniques on the 

same equation can yield unique perspectives and insights into the problem. Ultimately, this 

project not only deepens our understanding of the approximate methods for solving ODEs 

but also provides valuable knowledge about the limitations, practical applications, and 

possible research directions in this field. 

Chapter 2 Picard's Method 

Picard's method, also known as Picard iteration, is an iterative method used to 

approximate solutions to first-order ODEs with an initial condition. The method involves 

constructing a sequence of approximations that converge to the exact solution by repeatedly 

solving a sequence of simpler ODEs (Burden & Faires, 2010).  The method is based on the 

idea that if the solution to an ODE is differentiable and the right-hand side of the ODE is 

locally Lipschitz1 (Liao, 2012), then the solution can be approximated by a unique sequence 

of continuously differentiable functions.  

Suppose we have on IVP of the form: 

𝑑𝑦

𝑑𝑥
= 𝐹(𝑥, 𝑦) 𝑦(0) = 𝑦0 

The Picard's method finds the approximate solutions via the following iterative 

procedure 

𝑦0(𝑥)  = 𝑦0

𝑦𝑛(𝑥)  = 𝑦0 + ∫  
𝑥

0

 𝐹(𝑠, 𝑦𝑛−1(𝑠)) ds for 𝑛 ≥ 1
 

In this project, we will mention that under suitable conditions, the solution to the 

initial value problem (IVP) will be 𝑦(𝑥) = lim𝑛→∞  𝑦𝑛(𝑥). 

 
1 A function is said to be Lipschitz if there exists a constant L such that the absolute difference between 

the function values at any two points is no greater than L times the absolute difference between the points 

themselves. The Lipschitz constant L is a measure of how fast the function changes. 
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2.1 Standard Example  

The Picard method of successive approximations will first be demonstrated with an 

IVP whose solution is already known. Consider the IVP with 𝑦(0) = 0. 

𝑦′ = 2(𝑦 + 1). 

This IVP has the exact solution 𝑦(𝑥) = 𝑒2𝑥 − 1. 

To solve this IVP using the Picard's method, the function 𝐹(𝑥, 𝑦) = 2(𝑦 + 1) and 

𝑦0(𝑥) = 0. The first approximation 𝑦1(𝑥) can be calculated as follows: 

𝑦1(𝑥) = ∫  
𝑥

0

 𝐹(𝑠1, 𝑦0(𝑠))ds

 = ∫  
𝑥

0

 2(𝑦0(𝑠) + 1) ds

 = ∫  
𝑥

0

 2(0 + 1) ds

 = ∫  
𝑥

0

 2 ds

 ⇒ 𝑦1(𝑥) = 2𝑥

 

Similarly, 𝑦2(𝑥) can be calculated as follows: 

𝑦2(𝑥) = ∫  
𝑥

0

 𝐹(𝑠, 𝑦1(𝑠))ds

 = ∫  
𝑥

0

 2(𝑦1(𝑠) + 1)ds

 = ∫  
𝑥

0

 2(2𝑠 + 1)ds

 = 2 ∫  
𝑥

0

 2𝑠 + 1ds

 = 2[𝑠2 + 𝑠]0
𝑥 =

(2𝑥)2

2!
+

2𝑥

1!

 

Therefore, it can be seen by inspection that 
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𝑦𝑛(𝑥) = ∑  

𝑛

𝑘=1

 
(2𝑥)𝑘

𝑘!

 ∴ lim
𝑛→∞

 𝑦𝑛(𝑥) = ∑  

∞

𝑘=1

 
(2𝑥)𝑘

𝑘!
= ∑  

∞

𝑘=0

 
(2𝑥)𝑘

𝑘!
− 1

 = 𝑒2𝑥 − 1

 

2.2 Limitations and Unusual Examples 

The limitations of Picard's method include the fact that it can be time-consuming and 

computationally expensive for complicated ODEs, and that it may not always converge. 

Additionally, the method may not be applicable to ODEs with singularities or discontinuities, 

and it requires the function to be continuous at (0,0). Similarly, if an ODE has a right hand 

side that is not Lipschitz then the Picard iteration cannot be done 

2.2.1 Unusual Example 

Consider the IVP where 𝑦(0) = 0. 

𝑦′ = 𝑥𝑦 + 2𝑥 − 𝑥3  

Solving this IVP would require the use of a separation of variables and a method of 

undetermined coefficients, but the Picard's method can also be used. 

The functions 𝑦1(𝑥) and 𝑦2(𝑥) can be calculated as follows: 
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𝑦1(𝑥) = ∫  
𝑥

0

 𝐹(𝑠, 𝑦0(𝑠))𝑑𝑠

 = ∫  
𝑥

0

 𝐹(𝑠, 0)𝑑𝑠

 = ∫  
𝑥

0

 𝑠(0) + 2𝑠 − 𝑠3𝑑𝑠

 = ∫  
𝑥

0

 2𝑠 − 𝑠3𝑑𝑠

 = [𝑠2 −
𝑠4

4
]

0

𝑥

 ⇒ 𝑦1(𝑥) = 𝑥2 −
𝑥4

4

𝑦2(𝑥) = ∫  
𝑥

0

 𝐹(𝑠, 𝑦1(𝑠))𝑑𝑠

 = ∫  
𝑥

0

 𝑠 (𝑠2 −
𝑠4

4
) + 2𝑠 − 𝑠2𝑑𝑠

 = ∫  
𝑥

0

  𝑠3 −
𝑠3

4
+ 2𝑠 − 𝑠3𝑑𝑠

 = ∫  
𝑥

0

 2𝑠 −
𝑠5

4
𝑑𝑠

 = [𝑠2 −
𝑠6

24
] = 𝑥2 −

𝑥6

24

 

It can be seen that: 

𝑦𝑛(𝑥)  = 𝑥2 −
𝑥2𝑛+2

4 ⋅ 6 ⋯ (2𝑛 + 2)

lim
𝑛→∞

 𝑦𝑛(𝑥)  = 𝑥2
 

This limit holds provided −1 < 𝑥 < 1. This is one of the limitation examples of 

Picard's method 

 

2.3 Real-World Applications  

Despite these limitations, the Picard method is widely used in the numerical solution 

of ODEs, particularly in cases where exact analytical solutions are not available or are 

difficult to obtain. It has applications in many fields, including physics, engineering, and 

economics. For example, in physics, Picard's method can be used to solve differential 
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equations that describe physical phenomena, such as the motion of a particle or the behavior 

of a fluid.  

In engineering, Picard's method can be used to model and control the behavior of 

dynamical systems such as robots, airplanes, and electrical circuits. For example, Picard's 

method can be used to approximate the motion of a robotic arm, which can be used in 

manufacturing processes. 

In economics, Picard's method can be used to model the behavior of economic 

systems that are described by ODEs. For instance, Picard's method can be used to 

approximate the solution to the differential equations that describe the dynamics of a stock 

market or the evolution of an economic system over time. 

Overall, Picard's method is a powerful mathematical tool that can be applied in 

various fields to solve complex problems and model dynamic systems. 

Chapter 3 Power Series Approximations 

The power series method is a versatile mathematical technique used for solving 

various types of differential equations that cannot always be addressed using conventional 

methods. This chapter aims to provide an overview of the power series method, its 

applications, limitations, and the importance of this method in mathematics and other fields.  

The power series method assumes that the solution to a given differential equation 

can be represented as an infinite power series of the form: 

 

𝑦(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛

∞

𝑛=0

 

 

where 𝑎𝑛 are the coefficients of the power series, x is the independent variable, and 𝑥0 

is the center of the series (Olver, 2014), which will be chosen as the location of the initial 

condition. The method involves substituting the power series into the differential equation 
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and solving for the coefficients 𝑎𝑛. This often leads to a recurrence relation, which can be 

used to compute the coefficients and construct the power series solution (Zill & Cullen, 

2012). 

3.1 Standard and Unusual Example 

Consider the IVP 

𝑦′ − 𝑦 = 0     with      𝑦(0) = 1 

Consider the power series for 𝑦(𝑥) as a solution to this IVP 

𝑦(𝑥) = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯  

The constants (𝑎𝑛)𝑛∈ℕ0
 are yet to be determined.  The complete power series 

expansions for both x and its derivative can be expressed as: 

𝑦(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + ⋯   and  𝑦′ = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + 4𝑎4𝑥3 + ⋯ 

Plugging these expressions into the ODE  𝑥̇ + 𝑥 = 0 gives 

[𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + 4𝑎4𝑥3 + ⋯ ] − [𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + ⋯ ] = 0
 

(𝑎1 − 𝑎0) + (2𝑎2 − 𝑎1)𝑥 + (3𝑎3 − 𝑎2)𝑥2 + (4𝑎4 − 𝑎3)𝑥3 + ⋯ = 0 

Furthermore, by summation it can be expressed as  

∑  

∞

𝑛=1

  [𝑛𝑎𝑛 − 𝑎𝑛−1]𝑥𝑛 = 0. 

As this expression must hold true for all values of x, the terms inside the square 

brackets must be equal to 0 for all 𝑛 ∈ ℕ0. This condition leads to the creation of a recursive 

relationship, which can be expressed as follows: 
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∑  

∞

𝑛=1

(𝑛𝑎𝑛 − 𝑎𝑛−1)𝑥𝑛 = 0  

⟹  𝑛𝑎𝑛 − 𝑎𝑛−1 = 0   

⟹  𝑎𝑛 =
𝑎𝑛−1

𝑛
  

This implies that we can determine every value of 𝑎𝑛 can be found in terms of 𝑎0 as 

follows: 

𝑎𝑛 =
1

𝑛
𝑎𝑛−1 =

1

𝑛(𝑛 − 1)
𝑎𝑛−2 =

1

𝑛(𝑛 − 1)(𝑛 − 2)
𝑎𝑛−3 = ⋯

1

𝑛(𝑛 − 1)(𝑛 − 2)(… )(2)(1)
𝑎0 

⟹  𝑎n =
1

𝑛!
𝑎0 

We can determine the value of 𝑎0 from the initial condition 𝑦(0) = 1 : 

1 = 𝑦(0) = ∑  

∞

𝑛=0

𝑎𝑛0𝑛 = 𝑎0 + 𝑎1(0) + 𝑎2(0) + 𝑎3(0) + ⋯ = 𝑎0  

⟹  𝑎0 = 1 

Consequently, we have 𝑎𝑛 =
1

𝑛!
𝑎0 =

1

𝑛!
  for all 𝑛 ∈ ℕ0. As a result, we can express x as 

𝑦(𝑥) = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = ∑  

∞

𝑛=0

𝑥𝑛

𝑛!
 

Note that this expression for 𝑦(𝑥) is exactly e𝑥, which is indeed the solution to the 

IVP. 

Although this is a valid method for solving ODEs, there are two issues that can arise 

in many cases: 
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1. One issue that often arises when using this method is the question of whether the 
infinite sum of the power series converges, since a power series solution is only valid 
if it converges. 

2. Another potential issue with power series solutions is that they may not have a closed 
form solution or that the closed form may not be easily recognizable. 

 

3.1.1 Unusual example 

Consider the following the IVP 

𝑦′ = 𝑥2 − 𝑦2  where  𝑦(1) = 1. 

Let us assume that the function 𝑦 = 𝑓(𝑥) can be represented by Taylor series centred 

at 𝑥 = 1. 

 Thus  

𝑓(𝑥) = 𝑓(1) + 𝑓′(1)(𝑥 − 1) +
𝑓′′(1)

2!
(𝑥 − 1)2 +

𝑓′′′(1)

3!
(𝑥 − 1)3 + ⋯ 

We do not know the function 𝑓, so the coefficients 𝑓(𝑛)(1) are yet unknown. But the 

ODE allows us to determine higher derivatives of 𝑦 = 𝑓(𝑥) in terms of previous ones. 

We know 𝑦 = 𝑓(𝑥) = 1 when 𝑥 = 1 

𝑓′(1) = 𝑦′(1) = 12 − 12 = 0
 

Derive f gives:  

𝑓′′(𝑥) = 𝑦′′ = 2𝑥 − 2𝑦𝑦′ 

𝑓′′(1) = 2 

Similarly, 

𝑓′′′(𝑥) = 𝑦′′ = 2 − (2𝑦𝑦′′ + 2𝑦′𝑦′) 
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 ⇒ 𝑓′′′(1) = −2 

Lastly, 

𝑓(4) = 𝑦(4) = (2𝑦 ⋅ 𝑦′′′ + 2𝑦′ ⋅ 𝑦′′ + 2𝑦′𝑦′′ + 2𝑦′′𝑦′)

=  −6𝑦′𝑦′′ − 2𝑦𝑦′′′

𝑓(4)(1) = −4

 

substituting back gives Taylor series 

𝑦 = 1 + (𝑥 − 1)2 −
1

3
(𝑥 − 1)3 +

1

6
(𝑥 − 1)4 + ⋯ 

This approximates 𝑦 as a polynomial in 𝑥. 

The above method carries a very strong assumption is that the solution to the ODE 

𝑦 = 𝑓(𝑥) has a well-defined Taylor series (the solution to the ODE is infinitely differentiable) 

and that the Taylor series converges to 𝑦 = 𝑓(𝑥). 

Question: Is there an ODE whose solution is not infinitely differentiable? Similarly, 

an example of an ODE whose solution has a Taylor Series that does not converge to the 

function? Yes, there are ODEs whose solutions are not infinitely differentiable, and there are 

also ODEs whose solutions have Taylor series that do not converge to the function itself. 

In general, we can do better by replacing "Taylor series" with Power series. 

3.1.2 Unusual Example 2  

This example is a formal power series with no guaranteed convergence. 

𝑦′ = 𝑥2 − 𝑦2    with  𝑦(1) = 1 

Assume that 𝑦 takes the form of a power series in 𝑥 about 𝑥 = 1, where the constants 

are yet to be determined  

𝑦 = 𝑐0 + 𝑐1(𝑥 − 1) + 𝑐2(𝑥 − 1)2 + 𝑐3(𝑥 − 1)3 + ⋯ 
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This example is a formal power series with no convergence. 

Then we can use the given information and the ODE to determine an approximate 

solution 

Firstly, replacing 𝑥 = 1 in the approximation for y 

1 = 𝑐0 + 0 + 0 + ⋯

⇒ 𝑐0 = 1  

Then, by differentiating the ODE we obtain  

𝑦′ = 𝑐1 + 2𝑐2(𝑥 − 1) + 3𝑐3(𝑥 − 1)2 + 4𝑐4(𝑥 − 1)3 + ⋯ 

From the ODE when 𝑥 = 1 

𝑦′ = 12 − 12 = 0 

and by y’ we have  

𝑦′ = 𝑐1 + 0 + 0 + ⋯

𝑦′ = 𝑐1
 

combining both results gives: 

𝑐1 = 0 

Upon further differentiation, we get: 

𝑦′′ = 2𝑐2 + 6𝑐3(𝑥 − 1) + 12𝑐4(𝑥 − 1)3 + ⋯   

when 𝑥 = 1 𝑦′′ = 2𝑐2 

Also. From the ODE we have the result below when  𝑥 = 1: 

𝑦′′ = 2𝑥 − 2𝑦𝑦′ = 2 
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By combining these results, we get: 

2𝑐2 = 2

𝑐2 = 1
 

Similarly, we have:  

𝑦′′′ = 6𝑐3 + 24𝑐4(𝑥 − 1) + ⋯

𝑦′′′ = 6𝑐3
 

 

Also, from the ODE: 

𝑦′′′ = 2 − 2𝑦𝑦′′ − 2𝑦′2

𝑦′′′  = −2
 

Therefore, we can obtain the following by combining these two results 

6𝑐3  = −2

𝑐3  = −
1

3

 

 

Lastly, by the same method: 

𝑦(4) = 24𝑐4 + ⋯

 at 𝑥 = 1
𝑦(4) = 24𝑐4

 

Also, from the ODE: 

𝑦(4)  = −(2𝑦′′ + 2𝑦𝑦′′) − 4𝑦′𝑦′′

 = −6𝑦′𝑦′′ − 2𝑦𝑦′′′  

when 𝑥 = 1 : 
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𝑦(4) = −6(0)(2) − 2(1)(2)

𝑦(4) = −4

𝑐4 = −
1

6

 

Therefore, an approximate power series is: 

𝑦  = 𝑐0 + (𝑥 − 1) + (2(𝑥 − 1)2 + (3(𝑥 − 1)3 + 𝑐1(𝑥 − 1)4 + ⋯

𝑦 = 1 + 0(𝑥 − 1) +  (x − 1)2 −
1

3
(𝑥 − 1)3 +

1

6
(𝑥 − 1)4 + ⋯

𝑦  = 1 + (𝑥 − 1)2 −
1

3
(𝑥 − 1)3 +

1

6
(𝑥 − 1)4 + ⋯

 

3.2 Real-World Applications 

 

The power series method has numerous applications in solving ODEs, linear ODEs, 

and even some non-linear ODEs (Boyd, 2000). It is particularly useful when other standard 

methods, such as separation of variables or integrating factors, are not applicable, or when 

the differential equation does not have a closed-form solution. The power series method has 

been applied in various fields, including physics, engineering, and economics, to model and 

analyze complex systems and phenomena (Olver, 2014). 

In quantum mechanics, power series are used to solve the Schrödinger equation and 

other related problems, such as the perturbation theory for finding approximate solutions to 

problems that cannot be solved exactly (Griffiths, 2004). In signal processing, power series 

are employed to represent and analyze signals and systems, such as in the Z-transform and 

the Laplace transform (Oppenheim & Schafer, 2010). In finance, power series are applied to 

price options and other financial derivatives, such as in the Black-Scholes model and various 

interest rate models. 

These examples demonstrate the versatility and importance of power series in 

various fields, as they provide a powerful tool for solving problems and analyzing complex 

systems. 

 

3.3 Limitations  
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Despite its versatility, the power series method has some limitations. One notable 

limitation is the convergence of the power series. The power series solution may only 

converge within a limited radius of convergence around the center x0, which may not cover 

the entire interval of interest (Olver, 2014). Additionally, singular points in the differential 

equation can cause issues in finding a convergent power series solution. In such cases, 

further techniques, such as the Frobenius method, may be needed to address these issues 

(Zill & Cullen, 2012). Furthermore, the computation of the power series solution can become 

complex and cumbersome, especially for higher-order differential equations, making it 

difficult to obtain explicit solutions in some cases (Boyd, 2000). 

 

Chapter 4 The Frobenius Method 

This is a modified power series used for solving ODEs with singular points (i.e. where 

the coefficients of the ODE are not analytic at that point, when becoming infinite or 

discontinuous). 

The Frobenius method is used to solve linear ODEs of the form: 

 

𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0 

 

where p and q are analytic functions (infinitely differentiable in its domain), and the 

equation has a regular singular point at x = x₀ (Ince, 1956). The method involves assuming 

that the solution 𝑦 can be represented as a Frobenius series of the form: 

 

𝑦(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛+𝑟

∞

𝑛=0

 

 

where 𝑎𝑛  are the coefficients of the series, n is a non-negative integer, and r is a non-

integer exponent. The coefficients 𝑎𝑛 can be determined by substituting the Frobenius series 
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into the ODE and solving for the coefficients. This often leads to a recurrence relation, which 

can be used to compute the coefficients and construct the Frobenius series solution (Zill & 

Cullen, 2012). 

 

4.1 Standard and Unusual Example 

Consider the Bessel differential equation of order p given by 

𝑥2𝑦′′ + 𝑥𝑦′ + (𝑥2 − 𝑝2)𝑦 = 0    for all    𝑥 > 0. 

We apply the Frobenius method, suppose the solution 𝑦 can be written in the form 

𝑦 = ∑  

∞

𝑚=0

𝑎𝑚𝑥𝑟+𝑚 with 𝑎0 ≠ 0 

The aim is to determine suitable expressions for 𝑟 and 𝑎𝑚. 

Substituting this series solution into Bessel's equation and then rearranging gives: 

𝑎0(𝑟2 − 𝑝2)𝑥𝑟 + 𝑎1((𝑟 + 1)2 − 𝑝2)𝑥𝑟+1 + ∑  

∞

𝑚=2

  (𝑎𝑚(𝑟 + 𝑚)2 − 𝑝2) + 𝑎𝑚−2) 𝑥𝑟+𝑚 = 0 

Since the right-hand side is zero, all coefficients on left hand side will be zero as well. 

Then, we note that, if 𝑎0 is nonzero, then: 

𝑎0(𝑟2 − 𝑝2) = 0
𝑟 = ±𝑝

 

Similarly, if 𝑎1 is nonzero: 

𝑎1((𝑟 + 1)2 − 𝑝2) = 0
𝑟 = −1 ± 𝑝
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This holds more generally for 𝑚 ≥ 2:  

𝑎𝑚((𝑟 + 𝑚)2 − 𝑝2) + 𝑎𝑚−2 = 0 

𝑎𝑚  =
−𝑎𝑚−2

(𝑟 + 𝑚)2 − 𝑝2

 =
−𝑎𝑚−2

𝑟2 + 2𝑟𝑚 + 𝑚2 − 𝑝2

 =
−𝑎𝑚−2

𝑚2(𝑚 + 2𝑝)

 

Note that the first term implies that 𝑎0(r2 − 𝑝2) = 0, meaning that either 𝑎0 = 0 or 

𝑟 = −1 ± 𝑝. On the other hand, the second term 𝑎1((𝑟 + 1)2 − 𝑝2) = 0 implies that 𝑎1 = 0 or 

𝑟 = −1 ± 𝑝. This gives rise to two non-trivial cases: 

• 𝑎1 = 0 and 𝑟 = ±𝑝 

• 𝑎0 = 0 and 𝑟 = −1 ± 𝑝 

Consider the case when 𝑎1 = 0, then we have: 

0 = 𝑎1 = 𝑎3 = ⋯ . = 𝑎2𝑘+1 

For the even coefficients we see that: 

𝑎2 =
−𝑎0

2(2 + 𝑝)
=

−𝑎0

22(1 + 𝑝)

𝑎4 =
−𝑎2

4(4 + 2𝑝)
=

−𝑎2

22 ⋅ 2(2 + 𝑝)
=

−𝑎0

24 ⋅ 2(1 + 𝑝)(2 + 𝑝)

 

Therefore,  

𝑎2𝑘 =
(−1)𝑘𝑎0

22𝑘𝑘! (1 + 𝑝)(2 + 𝑝) … . (𝑘 + 𝑝)
 

Therefore, we obtain the following to Bessel's equation 

𝑦(𝑥) = ∑  

∞

𝑘=0

(−1)𝑘𝑎0

22𝑘𝑘! (1 + 𝑝)(2 + 𝑝) ⋯ (𝑘 + 𝑝)
𝑥2𝑘+𝑝 
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This is called the Bessel function of the first kind of order 𝑝.  

This solution is denoted by the 𝐽p(𝑥) where n is the order of the Bessel function and x 

is the argument. The second kind of Bessel functions, also known as Neumann functions, are 

another set of solutions to Bessel’s differential equation. They are denoted by the symbol 

𝑌p(𝑥) and can be derived if it is assumed that 𝑎0 = 0, which means that 𝑎1 will be nonzero 

and following the same process.  Therefore, the general solution will be a linear combination 

of these two solutions, namely: 

𝑌(𝑥) = 𝐴𝐽𝑝(𝑥) + 𝐵𝑌𝐵(𝑥) 

Where A and B are constants to be found from the initial conditions. 

 

4.2 Real-World Applications  

 

The Frobenius method has numerous applications in solving linear ODEs with 

regular singular points. These equations frequently appear in various fields, including 

physics, engineering, and applied mathematics.  

For instance, in physics: The Frobenius method is used to solve the radial part of the 

Schrödinger equation in quantum mechanics, particularly in the study of the hydrogen atom 

and other atomic systems (Griffiths, 2004). In engineering, specifically in the field of fluid 

dynamics, the Frobenius method can be applied to solve the Blasius equation, which models 

the boundary layer flow over a flat plate (White, 2011). Finally, in applied mathematics: The 

Frobenius method is used in the study of special functions, such as Bessel functions, 

Legendre functions, and hypergeometric functions, which play crucial roles in the solutions 

of various mathematical problems and physical phenomena (Olver et al., 2010). 

 

4.3 Limitations  



APPROXIMATE METHODS FOR ODE  21 

 

Despite its versatility, the Frobenius method has some limitations. One notable 

limitation is that the method is only applicable to linear ODEs with regular singular points. It 

cannot be applied to irregular singular points, and other techniques, such as the Birkhoff-

Trjitzinsky method or the WKB method, may be needed to address these cases (Zill & Cullen, 

2012). Additionally, the computation of the Frobenius series solution can become complex 

and cumbersome, especially for higher-order differential equations, making it difficult to 

obtain explicit solutions in some cases (Ince, 1956). 

 

Chapter 5 Asymptotic Methods 

 

5.1 Introduction 

  

Asymptotic methods are used to approximate solutions of ODEs when an exact 

solution is difficult to find or not possible. Among these methods, the method of dominant 

balance plays a crucial role in simplifying and solving ODEs. In this chapter, we will explore 

the method of dominant balance, its limitations, and its applications with relevant examples. 

5.2 Methods of Dominant Balance  

  

The method of dominant balance is a versatile approach for finding approximate 

solutions to ODEs, particularly when dealing with singular perturbation problems, when a 

small parameter in a system leads to significant changes in the behavior of the solution 

(Bender & Orszag, 1999). The technique involves identifying the dominant terms in an 

equation that balance each other and discarding the non-dominant terms to simplify the 

problem. This leads to a reduced problem, which can be solved more easily, and the 

asymptotic solution can be derived from the simplified equation (Bender & Orszag, 1999). 

5.2.1 Example  
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Consider the equation: 

𝑥4𝑦′′ = 𝑦 

This has an irregular singular point at 𝑥 = 0. 

This is because as x tends to 0, the differential equation reduces to 𝑦 = 0 which 

eliminates the highest order derivative.  

We assume a solution as 𝑥 → 0 takes the form: 

𝑦 = 𝑒𝑠(𝑥) 

Where s(x) is a function to be determined, then by chain rule 

𝑦′(𝑥) = 𝑠′(𝑥)𝑒𝑠(𝑥) 

Then, by further differentiating it we obtain: 

𝑦′′(𝑥) = (𝑠′2(𝑥) + 𝑠′′(𝑥))𝑒𝑠(𝑥) 

Substituting this into the original equation and then simplifying tells us that 

𝑥4(𝑠′2 + 𝑠′′) − 1 = 0 (∗∗) 

Assume that the function s takes the form: 

𝑠′(𝑥) = 𝑐𝑥𝛼 + 𝐴1(𝑥)
 

Where c and 𝛼 are constants, and the function 𝐴1 decays to 0 faster than 𝑥𝛼 .  For the 

purpose of this derivation 𝐴1 will be assumed to be negligible. 

 Derive the following:  

𝑠′′(𝑥) = 𝛼𝑐𝑥𝛼−1 + ⋯ 
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Substituting this into (∗∗) gives: 

𝑐2𝑥4+2𝛼 + 𝑐𝛼𝑥4+𝛼−1 − 1 ∼ 0 

The idea behind method of dominant balance is that two of these terms should be 

comparable, while the third must be small in comparison to these two.  Considering the 

possibilities: 

a) 𝑐2𝑥4+2𝛼 ∼ 1 

b) 𝑐2𝑥4+2𝑎 ∼ −𝑐𝑎𝑥4+𝑘−1 

c) 𝑐𝛼𝑥4+α−1 ∼ 1  

We can obtain the following expressions:  

a) 4 + 2𝛼 = 0 

⇒ 𝛼 = −2 

 

b) 4 + 2𝛼 = 4 + 𝛼 − 1 

⇒ 𝛼 = −1 

 

c) 4 + 𝛼 − 1 = 0  

⇒ 𝛼 = −3 

 

In the last two cases 𝛼 = −1 or 𝛼 = −3  the term that we omit is much larger than the 

comparable terms as 𝑥 → 0. So, these choices are inconsistent with the method. 
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Therefore, we must have 𝛼 = −2 leading to 𝑐2 = 1 and thus: 

𝑐 = ±1 

So now we have carried out the first iteration to obtain 

𝑠′(𝑥) ∼ 𝑐𝑥−2 + 𝐴1(𝑥) 

substitute this expression into the equation (∗∗).  We obtain: 

𝑥4(𝑐2𝑥−4 + 2𝑐𝑥−2𝐴1 + 𝐴1
2) + 𝑥4(−2𝑐𝑥−3 + 𝐴1

′ ) − 1 

Simplifying gives: 

2𝑐𝑥2𝐴1 + 𝑥4𝐴1
2 − 2𝑐𝑥 + 𝑥4𝐴1

′ ∼ 0 

Again, we let 

𝐴1(𝑥) = 𝑐1𝑥𝛽 + ⋯ 

and repeat a similar argument to find that the only consistent possibility is 

𝛽 = −1, 𝑐1 = 1 

So now we have: 

𝑠′(𝑥) = 𝑐𝑥−2 + 𝑥−1 + 𝐴2(𝑥) 

Again, we substitute this to obtain: 

𝑥2(1 + 2𝑐𝐴2) + 2𝑥3𝐴2 + 𝑥4𝐴2
2 − 𝑥2 + 𝑥4𝐴2

′ ∼ 0 

As 𝑥 → 0 this equation is identically satisfied by setting 𝐴2 = 0. 

So the calculation terminates to give: 
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𝑠′(𝑥) = 𝑐𝑥−2 + 𝑥−1

𝑠(𝑥) = −𝑐𝑥−1 + log (𝑥) + 𝑠0
 

Therefore, our approximate is: 

𝑦 = 𝑒𝑠(𝑥) = 𝑒−
𝑐
𝑥+log (𝑥)+𝑆0 = 𝑘 + 𝑒±

1
𝑥  

Recalling that: 

𝑐 = ±1 

In this case we obtain an exact solution to the ODE. 

5.3 Real-World Applications 

The method of dominant balance has been instrumental in a variety of applications 

across various fields. In fluid mechanics, for instance, it is employed in deriving the 

boundary layer equations, which describe the flow of viscous fluids over a solid surface. By 

balancing the dominant terms, the simplified boundary layer equations can be obtained, 

leading to solutions that capture the essential flow behavior near the surface (Van Dyke, 

1975). 

In reaction-diffusion systems, the method of dominant balance is used to determine 

the behavior of the solutions in different regions of the problem domain. For example, the 

method can help identify the regions where the reaction or diffusion processes dominate the 

system's behavior (Murray, 2002). 

Another notable application of the method of dominant balance is in the study of 

flame propagation in combustible mixtures. By identifying the dominant balance between 

the reaction and diffusion terms, researchers can derive simplified equations that describe 

the behavior of the flame front (Williams, 1985). 

5.4 Limitations 
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The applicability of the method of dominant balance is limited to cases when the 

ODE exhibits a clear balance between dominant terms, and the neglected terms do not 

significantly affect the solution (Bender & Orszag, 1999).  

In some cases, identifying the dominant terms can be challenging, particularly when 

the equation involves multiple scales or several competing terms (Nayfeh, 1973).  

Furthermore, the dominant terms may change as the independent variable evolves, 

and multiple dominant balances may occur in different regions of the independent variable 

(Bender & Orszag, 1999). 

 

Chapter 6 Extending to Systems of Differential Equations and PDEs 

 

In various scientific and engineering fields, systems of differential equations and 

PDEs  frequently emerge, reflecting the complexities of multi-dimensional and multi-

variable problems. In this project, we consider extending the approximate methods used for 

ODEs—Picard's method, power series method, Frobenius method, and asymptotic 

methods—to systems of differential equations and PDEs. 

 

Systems of differential equations comprise multiple interconnected ODEs and appear 

in many real-world applications, such as modeling interactions between multiple species in 

an ecosystem or the dynamics of connected mechanical systems (Boyce & DiPrima, 2012). To 

extend the approximate methods studied for ODEs to systems of differential equations, these 

techniques must be adapted to handle the complexities of multiple, interdependent 

equations. For instance, Picard's method could be adjusted to use successive approximations 

for each equation in the system, while the power series and Frobenius methods may need 

multivariate expansions (Pozrikidis, 2011). 

 

On the other hand, PDEs involve multiple independent variables and derivatives of 

varying orders. They are commonly used to describe physical phenomena, such as heat 
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conduction, wave propagation, and fluid flow (Strauss, 2008). Extending the approximate 

methods for ODEs to PDEs presents a more difficult challenge due to increased 

mathematical complexity. However, some techniques, like asymptotic methods, have already 

been widely applied to PDEs, especially for boundary value problems and perturbation 

theory (Holmes, 1995). Other methods, such as the power series and Frobenius methods, 

may need significant modifications or adaptations for PDEs. 

 

 

Chapter 7 Comparative Analysis of Different Methods 

 

In this project, we have examined four approximate methods for solving ODEs—

Picard's method, power series method, Frobenius method, and asymptotic methods—with 

each possessing its own advantages, disadvantages, and areas of application. Conducting a 

comparative analysis of these methods is essential for understanding their relative 

performance and suitability for various problems. 

 

Picard's method, an iterative technique based on successive approximations, is 

especially helpful for determining the existence and uniqueness of solutions for specific ODE 

types (Pozrikidis, 2011). However, its convergence can be slow, and it may not be suitable for 

nonlinear problems or systems with strong oscillations. 

 

The power series method uses Taylor series expansions to approximate ODE 

solutions near a given point (Boyce & DiPrima, 2012). This method is versatile and 

applicable to a wide range of problems, but its accuracy and convergence might be limited by 

singularities or the choice of expansion point. 

 

The Frobenius method enhances the power series method by allowing solutions with 

non-integer exponents (Coddington & Levinson, 1955). It is particularly effective for 
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problems with singular points but may be less suitable for problems without such points or 

with irregular singularities. 

 

Asymptotic methods, such as the matched asymptotic expansions method, are 

valuable for problems with small or large parameters and boundary layers (Holmes, 1995). 

These methods provide accurate approximations in many situations where other methods 

may struggle, but their applicability can be limited by the presence of multiple scales. 

 

In conclusion, each method offers distinct advantages and limitations, making them suitable 

for specific problems. A thorough understanding of these methods and their comparative 

performance is essential for selecting the most appropriate technique for a given problem 

and developing novel methods that address existing limitations 

 

Conclusion 

In summary, this project has thoroughly examined four key approximate methods for 

solving ordinary differential equations: Picard's method, power series method, Frobenius 

method, and asymptotic methods. By investigating the fundamental theory, principles, 

standard examples, unusual examples, and real-world applications of each method, we have 

gained a deep understanding of their strengths, limitations, and the situations in which they 

are most effective (Simmons & Krantz, 2007). The example-driven approach used in this 

project has helped us identify the advantages and disadvantages of each method, setting the 

stage for future research and practical applications in the field of differential equations. 

 

Furthermore, our exploration of unusual examples and the limitations of each 

method has opened potential research opportunities, promoting the development of new 

techniques and enhancements to existing methods (Arnold, 2006). Applying these 

techniques to real-world problems in various scientific disciplines has emphasized their 
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practical importance and showcased their ability to offer valuable insights into the workings 

of the natural world. 

 

Through the project, we evaluated the possibility of extending these methods to 

systems of differential equations and partial differential equations, thus broadening their 

applicability (Ablowitz & Fokas, 2003). We also investigated the potential insights that could 

be gained from using different techniques on the same problem, revealing unique 

perspectives, and improving our understanding of the issue at hand. 

 

In conclusion, this project has not only deepened our understanding of approximate 

methods for solving ODEs but also provided essential knowledge about their limitations, 

practical applications, and potential research avenues in this field. The experience and 

understanding gained through this investigation will undoubtedly be valuable for future 

endeavors. 
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